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Hop-Derived Iso-α-Acids in Beer
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Reversal Learning in Mice as
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System
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Dementia and cognitive decline have become worldwide health problems due to rapid
growth of the aged population in many countries. We previously demonstrated that single
or short-term administration of iso-α-acids, hop-derived bitter acids in beer, improves
the spatial memory of scopolamine-induced amnesia model mice in the Y-maze and
enhances novel object recognition in normal mice via activation of the vagus nerve and
hippocampal dopaminergic system. However, these behavioral tests do not replicate
the stimulus conditions or response requirements of human memory tests, and so may
have poor translational validity. In this report, we investigated the effects of iso-α-acids
on visual discrimination (VD) and reversal discrimination (RD) using a touch panel-based
operant system similar to that used for human working memory tests. In the VD task,
scopolamine treatment reduced correct response rate and prolonged response latency
in mice, deficits reversed by prior oral administration of iso-α-acids. In the RD task,
administration of iso-α-acids significantly increased correct response rate compared
to vehicle administration. Previous studies have reported that dopamine signaling is
involved in both VD and RD learning, suggesting that enhancement of dopamine release
contributes to improved memory performance in mice treated with iso-α-acids. Taken
together, iso-α-acids improve VD and RD learning, which are considered high-order
cognitive functions. Given the translational advantages of the touch panel-based operant
system, the present study suggests that iso-α-acids could be effective for improvement
of working memory in human dementia patients.
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INTRODUCTION

Dementia and age-related cognitive decline are increasing in prevalence as our populations age.
Effective therapies for dementia after onset have not been established, so preventive strategies
such as exercise and improved dietary habits have drawn increasing attention. A meta-analysis
concluded that consumption of low to moderate amounts of alcoholic beverages may reduce the
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risk for dementia (Neafsey and Collins, 2011). While this effect
may depend on alcohol itself, several compounds contained
in alcoholic beverages are reported to have neuroprotective
properties. Resveratrol for example, a polyphenolic compound
contained in red wine, has been reported to improve cognitive
function in dementia model rodents (Huang et al., 2011; Ma
et al., 2013) and healthy adults (Kennedy et al., 2010). Our
group found that long-term intake of iso-α-acids, bitter acids
in beer derived from hops (Humulus lupulus L.), prevents
memory impairment in Alzheimer’s disease (AD) model mice
(Ano et al., 2017) and high fat diet-induced obese mice (Ayabe
et al., 2018a). We also reported that single or short-term
administration of iso-α-acids increases dopamine levels in
the hippocampus via vagus nerve activation (Ano et al.,
2019). Further, oral administration of iso-α-acids improves
short-term spatial memory in the Y-maze test and object
recognition memory in the novel object recognition test.
While these simple behavioral procedures are suitable for drug
screening (Yamada et al., 2010; Ano et al., 2018; Ayabe et al.,
2018b), the perceptual and behavioral requirements are vastly
different from the cognitive assessments used to test working
memory in humans.

Recently, touch panel-based operant systems have been
developed to assess higher-order brain functions in rodents.
The touch panel operant systems are established based on
Pavlovian autoshaping or sign- and goal-tracking (Parkinson
et al., 2000b; Tomie et al., 2003; Lopez et al., 2015), and
are related to various brain regions including cingulate and
medial prefrontal cortex (Bussey et al., 1997a,b), amygdala
(Parkinson et al., 2000a), nucleus accumbens (Parkinson et al.,
2000b), and hippocampus (Ito et al., 2005). Since the touch
panel operant systems are associated with various cognitive
and psychiatric functions, they have been used for researches
on AD (Romberg et al., 2013), schizophrenia (Brigman
et al., 2006, 2009), and Huntington’s disease (Morton et al.,
2006). These systems allow researchers to perform more
translatable tests in rodents because of their similarity to human
cognitive tests, such as the Cambridge Neuropsychological Test
Automated Battery (CANTAB; Barnett et al., 2016). Indeed,
Nithianantharajah et al. (2015) demonstrated that mice and
humans carrying the same disease-related genetic mutations
exhibited similar cognitive impairment in paired associates
learning (PAL) test paradigms. Previous studies have reported
that hippocampal catecholamines, including dopamine, are
involved in PAL task performance (Talpos et al., 2015; Roschlau
and Hauber, 2017). Using touch panel operant systems, it may
be possible to evaluate the cognitive benefits of iso-α-acids
and elucidate the underlying mechanisms in rodents with high
translational validity.

Touch panel operant systems are well suited for analysis
of visual discrimination (VD) and reversal discrimination (RD;
Oomen et al., 2013; Morita et al., 2016; Piiponniemi et al.,
2017). The VD task requires the integration of perceptual
learning and memory processing (Gilbert et al., 2001; Bussey
and Saksida, 2007), while the RD task requires flexibility of
memory function (Kehagia et al., 2010; Klanker et al., 2013).
Impairments of VD and RD learning are observed in patients

with AD (Freedman and Oscar-Berman, 1989), AD model
mice (Romberg et al., 2013; Piiponniemi et al., 2017), and
scopolamine-induced amnesia model mice, which also exhibit
AD-like pathology (Winters et al., 2010). Further, monoamine
neurotransmitters including dopamine are involved in VD
and RD learning tasks (Haber, 2014; Morita et al., 2016;
Takaji et al., 2016). Therefore, iso-α-acids, which increase
dopamine release, are expected to improve VD and RD
task performance. In the present study, we investigated the
effects of short-term iso-α-acids administration on VD and
RD learning in amnesic and control mice using a touch panel
operant system.

MATERIALS AND METHODS

Materials
We used isomerized hop extract (IHE) as a source of iso-α-acids.
IHE was purchased from Hopsteiner (Mainburg, Germany) as
a potassium salt in aqueous solution. The contents of this IHE
were analyzed and described previously (Ano et al., 2017). Briefly,
this IHE contains 30.5% (w/v) iso-α-acids, comprised of trans-
isocohumulone (1.74% w/v), cis-isocohumulone (7.61% w/v),
trans-isohumulone (3.05% w/v), cis-isohumulone (14.0% w/v),
trans-isoadhumulone (0.737% w/v), and cis-isoadhumulone
(3.37% w/v). IHE also contains components other than iso-α-
acids, including low levels of α-acids (<0.6%), β-acids (<0.2%),
and hop oil (<0.1%). Scopolamine was purchased from Sigma
Aldrich Company (St. Louis, MO, USA).

Animals
Seven-week-old male C57BL/6J mice were purchased from
Charles River Japan Inc. (Tokyo, Japan). Mice were housed
at room temperature (23 ± 1◦C) under a constant 12-h/12-h
light/dark cycle (light period from 8:00 am to 8:00 pm)
and fed standard rodent chow (CE-2, Clea Japan, Tokyo,
Japan) for 1 week prior to experiments. In total, 50 mice
were utilized. All animal care and experimental procedures
were performed according to the guidelines of the Animal
Experiment Committee of Kirin Company Ltd., and all efforts
were made to minimize suffering. All studies were approved
by the Animal Experiment Committee of Kirin Company
Limited and conducted in 2017 (approval IDs AN10163-Z00 and
AN10364-Z00).

Touch Panel Operant Test
Apparatus
The touch panel operant test apparatus (O’HARA &
Co., Ltd., Tokyo, Japan) consists of a touch panel, a
pellet dispenser delivering 10-mg food pellets (AIN-76A
Rodent Tablet; TestDiet, St. Louis, MO, USA), and water
bottles (Figure 1A). The touch panel was divided into
two stimulus windows (each 6 cm × 6 cm) by a black
wooden board. The pellet dispenser or reward magazine
was placed at the opposite side of the touch panel
(Figure 1B). A CCD camera was also mounted on the
apparatus. For experiments, the apparatus was enclosed
in a sound-isolated chamber with a house lamp and an
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FIGURE 1 | The touch panel-based operant system and testing procedures. (A,B) The touch panel operant system apparatus. The apparatus is composed of a
touch panel, pellet dispenser, and water bottles. The apparatus is contained within a sound-isolated chamber. A CCD camera is mounted on the apparatus. The
touch panel is divided into two stimulus windows by a black wooden board, and a reward magazine is placed at the opposite side of the touch panel. (C) Training
schedule. (D) Vertical and horizontal stripes were used as stimuli in visual discrimination (VD) and reversal discrimination (RD) tasks. (E) Testing schedule. SCP,
scopolamine; DW, distilled water; IAA, iso-α-acids.

audio speaker. All experiments were conducted in a sound-
isolated room (23 ± 1◦C).

Animal Habituation
Prior to experiments, feeding was restricted to reduce body
weight to around 80% of age-matched ad lib fed-mice.

Body weight was measured as frequently as possible to
avoid excessive body weight reduction. After body weight
reached the 80% criterion, mice were acclimated to the
food pellets (rewards) by feeding each animal 100 pellets
per day for 3 days. Mice were then placed in the touch
panel operant test apparatus for 15 min per day for
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3 days without any task requirements. During this period,
15 reward pellets were placed in the dispenser (reward
magazine) so that the mouse learned to associate this location
with food rewards.

Pre-training
The pre-training phase consisted of three periods (Figure 1C):
(i) Magazine training; (ii) All correct training; and (iii) White
square training. (i) For Magazine training, reward pellets were
automatically delivered every 1 min for 15 min accompanied
by a tone so that the mouse learned that the tone indicated
reward presentation in the dispenser. Magazine training was
conducted once daily for 3 days. (ii) During All correct training,
white squares were presented on both stimulus windows, and
reward pellets were delivered when the mouse touched either
window. Each task session lasted 50 trials (stimulus-reward
pairings) or 15 min, whichever came first. This training was
conducted daily for 3 days. (iii) During White square training,
a white square was presented randomly on one stimulus window,
while the other window remained blank. Reward pellets were
delivered with a reward tone when the mouse touched the
window presenting the white square. Again, sessions lasted
50 trials or 15 min, whichever came first, and were conducted
daily for 3 days.

Visual Discrimination Task
In the VD task, a pair of visual stimuli (vertical and
horizontal stripes) appeared on the screen during each trial.
Half the mice were presented the vertical stripes as the
correct (rewarded) response and the horizontal stripes as the
incorrect response, while the condition was reversed for the
remaining mice (Figure 1D). A trial started when the mouse
touched the reward magazine. A nose poke to the correct
stimulus resulted in tone and reward delivery, followed by
a 2-s inter-trial interval (ITI). A nose poke to the incorrect
stimulus resulted in no reward, 5 s of darkness (lights out),
and a 5-s ITI. After each ITI, the next trial started when
the mouse touched the reward magazine. A trial was omitted
when the mouse did not touch either stimulus within 30 s.
Iso-α-acids solution (1 mg/kg body weight) or distilled water
(DW) was administered by oral gavage 60 min before the
test session and scopolamine (0.8 mg/kg body weight) or
saline was intraperitoneally administered 30 min before the test
session (Figure 1E).

Reversal Discrimination Task
Both the scopolamine-treated group and iso-α-acid-treated
group then performed the RD task. Before starting the RD task,
mice continued performing the VD task without drug treatment
until a criterion correct responses rate >80% was reached (post-
VD training). In the RD task, the correct and incorrect stimuli
were reversed relative to the VD session. For example, mice
presented vertical stripes as the correct stimulus in the VD task
were presented horizontal stripes as the correct stimulus in the
RD task. Again, iso-α-acids solution (1 mg/kg body weight) or
DW was administered by oral gavage 60 min before the test.
Mice were not treated with scopolamine in the RD task. In total,
DW/IAA was injected 17 times, and scopolamine was injected

seven times, in all experiment period. The number of correct
response changes (∆ Correct response rate) was calculated as
(Correct response rate of each daily trial) − (Correct response
rate of 1st trial) to evaluate how effectively the mice could change
their previous memory conditions.

Statistical Analysis
All values are expressed as mean ± SEM. Correct response
rates of untreated mice (Figure 2) were analyzed by one-way
repeated-measures ANOVA followed by the Bonferroni’s test.
Correct response rates and response delays of treated mice
during the VD and RD tasks were analyzed by two-way
repeated-measures ANOVA followed by Bonferroni’s test or
student’s t-test. For data without repeated measures, paired
groups were compared by student’s t-test and multiple groups
by one-way ANOVA followed by Tukey–Kramer tests for
pair-wise comparisons. All statistical analyses were performed
using the Ekuseru-Toukei 2012 software package (Social Survey
Research Information, Tokyo, Japan). A P < 0.05 (two-tailed)
was considered statistically significant for all tests.

RESULTS

Confirmation of Visual Discrimination
Learning in the Touch Panel Operant
System
Before using the scopolamine-induced amnesia model mice, we
first confirmed the acquisition of VD learning and examined
the effect of iso-α-acids in the touch panel operant system using
normal untreated mice. A significant main effect of session days
(F(6,102) = 39.38; P < 0.001) with no significant main effect of
treatment (F(1,17) = 0.173, P = 0.683) and significant interaction
(F(6,102) = 0.535, P = 0.781) was noted. Correct response rate was
significantly increased after the fourth daily session compared
to day 1, and exceeded 85% on day 6 in both the groups.
The treatment of iso-α-acids did not affect the VD learning as
compared with that in the control mice (Figure 2A). Correct
response latency, which is associated with attention for task
stimuli, indicates significant main effect of the session days
(F(6,102) = 5.055; P< 0.001), with no significant main effect of the
treatment (F(1,17) = 0.210, P = 0.653) and significant interaction
(F(6,102) = 0.462, P = 0.835; Figure 2B). These results indicate that
normal mice successfully learned the VD task using the touch
panel operant system.

Oral Administration of Iso-α-Acids
Improves Visual Discrimination Learning of
Scopolamine-Induced Amnesia Model
Mice
Using the touch panel-based operant system, we evaluated
VD learning by scopolamine-induced amnesia model mice
and the potential benefits of iso-α-acids. A total of 30 mice
(10 mice/group) were subjected to the test, and 23 mice
(DW-saline group: n = 9; DW-SCP group: n = 8; IAA-SCP
group: n = 6) completed the VD task. The significant main
effect of session days (F(6,114) = 26.36; P < 0.001) and
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FIGURE 2 | VD learning in untreated control mice. (A) Proportion of correct
responses (%) across sessions by DW-treated mice (control group) and
iso-α-acids-treated mice (IAA group) in the VD task. (B) Correct response
latency, which indicates the time between the trial start and correct response.
All values are expressed as mean ± SEM. Control group: n = 10; IAA group:
n = 10.

treatment (F(2,19) = 11.35; P < 0.001), and a significant session
days × treatment interaction (F(12,114) = 2.47; P = 0.006) was
recorded. Compared to the DW-saline group, DW-SCP group
demonstrated a significantly lower correct response rate after
four daily VD learning sessions, while oral administration of
iso-α-acids prior to scopolamine reversed this effect, resulting
in significantly increased correct response rates on days 6 and
7 compared to mice treated with DW and scopolamine
(Figure 3A). The number of daily sessions required to reach
a >70% correct response rate was also significantly greater in
DW and scopolamine-treated mice compared to DW and saline-
treated mice, and this effect as well was reversed by iso-α-acids

(F(2,19) = 14.47; P < 0.001; Figure 3B). Thus, scopolamine
treatment impairs VD learning, while oral administration of iso-
α-acids improves VD learning of scopolamine-induced amnesia
model mice. In addition to impaired correct response rate,
correct response latency revealed a significant main effect of
the session days (F(6,114) = 2.83; P = 0.013) and treatment
(F(2,19) = 24.38; P < 0.001), albeit no significant interaction
(F(12,114) = 1.04, P = 0.41). The comparison of each session
day showed a significant delay in DW and scopolamine-
treated mice when compared with that in DW and saline-
treated mice on all experimental days, while iso-α-acid treatment
significantly shortened this latency when compared with that
in DW and scopolamine-treated mice on days 1, 4, and 5
(Figure 3C). These results indicate that scopolamine treatment
also impairs attention, a deficit reversed by administration
of iso-α-acids.

Oral Administration of Iso-α-Acids
Improves Reversal Learning
To further examine the effects of iso-α-acids on higher-order
cognitive functions, we tested mice in the RD task. DW and
scopolamine-treated mice and iso-α-acids and scopolamine-
treated mice were first subjected to additional VD task training
sessions without further drug treatment. The correct and
incorrect responses were then reversed for the subsequent
RD sessions. The DW-SCP group and IAA-SCP group were
again treated with DW and iso-α-acids, respectively, but not
with scopolamine [(DW-SCP)-DW group and (IAA-SCP)-IAA
group]. Neither the DW-saline group nor the IAA-saline group
was subjected to the RD task. There was a significant main effect
of session days (F(9,99) = 38.30; P < 0.001), but no significant
main effect of the treatment (F(1,11) = 1.220; P < 0.293) and
no significant interaction (F(9,99) = 1.444; P = 0.180) were
noted. Comparison of each session days revealed that the
oral administration of iso-α-acids significantly increased the
∆ correct response rate compared to control treatment on day
10 (F(1,33) = 6.115; P < 0.019; Figure 4A), indicating that iso-α-
acids can enhance cognitive flexibility. In the correct response
latency, there was a significant main effect of session days
(F(9,99) = 6.272; P < 0.001), but no significant main effect of
the treatment (F(1,11) = 0.029; P = 0.866) and no significant
interaction (F(9,99) = 1.248; P = 0.275) were noted. In each
session, correct response latency was significantly shortened by
iso-α-acids treatment on day 1 but not on subsequent training
days (Figure 4B). Thus, iso-α-acids may also enhance attention,
but this effect was not as potent as observed in DW and
scopolamine-treated mice in VD task.

DISCUSSION

Administration of iso-α-acids improved both VD learning and
reversal learning in mice as measured using a touch panel-
based operant system. We previously reported that iso-α-acids
improve spatial and object memory in the Y-maze and the novel
object recognition test, respectively, which are tests based on
the curiosity of rodents for novel places and objects. While
the Y-maze test and the novel object recognition test are
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FIGURE 3 | Iso-α-acids improve VD impairments in scopolamine-induced amnesia model mice. (A) Correct responses (%) across sessions in the VD task. Mice
were divided into three groups: DW and saline-treated group (DW-saline group), DW and scopolamine-treated group (DW-SCP group), and iso-α-acids and
scopolamine-treated group (IAA-SCP group). Mice were administered DW or iso-α-acids (1 mg/kg) by oral gavage 60 min before the task and intraperitoneally
injected with saline or scopolamine (0.8 mg/kg) 30 min before the task. (B) Daily sessions required to reach the correct response criterion (>70%). (C) Correct
response latency. All values are expressed as mean ± SEM DW-saline group: n = 9; DW-SCP group: n = 7; IAA-SCP group: n = 6. ∗P < 0.05 vs. DW-saline group,
†P < 0.05 vs. DW-SCP group.

well-established procedures to evaluate the effects of drugs
and food components on memory (Yamada et al., 2010; Ano
et al., 2018; Ayabe et al., 2018b), they do not engage the same
cognitive and behavioral processes required for performance
in tasks commonly employed to test human learning and
memory. In contrast, the touch panel-based operant test has high
translational potential because it resembles human touch panel-
based cognitive measurement paradigms such as the CANTAB.
Indeed, mice and humans carrying the same disease-related
mutations exhibited similar cognitive impairments in a touch
panel-based cognitive test paradigm (Nithianantharajah et al.,

2015). In the present study, we found that iso-α-acids at a
dose of 1 mg/kg improved VD and RD as measured using
a touch panel-based operant test. Although we have not yet
conducted clinical trials on iso-α-acids, these results strongly
suggest potential cognitive benefits for human dementia patients.
The effective dose of iso-α-acids in mice (1 mg/kg) is equivalent
to only 4.8 mg/day in humans (60 kg body weight) according
to the human equivalent dose modulus (0.08). In our previous
study, some major types of beer (e.g., the lager type) contained
16–27mg/L of iso-α-acids (Taniguchi et al., 2015). Based on these
results, it is expected that intake of iso-α-acids at 4.8 mg/day or
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FIGURE 4 | Iso-α-acids improve reversal learning. Mice from the DW-SCP
group and the IAA-SCP group in the VD task were further treated with DW
[(DW-SCP)-DW group] or iso-α-acids [(IAA-SCP)-IAA group], respectively, and
subjected to RD task. (A) Changes in correct response rate across sessions
in the RD task ∆ correct response was calculated as (Correct response rate
of each daily trial) – (Correct response rate of 1st trial). Mice were
administered DW or iso-α-acids (1 mg/kg) by oral gavage 60 min before the
task. (B) Correct response latency. All values are expressed as mean ± SEM.
(DW-SCP)-DW group: n = 7; (IAA-SCP)-IAA group: n = 6. ∗P < 0.05 vs.
control group.

0.17–0.3 L/day of beers for several weeks will improve VD and
RD in cognitive tests such as the CANTAB.

In addition to the short-term effect of iso-α-acids on the
improvement of cognitive function via dopamine signaling,
we have previously reported that long-term administration of
iso-α-acids prevents cognitive impairment in AD model mice
via modulation of microglia (Ano et al., 2017). There may
be some long-term effects of iso-α-acids on the VD task, and
the lingering effect of previous iso-α-acid treatment in the RD

task. However, to the best of our knowledge, modulation of
the microglia does not directly affect VD and reversal learning.
Although it is difficult to completely exclude the long-term
effects, the accumulation of the short-term effect of iso-α-acids
could be responsible for the improvement of VD and reversal
learning in this study. Further studies, such as those assessing the
performance of the RD task by intact mice without any previous
treatment, are required.

VD learning requires integration of perceptual learning and
memory, while reversal learning requires cognitive flexibility,
and both are considered higher-order cognitive functions
(Gilbert et al., 2001; Bussey and Saksida, 2007; Kehagia et al.,
2010; Klanker et al., 2013). The precise mechanisms underlying
VD and RD are still unclear, but monoamine neurotransmitter
signaling is likely critical. Morita et al. (2016) reported that the
dopamine D2-like receptor is required for both VD and RD
learning. Moreover, a recent clinical trial found that vagus nerve
stimulation improved working memory performance and visual
attention on computer-based cognitive tests (Sun et al., 2017),
and we previously reported that single oral administration of
iso-α-acids enhances dopamine release in the hippocampus via
vagus nerve activation (Ano et al., 2019). Though dopamine
signaling was not assessed in the current study, improvement of
VD and reversal learning suggest enhancement of vagus nerve
activity and hippocampal dopamine signaling by iso-α-acids
treatment. Future studies using dopamine receptor antagonists
or vagotomized mice are warranted to evaluate this possible
mechanism. In addition to the dopamine signaling system, other
neurotransmitters, such as serotonin and norepinephrine, are
also involved in VD and reversal learning (Ward et al., 1999;
Seu et al., 2009; Izquierdo et al., 2017). The involvement of these
neurotransmitters could not be excluded from the present results.
The hippocampus is essential for working memory as assessed
by touch panel operant systems (Talpos et al., 2008, 2009; Abela
et al., 2013). In addition, however, various regions of cerebral
cortex are involved in human working memory (D’Esposito and
Postle, 2015), so additional studies are needed to elucidate the
effects of iso-α-acids on these regions.

Impairments in VD learning have been observed in several
neurodegenerative diseases, including AD (Freedman andOscar-
Berman, 1989). In the present study, we used scopolamine-
induced amnesia model mice as these animals exhibit AD-like
cognitive impairments. Scopolamine is a muscarinic antagonist
that temporarily impairs learning and memory function by
inhibiting cholinergic neuronal systems, and is used widely
to screen drugs for effects on dementia and cognitive decline
(Yamada et al., 2010). Consistent with previous reports (Winters
et al., 2010; Talpos et al., 2012), scopolamine-induced VD
learning impairments in the touch panel-based operant test,
while short-term administration of iso-α-acids improved VD
learning in these amnesic mice by modulating the dopamine
signaling system. To our knowledge, this is the first report
to demonstrate improved VD learning in amnesia model
mice using a touch panel operant system. Further studies of
AD model mice are warranted to provide further evidence
that short-term administration of iso-α-acids can improve the
cognitive impairments of dementia.
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In addition to AD, VD and reversal learning deficits are also
major symptoms of schizophrenia that are associated with the
impairment of hippocampal functions (Martinelli and Shergill,
2015; Reddy et al., 2016). The touch panel operant systems have
been used to evaluate the VD and reversal learning impairment
in rodent schizophrenia models as well as to investigate the
molecular mechanisms underlying the onset of this disease (Alsio
et al., 2015; Gould et al., 2015; Zeleznikow-Johnston et al.,
2018). Findings of the present study demonstrated that the
touch panel operant systems can be applied to evaluate the drug
efficacy, making it possible to screen drugs for schizophrenia and
other cognitive and psychiatric disorders using this method. The
present results are insufficient to discuss the effects of iso-α-acids
on schizophrenia-related cognitive impairment, but there is a
possibility that iso-α-acids can be effective in various cognitive
and psychiatric disorders.

We also demonstrated that administration of iso-α-acids
can reduce correct response latency in scopolamine-treated
mice. Though the VD task used in the present study is not
specifically designed to assess attention, this effect suggests
that iso-α-acids improve scopolamine-induced attention deficits.
Iso-α-acids also shortened the response latency in day 1 of
RD task, but not on the subsequent days. The effect of
iso-α-acids on attention may be exhibited when there are
some loads for attention, such as scopolamine treatment
or changing the operant conditioning. Attention deficits are
induced by cholinergic neuronal loss in animals (Voytko
et al., 1994; Bucci et al., 1998), and are observed in AD
patients (Ferreira-Vieira et al., 2016). In addition, dopamine
is regarded as the major therapeutic target for attention-
deficit hyperactivity disorder (ADHD) patients (Tarver et al.,
2014). Modulation of dopamine signaling by iso-α-acids may
thus be useful for the treatment of psychological disorders
linked to dopaminergic system dysfunction in addition to
cognitive disorders.

In conclusion, we evaluated the effects of iso-α-acids,
hop-derived bitter acids in beer, on VD and RD learning by
scopolamine-treated amnesic mice using a touch panel-based
operate system to assess the potential of these compounds for
dementia treatment. Indeed, iso-α-acids enhanced both VD and
RD, suggesting improvements in perceptual learning, memory,
and cognitive flexibility. Intake of iso-α-acids could be effective
for improving higher-order cognitive functions in humans.
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