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Abstract

The present work discusses the laminar boundary layer flow of an electrically conducting

Casson fluid due to a horizontal perforated sheet undergoing linear shrinking/stretching with

mass transpiration. Navier’s slip and second-order slip conditions are also imposed on the

flow. The system is subjected to a transverse magnetic field. The non-Newtonian flow under

consideration obeys the rheological equation of state due to the Casson model. The PDEs

governing the bounder layer flow is reduced to a nonlinear boundary value problem in ODEs

by utilizing appropriate similarity transformations and are expressed analytically. The simi-

larity solution is found to be a function of the Casson parameter, magnetic parameter, mass

suction/injection parameter, and the first/second-order slip parameters. Such a solution is

either unique, or dual solutions exist in a region defined by the mass transfer induced slip

parameter. The results of the present work are found to be an increase of the magnetic

effects resulting in expansion of the unique solution region and contraction of the dual solu-

tion region for the flow due to the induced Lorentz force. In the unique solution region, an

increase in magnitudes of mass suction induced slip and the first/second-order slip parame-

ters result in a reduction of the wall shear stress in the shrinking sheet, while the wall shear

stress with mass suction increases with the Casson and the magnetic effects. Similar results

exist for the stretching sheet case with mass suction. However, only unique similarity solu-

tions exist only for the case of stretching sheets with mass injection. The current work is a

generalization of the classical works of Crane (1970) and Pavlov (1974) for a stretching

sheet. Mass suction/injection induced slip enhances and achieves a dominant flow driven

by reversing the flow direction of the moving sheet, which allows an adjacent flow against

the sheet. The findings have possible industrial applications in fluid-based systems including

stretchable/shrinkable things, automated cooling systems, power generation, microelec-

tronics, and present new results to the problem.
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1 Introduction

Mathematical modeling of nonlinear physical phenomena occurring in biology, physical sci-

ences, pharmaceutical, and engineering sciences often results in a system of highly nonlinear

differential equations. Applications of stretching sheet dynamics generally occur in polymer

extrusion processes involving the cooling of continuous strips extruded from a dye through a

stagnant fluid. Distinctive sorts of non-Newtonian liquids as well as different modeling

approaches have been utilized in the past to depict and clarify the conduct of non-Newtonian

flow in these physical situations.

The Casson fluid which is a standout amongst the most critical non-Newtonian rheological

models is a plastic fluid that displays shear subordinate attributes and additional yield stress.

The Casson fluid flow occurs when the shear stress exceeds the yield stress. The Casson model

was created for liquids containing bar-like solids and is frequently connected to model blood-

stream and other practical applications such as modern handling of liquid chocolate and

related foodstuff. The flow incited by stretching the boundary in the polymer removal, drawing

of copper wires, constant extending of plastic films and recreated strands, hot moving glass

fibers, metal ejection, and metal turning is a segment of the situations where the phenomenon

of a stretching boundary develops. A day to day increased use of non-Newtonian fluids in

industrial applications has increased the interest of researchers in theoretical and experimental

investigations on the flow characteristics of such complex fluids. As far back as the spearhead-

ing works of Blasius [1] and Sakiadis [2, 3], Crane [4]obtained an analytical solution of the

boundary layer equations for the flow due to stretching of a plastic sheet in the polymer indus-

try. Recently, Bhattacharya et al. [5] obtained closed-form solutions for the steady boundary

layer flow of a Casson fluid over a permeable stretching/shrinking sheet. Their analysis reveals

that the solution is unique for the stretching sheet case. On the other hand, depending upon

the Casson parameter, the solution for the shrinking sheet case may not exist at all, or there

may be a unique solution, or multiple solutions may exist. Hussanan et al. [6] have obtained

similarity solutions in terms of hypergeometric functions for the boundary layer flow of a

steady viscoelastic Casson fluid flow past a stretching surface under mass transpiration and vis-

cous dissipation. Bhatti et al. [7] studied the mass transfer process by considering Jeffrey fluid

model, in this method he uses the robust computational approach to examine the mass transfer

process. Chu et al. [8] worked on the impact of Cattaneo-Christov double diffusion and radia-

tive heat flux on the flow of Maxwell liquid due to stretched nanomaterial surface. Wang et al.

[9] examined the non-Newtonian fluid flow in the presence of heat generation/absorption and

radiative heat flux. Khan et al. [10] concluded the outcomes for chemically reactive aspects in

the flow of tangent hyperbolic material. Hayat et al. [11, 12] numerically investigated the non-

linear radiative flow in a convective cylinder. And also, they demonstrated the squeezing flow

of the second grade liquid subject to non-Fourier heat flux and heat generation/absorption.

Qayyum et al. [13] investigated the comparison of five nanoparticles with the viscous flow in

the presence of slip and rotating disc. Safdar et al. [14] worked on the unsteady flow of a liquid

film due to stretching sheets using file point symmetries. Aziz and Mahomed [15] studied the

theoretical methods for non-Newtonian fluid flow and also its applications. Paliathanasis [16]

worked on Lie symmetries using rotating shallow water. Mekheimer et al. [17] investigated the

lie point symmetries for an electrically conducting Jeffrey fluid.

The steady, laminar MHD boundary layer flows driven by moving boundaries are widely

studied flow problems [18]. Pavlov [19] investigated an MHD laminar boundary layer flow of

an electrically conducting liquid due to a stretching sheet in the presence of a transverse mag-

netic field under the assumption of very small magnetic Reynolds number. Chakrabarti and

Gupta [20] extended the work of Crane [4] by including the effect of a transverse magnetic
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field to the MHD flow over a stretching sheet. The changelessness of the accurate results was

researched by Takhar et al. [21]. Fang and Zhang [22] obtained closed form similarity solu-

tions for the MHD viscous flow of a Newtonian fluid over a shrinking sheet under mass suc-

tion/injection and found multiple solution branches depending upon the applied magnetic

field. In fact the studies pursued by Bhattacharya et al. [23] on the steady boundary layer flow

of a Casson fluid over a permeable stretching/shrinking sheet under MHD conditions establish

that the effect of increasing the applied magnetic field results in widening of the parameter

space of unique solutions. So, the problem of MHD boundary layer flows over a stretching/

shrinking sheet under various physical conditions has become a paradigm [6, 24–30]. Zhang

et al. [31] worked on hybrid nanofluid flow in the presence of an induced magnetic field, in

this study the flow passes towards the elastic surface having tantalum and nickel nanoparticles.

Nazeer et al. [32] studied the MHD electro-osmotically flow of third grade fluid theoretically

in the presence of a microchannel.

As pointed out by Vleggaar [33] in a polymer processing application including spinning of

filaments without blowing, the boundary layer happens generally over a small length of the

zone of about 0.0-0.5 meters from the dye which might be taken as the starting point of Fig 1.

In fact, this is the region beyond which much of the stretching takes place. In such a progres-

sion, the preliminary velocity is low (about 0.3 m/s) but not very low enough always to assume

the linear stretching. Thus an excellent estimate of the velocity of the sheet is u = U0(x/L)n (at

any rate for the first 10-60 cm of the whirling region) where L is the characteristic length for

measuring horizontal distance and n is the stretching sheet parameter to model the

nonlinearity.

Recently, Mahabaleshwar et al. [34] have investigated the laminar boundary layer Casson

fluid flow past a stretching/shrinking sheet under MHD conditions and found the closed-form

analytic solutions for the flow field. The dual solutions have been reported for the case of a

shrinking sheet. Their analytic and numerical results indicate the dependence of the flow and

the wall shear stress on the Casson effects, the mass suction and injection, and the MHD

environment.

Fig 1. Physical model when the system is subjected to a vertical magnetic field H0.

https://doi.org/10.1371/journal.pone.0276870.g001
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The present research is focused on the MHD flow of a Casson fluid due to a perforated

sheet undergoing linear stretching/shrinking with mass transfer and with consideration of

Navier’s and second order slip velocity conditions. Thus, the problem investigated in this

paper is a generalization (See Table 1 for a quick comparison of the present work with the past

literature) of the classical work of Crane [4], Pavlov [19], and the recent works of Fang and

Zhang [22], Fang et al. [35], Bhattacharya et al. [5, 23], Wu [36], and Mahabaleshwar et al.

[34].

The novelty of the present work is to investigate the Casson fluid flow due to shrinking/

stretching sheets in the presence of Navier’s slip and second order slip under the impact of the

magnetic field. The PDEs of the governing problems are altered into ODEs by using similarity

variables. The suction and injection parameter is also considered in the present work. The

present problem is used in many industrial applications such as extrusion of polymer process,

automated cooling systems, and entropy generation (see Zhao et al. [37], Hayat et al. [38] and

Khan et al. [39]).

2 Mathematical model

Consider a laminar, steady boundary layer flow of an electrically conducting and incompress-

ible Casson fluid that passes through a stretched perforated sheet (see Fig 1). Over the sheet, a

laminar boundary layer flow is driven by a nonuniform motion of the sheet which is accelerat-

ing in the axial direction with U(x) = ±U0 x/L as the shrinking (negative sign) or stretching

(positive sign) speed of the sheet, where U0 > 0 and L> 0 are the characteristic scales for mea-

suring horizontal velocity and horizontal length respectively.

Table 1. Solutions deductible from present formulation. The symbolA refers to as any permissible value of the corresponding parameter.

Reference γ M γ1 γ2 Vc Closed form solution

Crane(1970) [4] 1 0 0 0 0 f(η) = 1−e−η

Pavlov(1974) [19] 1 A 0 0 0 f ðZÞ ¼ 1ffiffiffiffiffiffiffi
1þM
p ð1 � e�

ffiffiffiffiffiffiffi
1þM
p

ZÞ

Fang and Zhang (2009) [22] 1 A 0 0 A f ðZÞ ¼ Vc �
1

a
ð1 � e� aZÞ, a ¼ ðVc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

c � 4ð1 � M2Þ
p

Þ=2

Fang et al.(2010) [35] 1 0 A A A f ðZÞ ¼ Vc �
1

aþg1a
2 � g2a

3 ð1 � e� aZÞ, α satisfying (14), d = −1

Bhattacharya et al.(2013) [5] A 0 0 0 A f ðZÞ ¼ Vc þ
1

a
ð1 � e� aZÞ

a ¼
Vcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
c þ4ð1þ1=gÞð1þMÞ

p

2ð1þ1=gÞ
(shrinking)

a ¼ �
Vc�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
c � 4ð1þ1=gÞ

p

2ð1þ1=gÞ
(stretching)

Bhattacharya et al.(2014) [23] A A 0 0 A f ðZÞ ¼ Vc þ
1

a
ð1 � e� aZÞ

a ¼
Vcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
c þ4ð1þ1=gÞð1þMÞ

p

2ð1þ1=gÞ
(shrinking)

a ¼ �
Vc�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
c � 4ð1þ1=gÞð1þMÞ

p

2ð1þ1=gÞ
(stretching)

Lin Wu(2016) [36] 1 0 A A A f(η) = α+ (Vc−α)(1−e−αη), α satisfying (14)

Singh et al.(2019) [43] 1 A 0 0 A f ðZÞ ¼ Vc þ
1

a
ð1 � e� aZÞ, a ¼ Vcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
c þ4ð1þMÞ

p

2

(Linear stretching case)

Mahabaleshwar et al.(2020) [34] A A 0 0 A f ðZÞ ¼ Vc þ
d
a
ð1 � e� aZÞ

a ¼
Vcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
c þ4ð1þ1=gÞ

p

2ð1þ1=gÞ
(shrinking)

a ¼ �
Vc�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
c � 4ð1þ1=gÞ

p

2ð1þ1=gÞ
(stretching)

Present work A A A A A f ðZÞ ¼ Vc þ
d

að1þg1a� g2a
2Þ
ð1 � e� aZÞ, α satisfying (14)

https://doi.org/10.1371/journal.pone.0276870.t001
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The system is subjected to a constant vertical magnetic field H0 = (0, H0). To study the

dynamics of the flow induced by the stretching sheet in the plane y = 0, the conducting liquid

is assumed in the half space y> 0. We examine Hartmann’s formulation of the MHD problem.

The flow of the initially quiescent fluid is induced by pulling the sheet parallel to the sheet at

both ends with equal and opposite force, resulting in a plate speed of U. The flow of otherwise

quiescent fluid is only caused by the movement of the sheet. On the sheet, a constant suction

rate of (0, −V0) is caused (see [18] Ch. 11, pp. 302). By convention, V0 > 0 is the suction, while

V0 < 0 is the fluid injection at y = 0.

The rheological stress components for the flow of an incompressible Casson liquid is

expressed as (see Nakamura and Sawada [40])

tij ¼

mB þ
ty
ffiffiffiffiffiffi
2D
p

� �
@ui

@xj
þ
@uj

@xi

 !

; if D < Dc;

mB þ
ty
ffiffiffiffiffiffiffiffi
2Dc

p

 !
@ui

@xj
þ
@uj

@xi

 !

; if D > Dc:

8
>>>>>><

>>>>>>:

ð1Þ

where μB is the active viscosity of the non-Newtonian liquid, τy is the yield stress of the liquid,

D is the resultant component of deformation rate, Dc is the critical value based on the non-

Newtonian model, and ui, uj are the two fluid velocity components for i, j 2 {1, 2}.

Let Re = U0 L/ν> 0 be the Reynolds number corresponding to the horizontal component

of the flow. Observe that in the boundary layer theory, we have d=L ¼ OðRe� 1=2Þ if δ denotes

the thickness of the laminar boundary layer near the stretching sheet.

We take δ as the characteristic scale for measuring length along the vertical. We also use U0

δ/L as the scale for measuring vertical component of the fluid velocity. Using these consider-

ations, the conservation of mass, zero pressure gradient laminar boundary layer equation for

the Casson liquid as a result of perforated sheet undergoing stretching are given by

@u
@x
þ
@v
@y

¼ 0; u
@u
@x
þ v

@u
@y
¼ n 1þ

1

g

� �
@

2u
@y2
�
sH2

0

r
u; ð2Þ

where (u(x, y), v(x, y)) is the fluid velocity induced by the stretching/shrinking sheet; ρ is the

fluid density, ν = μB/ρ is the kinematic viscosity, and σ is the electrical conductivity of the fluid.

The parameter γ is given by

g ¼ mB

ffiffiffiffiffiffiffiffi
2Dc

p

ty
; ð3Þ

which is the ratio of the deformation and the yield stresses of the Casson fluid. The relevant

boundary conditions for the present Casson model are given by [36, 41, 42]

uðx; 0Þ ¼ UðxÞd þ 1þ
1

g

� �

A
@u
@y
ðx; 0Þ þ B

@
2u
@y2
ðx; 0Þ

� �

ð4Þ

vðx; 0Þ ¼ � V0; lim
y!1

uðx; yÞ ¼ 0; ð5Þ

where U(x) and V0 are as aforementioned, d is the parameter of proportional shearing at the

boundary (d = 0 corresponds to the boundary at y = 0 and d 6¼ 0 corresponds to proportionally

sheared boundary). The constants A> 0 and B< 0 represent the first and second-order slip

coefficients, respectively.
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Let ψ be the stream function for the flow so that ðu; vÞ ¼ @c

@y ; �
@c

@x

� �
. We define variable η

and dimensionless stream function f(η) as

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Reðd=LÞ2
q

y=d ¼
ffiffiffiffiffi
Re
p

y=L; c ¼ n
ffiffiffiffiffi
Re
p
ðx=LÞf ðZÞ: ð6Þ

Consequently, the fluid velocity components are given by

u ¼ UðxÞf 0ðZÞ; v ¼ � ðV0=VcÞf ðZÞ; ð7Þ

where

Vc ¼ ðV0L=nÞ=
ffiffiffiffiffi
Re
p

ð8Þ

is the dimensionless suction/injection parameter. At the sheet surface, Vc> 0 corresponds to

fluid suction and Vc< 0 corresponds to the fluid injection.

Substituting (6)-(7) in (2) and in (4)-(5), we have the following nonlinear third order two-

point boundary value problem

1þ
1

g

� �

f 000 þ ff 00 � f 02 � Mf 0 ¼ 0; ð9Þ

f ð0Þ ¼ Vc; f 0ð0Þ � ðd þ g1f 00ð0Þ þ g2f 000ð0ÞÞ ¼ 0; lim
Z!1

f 0ðZÞ ¼ 0; ð10Þ

where 0� η<1 and the parameters g1 ¼ ð1þ 1=gÞA
ffiffiffiffiffi
Re
p

=L � 0; g2 ¼ ð1þ 1=gÞBRe=L �
0 are the dimensionless forms of the modified first and second order slip parameters for the

Casson model. We also have

d ¼ �ð1þm1Þ; ð11Þ

where positive and negative signs correspond to the stretching and shrinking sheet cases,

respectively, and m1 is the dimensionless mass transfer induced slip parameter such that m1 Vc

� 0. The parameter M appearing in (6) is the magnetic parameter defined by

M ¼ Q=Re � 0; ð12Þ

where Q ¼ sL2H2
0
=ðrnÞ is Chandrasekhar number. The closed form solution of (9)-(10) is

given by

f ðZÞ ¼ Vc þ
d

að1þ g1a � g2a
2Þ
ð1 � e� aZÞ; a > 0; ð13Þ

where α is a positive root of the following biquadratic polynomial equation

a1a
4 þ a2a

3 þ a3a
2 þ a4aþ a5 ¼ 0; ð14Þ

wherein

a1 ¼ 1þ
1

g

� �

g2; a2 ¼ � Vcg2 þ g1 þ
g1

g

� �

; a3 ¼ Vcg1 � 1 �
1

g
� Mg2

� �

; ð15Þ

a4 ¼ fVc þMg1g; a5 ¼ M þ d: ð16Þ
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Consequently, the four solutions α = α1, α2, α3, α4 of the biquadratic Eq (14) using the stan-

dard Ferrari’s method are given by

a1 ¼ �
a2

4a1

þ Sþ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 4S2 � 2p � q=S

p
; a2 ¼ �

a2

4a1

þ S �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 4S2 � 2p � q=S

p
; ð17Þ

a3 ¼ �
a2

4a1

� Sþ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 4S2 � 2pþ q=S

p
; a4 ¼ �

a2

4a1

� S �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 4S2 � 2pþ q=S

p
; ð18Þ

where

p ¼
a3

a1

�
3a2

2

8a2
1

; q ¼
a3

2
� 4a1a2a3 þ 8a2

1
a4

8a3
1

; S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1
� 4D3

0

p

2

3

s

; ð19Þ

D0 ¼ a3
3
� 3a2a4 þ 12a1a5; D1 ¼ 2a3

3
� 9a2a3a4 þ 27a2

2
a5 þ 27a1a2

4
� 72a1a3a5: ð20Þ

Since a1 < 0 and a5 > 0, the left hand side of (14) changes sign from positive at α = 0 to neg-

ative at α = r for all sufficiently large r> 0. So, (14) has at least one positive root.

Table 1 shows some of the important past studies conducted in the literature which can be

deduced from the present formulation. The present formulation is important in the sense that

it provides a wide range of parameter space for γ, M, γ1, γ2, and Vc in order to better analyze

the underlying nonlinear boundary layer flow. Moreover, the closed form nature of the simi-

larity solution is retained with the present more general formulation.

3 Numerical results and discussion

All numerical computations have been done in MATLAB programming. Since the roots of the

polynomial Eq (14) have been found in closed form as in the preceding section, as such no

numerical method is needed to further analyze the flow given by (13) and its dependency

upon the various dimensionless parameters. The numerical results of our formulation are vali-

dated by reproducing the results of Bhattacharya et al. [23] by taking γ1! 0, γ2! 0, and

M = 0 and that of Wu [36] by setting M = 0 and γ!1 in the present formulation. The

numerical results are presented separately for shrinking and stretching sheet cases as follows.

3.1 Shrinking sheet case

Fig 2 shows the solution space in the (α, Vc)-plane for various values of m1 and Casson param-

eter γ when the boundary layer flow is driven by the shrinking sheet with mass suction at the

sheet surface. The fixed parametric values taken here are γ1 = 0.1 = −γ2, d = −(1+ m1), and

M = 0. Different curves in each subfigure correspond to different values of m1. We first explain

the curve γ = 0.1, where the Casson effects are prominent. The mass suction induced slip effect

is strengthened on increasing |m1|. For m1 = −1 and M� 0, we have the unique non-negative

solution given by

a ¼
g

1þ g
Vc; ð21Þ

which is the threshold for two types of the solution regions described as follows:

(i) the unique solution region for m1� −1 which corresponds to a � g

1þg
Vc,

(ii) the dual solution region for m1 > −1 which corresponds to a < g

1þg
Vc.
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Thus, as the Casson effects decrease, that is, from γ = 0.1 to γ!1, the region of the unique

solution shifts upward, while the range of the dual solutions shifts to the left in the plane (α,

Vc). So, in the absence of the application of a magnetic field, the nature of the solution of the

investigated MHD Casson model for the shrinking sheet depends on γ.

To see the dependence of the flow field in the vicinity of the shrinking sheet surface, we

have obtained Fig 3 which shows the variation of the wall shear stress f00(0) as a function of m1

for γ!1, γ1 = 0.1 = −γ2, d = −(1+ m1), −2�m1� 0 with mass suction. The different subfi-

gures correspond to different values of M.

At the fixed value of the mass transfer parameter Vc and in the absence of magnetic effects

(M = 0), the shear stress at the wall is an increasing function of m1 for −2�m1 < 0, the change

is almost linear and f00(0)<0. This shows that an increase in the amount of slip caused by mass

suction results in a decrease in the shear stress at the wall in the shrinking sheet case. For m1 =

−1, f00(0) = 0 and m1 > −1, i.e. in the dual solution region, the two upper and lower branches of

the solution f00(0) remain positive and forms a closed curve in the region [−1,1)×[0,1) for

(m1, f00(0))-space when M = 0. The closed loop will open at m1 = −1 and will be larger, where

the size of the loop is proportional to Vc.

For M> 0, the unique solution region expands and the dual solution region narrows down

in the (f00(0), m1)-plane. This can be seen from the subfigure for M = 0.5 of Fig 3, where for a

fixed value of Vc, f00(0) is an increasing function of m1 for −2�m1 < −0.45 with f00(0) = 0 at

Fig 2. α vs Vc for M = 0, γ1 = 0.1 = −γ2, d = −(1 + m1) for the shrinking sheet case with mass suction.

https://doi.org/10.1371/journal.pone.0276870.g002

Fig 3. f0 0(0) vs m1 for γ!1, γ1 = 0.1 = −γ2, d = −(1 + m1) for the shrinking sheet case with mass suction.

https://doi.org/10.1371/journal.pone.0276870.g003
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m1 = −1. Here, dual solutions occur for m1� −0.50 and f00(0) = 0 for m1 = −1 for all considered

values of Vc. The dual solution region does not occur for a sufficiently larger value of M, that

is, M = 1. For M = 5, the variation of f00(0) with m1 is not further affected by the suction. These

observations show that in the absence of Casson effects, an increase in the applied magnetic

field in the flow due to shrinking sheet would result in a unique flow field structure that is least

dependent on the mass suction at the sheet wall. This is due to the presence of Lorentz force

which results from electromagnetic interactions during the motion of the electrically conduct-

ing fluid. As M increases, the Lorentz force increases and resists flow. This stabilizing effect of

the Lorentz force on the flow results in a reduction in the mass suction requirement. Thus, in

sufficiently large magnetic fields with increased Lorentz force, the flow becomes independent

of mass suction and eliminates the uncertainty of the flow dynamics. This makes the similarity

solution unique.

To observe the combined effect of the Casson parameter and the applied magnetic field on

the flow field, we present Fig 4 which shows that variation of wall shear stress f00(0) with m1 for

a set of values of γ and M. The fixed parametric values are Vc = 1, γ1 = 0.1 = −γ2, and d = −(1+

m1).

Here, the nature of the changes in f00(0) and m1 is analogous to that shown in Fig 5. As the

M increase, the region of unique solutions expands, as before. Thus, we concluded that the

effect of the applied magnetic field on the MHD flow studied is similar in the absence and pres-

ence of Casson effects.

To understand the dependence of the wall shear stress due to the boundary layer flow of the

MHD Casson fluid on γ, we obtained Fig 5 which shows the plots of f00(0) with the Casson

parameter γ for mass suction at the sheet wall with the fixed parameter values of Vc = 2, γ1 =

0.1 = −γ2, and d = −(1+ m1). The curves of each subfigure are shown for different values of the

slip parameter m1 induced by mass suction. For the unique solution region (m1� −1), for a

given value of m1 and any value of the magnetic parameter M, f00(0)�0 for all γ. In addition,

the wall shear stress f00(0) decreases rapidly with γ for 0< γ< 1, where the variation is negligi-

ble for γ> 3. This shows an enhancement in the magnitude of the wall shear stress due to addi-

tion of the yield stress of the Casson fluid. The correlation of the four subfigures in Fig 5

depicts that an increase in the applied magnetic field as well as in |m1| further increases the

wall shear stress due to the flow driven by the shrinking sheet. On the other hand, behavior of

the variation of f00(0) with γ is different in the dual solution region (m1 > −1). Here f00(0)>0

Fig 4. f0 0(0) vs m1 for Vc = 1, γ1 = 0.1 = −γ2, d = −(1 + m1) for the shrinking sheet case with mass suction.

https://doi.org/10.1371/journal.pone.0276870.g004
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for all considered parametric values. For M = 0, γ has a minimum value of γs> 0 (depending

on m1), so there is a dual solution for all γ� γs. At γ = γs, the solution bifurcates into upper

and lower branch, where the solutions represented by the upper and the lower branches are

increasing and decreasing functions of γ. There are a total of 4 dual solutions in the region 0<

γ� 4 for M = 0. Considering MHD effects, the subfigures M = 0.5 show that an increase in M
results in an increase in the gap between the upper and lower branches of dual solutions. The

lower solution branch tends to flatten out and eventually disappears if it reaches a large enough

value of M.

A closer comparison of all 4 subsets shows that γs decreases with increasing M and γs! 0

for each sufficiently large M value when there is no more region of the dual solutions. This

again confirms that the increased MHD effects tend to broaden the range of unique solutions

in the present Casson model for the shrinking sheet with suction.

Fig 6 depicts the variations of the two velocity profiles f(η)−Vc and f0(η) with η for M = 0, Vc

= 2, γ1 = 0.1 = −γ2, d = −(1+ m1) for the MHD Casson fluid flow due to a shrinking sheet with

mass suction. The curves in each subfigure were made for distinct values of m1. For γ = 0.1

when the Casson effects are dominant, f(η) is an increasing function of η and f0(η) is a decreas-

ing function of η. Here, unique solutions exist since 0.1< γs. For γ = 0.5, a pair of dual solu-

tions exists for m1 = −0.8; each solution for f(η) decreases with η and each of the dual solutions

for f0(η) increases with η. An additional increase in γ (decrease in Casson effects) results in sev-

eral dual solutions. However, increasing γ decreases the values of f(η) and f0(η) at a given point

in the boundary layer. In the presence of MHD effects (M 6¼ 0), the Cas-son effects are ampli-

fied and the corresponding calculations are omitted.

It is not yet clear how the Navier’s slip parameter γ1 and the second order slip parameter γ2

affect the boundary layer flow.In this regards, we have obtained Fig 7 which shows the varia-

tion of Casson parameter γ with the wall shear stress f00(0) for Vc = 2, m1 = −0.5, and M = 0,

Fig 5. f0 0(0) vs γ for Vc = 2, γ1 = 0.1 = −γ2, d = −(1+ m1) for the shrinking sheet case with mass suction.

https://doi.org/10.1371/journal.pone.0276870.g005
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0.1, 0.2, 0.3. These parameter values correspond to the dual solution regions, andhere, we are

interested in the effects of the two types of slip parameters on the dual solutions. In Fig 7a, we

have taken γ1 = 0.01 to observe the effect of change of γ2 on the wall shear stress. For a fixed

value of M, with an increase in the value of |γ2|, f00(0) occurs at a comparatively low value,

which shows that the wall shears stress decreases for all sufficiently large Casson effects when

the second order slip effects are increased. An increase of |γ2| also results in decrease of the gap

between the two solution branches.

The dependence of f00(0) on the Navier’s slip parameter is similar, as shown in Fig 7b, in

which γ2 = −0.01 is taken. The role of the applied magnetic field is to widen the gap between

the double solutions in each case.

It can be observed from the present formulation and numerical computation that there is

no stable solution in the case when the flow is driven by a shrinking sheet with mass injection

with or without mass injection induced slip.

Fig 6. f(η)−Vc and f0(η) vs η for M = 0, Vc = 2, γ1 = 0.1 = −γ2, d = −(1 + m1).

https://doi.org/10.1371/journal.pone.0276870.g006
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3.2 Stretching sheet case

The location of the root α of (14) with respect to Vc for various values of m1 (here d = 1 + m1)

is analogous to the case of shrinking sheet as shown in Fig 8. Here also, the plane (α, Vc) is

divided into the unique solution region for m1� −(1+ M) and the dual solution region for m1

< −(1+ M). These regions are separated by the straight line corresponding to m1 = −1−M.

Here, the effect of increasing M remains similar to that of the earlier case of shrinking sheet. In

fact, all the other numerical inferences on stretching sheet case with mass suction are also anal-

ogous to that of the shrinking sheet case with mass suction, and we skip the corresponding

calculations.

Here we emphasize the case of stretching sheet with mass injection.Wu [36] has found that

for the Newtonian fluid (γ!1), the boundary layer flow due to stretching sheet with mass

injection and the first and second order slip is unique for all permissible values of the mass

transfer parameter Vc and m1. The uniqueness holds in the more general case of MHD Casson

fluid flow as can be seen from Fig 9a and 9b, which show the variation of α with Vc for γ1 = 0.1

= −γ2 and d = 1+ m1. Apart from the uniqueness of the solution, we observe from Fig 9a that

Fig 7. γ vs f0 0(0) for Vc = 2 and m1 = −0.5 for the shrinking sheet case with mass suction. All the cases considered here correspond to the dual solutions.

The pair of (one dashed and one solid curve) solutions in each case is separated by the bifurcation point •.

https://doi.org/10.1371/journal.pone.0276870.g007
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for M = 0 and γ = 0.1, all the solutions lie in the small interval 0< α� 0.6 when Vc is varied

from −10 to 0. The solution α is an increasing function of Vc as well as m1 for all values of γ,

where the rate of increase is large in a neighborhood of Vc = 0. An increase in γ results in

increase of the size of the interval of the solution α. In the presence of MHD effects, that is,

M = 5, we can infer from Fig 9b that the value of α corresponding to a given value of m1 and

Fig 8. α vs Vc for γ1 = 0.1 = −γ2 and d = 1 + m1 for the stretching sheet case with mass suction. Here, unique

solutions occur for m1� −1−M and the dual solutions occur for m1 > −1−M.

https://doi.org/10.1371/journal.pone.0276870.g008

Fig 9. α vs Vc for γ1 = 0.1 = −γ2 and d = 1 + m1 for the stretching sheet case with mass suction. Here, unique solutions occur for

m1� −1−M and the dual solutions occur for m1 > −1−M.

https://doi.org/10.1371/journal.pone.0276870.g009

PLOS ONE MHD Casson fluid flow with navier’s and second order slip

PLOS ONE | https://doi.org/10.1371/journal.pone.0276870 November 4, 2022 13 / 18

https://doi.org/10.1371/journal.pone.0276870.g008
https://doi.org/10.1371/journal.pone.0276870.g009
https://doi.org/10.1371/journal.pone.0276870


Vc occurs at a larger value than the one occurring for M = 0 for all values of γ. However, an

increased value of M also results in contraction of the size of the interval of the solution α.

Since

f 00ð0Þ ¼
� ad

1þ g1a � g2a
2
; ð22Þ

and for the flow due to stretching sheet with injection, d = 1 + m1 with m1� 0, then it can be

deduced that f00(0) is a decreasing function of α for all α satisfying a2 > 1

� g2
and f0 0(0) is an

increasing function of α for a2 < 1

� g2
. In particular, for −γ2 = 0.1, f00(0) is decreasing with α for

all a >
ffiffiffiffiffi
10
p

and increasing for 0 < a <
ffiffiffiffiffi
10
p

. Also, from Fig 9 we see that for γ = 0.1, we have

0 < a < 1 <
ffiffiffiffiffi
10
p

and a decrease in the fluid injection at the sheet wall results in an increased

value of α and hence of f0 0(0). Thus, for γ2 = −0.1 and when the Casson effects are dominant,

that is, γ = 0.1, the wall shear stress will increase on reducing the mass injection at the stretch-

ing sheet in absence as well as in presence of the magnetic field.

The corresponding velocity profiles are shown in Fig 10 for M = 0, Vc = −2, γ1 = 0.1 = −γ2,

d = 1+ m1. For a given value of γ, the boundary layer thickness decreases with the increase in

m1. The Casson fluid flow has a larger vertical velocity at a particular location as compared to

that in the case of Newtonian fluid for each value of m1. Also, the vertical velocity is positive

due to mass injection in the region near the sheet but the vertical velocity eventually becomes

negative for sufficiently large distance from the sheet. For a fixed value of m1, an increase in

the Casson parameter γ results in significant decrease of the vertical velocity at any given loca-

tion η in the boundary layer. The vertical velocity f0(η) is positive and is a decreasing function

of η for all values of m1 and γ. The profiles for M> 0 are similar to those obtained here for

M = 0 and we skip the corresponding description.

Fig 10. α vs Vc (a) M = 0 (b) M = 5. The fixed parametric values are γ1 = 0.1 = −γ2, d = 1+ m1 for the stretching sheet

case with mass injection. Here, all solutions are found to be unique.

https://doi.org/10.1371/journal.pone.0276870.g010
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The present work was motivated by medical situations in hemodynamics, where medicine-

mixed MHD particles are injected into the bloodstream close to the tumor site, while subject-

ing the tumor area to an external magnetic field. These particles act like a heat source in the

presence of a magnetic field causing the cancer cells of the tumor tissue get destroyed. The

analogy of hemodynamics with the presently considered flow problem can be understood as

follows: in such a cardiovascular system, blood is a typical Casson fluid and the inner surface

of blood vessels under a controlled magnetic field can be modeled as a stretching sheet prob-

lem, where the wall of the blood vessel behaves like a stretching sheet [44]. In view of the pres-

ent work, the wall shear stress at the inner wall of the blood vessels is likely to play significant

role in the dynamics of blood flow.

4 Conclusions

In the present study, the complex boundary layer flow of a Casson fluid under MHD condi-

tions due to a stretching/shrinking sheet with mass suction/injection is considered. The modi-

fied Navier’s slip and second order slip conditions due to mass suction/injection are also

imposed on the underlying boundary layer flow of the Casson fluid. The flow characteristics

have been expressed in terms of the Casson parameter γ and the magnetic parameter M.The

numerical results are obtained for the shrinking as well as the stretching sheet cases separately.

At the end of this study, we conclude the following results can be discussed as follows

• For the shrinking sheet case with mass suction at the sheet surface when the Casson effects

are dominant, the mass suction induced slip effect gets strengthened on increasing the

parameter |m1|.

• The interval of solution for α becomes small under the Casson effects in comparison to the

Newtonian fluid flow considerations. The solution space in (Vc, α)-plane consists of unique

solutions for m1� −1 and dual solutions for m1 > −1.

• An increase of the magnetic effects results in expansion of the unique solution region and

contraction of the dual solution region for all considered parametric values under mass suc-

tion. This occurs due to the action of Lorentz force induced in the flow as a result of the

interaction between the electric field and magnetic field within the flow.

• In the unique solution region, an increase in the magnitude of mass suction induced slip

results in the reduction of the wall shear stress in the shrinking sheet. On the other hand, an

increase in Casson effects, the applied magnetic field and |m1| result in an enhancement of

the magnitude of the wall shear stress due to the flow induced by the shrinking sheet with

mass suction.

• In the dual solution region, the dependence of the wall shear stress due to shrinking sheet

with mass suction on the Casson effects is different from the one that exists for the case of a

unique solution region. The Casson effects further get amplified in the presence of a mag-

netic field.

• An increase of the magnitude of the first/second order slip parameters results in a decrease

of the wall shear stress at the shrinking sheet surface and also in a decrease of the gap

between the dual solution branches.

• For the stretching sheet case with mass suction, the location of the solution and the effect of

the applied magnetic field remains similar to that existing for the shrinking sheet case.
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