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Systematic Quality Control Analysis of LINCS Data

L Cheng1,2 and L Li1,2*

The Library of Integrated Cellular Signatures (LINCS) project provides comprehensive transcriptome profiling of human cell
lines before and after chemical and genetic perturbations. Its L1000 platform utilizes 978 landmark genes to infer the
transcript levels of 14,292 genes computationally. Here we conducted the L1000 data quality control analysis by using MCF7,
PC3, and A375 cell lines as representative examples. Before perturbations, a promising 80% correlation in transcriptome was
observed between L1000- and Affymetrix HU133A-platforms. After library-based shRNA perturbations, a moderate 30% of
differentially expressed genes overlapped between any two selected controls viral vectors using the L1000 platform. The
mitogen-activated protein kinase, vascular endothelial growth factor, and T-cell receptor pathways were identified as the most
significantly shared pathways between chemical and genetic perturbations in cancer cells. In conclusion, L1000 platform is
reliable in assessing transcriptome before perturbation. Its response to perturbagens needs to be interpreted with caution. A
quality control analysis pipeline of L1000 is recommended before addressing biological questions.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 588–598; doi:10.1002/psp4.12107; published online 31 October 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� The Library of Integrated Cellular Signatures

(LINCS) project provides comprehensive transcriptome

profiling of human cell lines before and after chemical

and genetic perturbations. Its L1000 platform utilizes

978 landmark genes to computationally infer to other

14,292 genes expression. However, there is no quality

control data analysis on the reproducibility of this L100

gene expression platform.
WHAT QUESTION DID THIS STUDY ADDRESS?
� For the first time, this study conducted quality control

analysis on the LINCS L1000 gene expression

platform.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� It shows a promising 80% correlation in transcrip-

tome between L1000 and Affymetrix HU133A for MCF7

breast cancer, A357 melanoma, and PC3 prostate

cancer cells. L1000 reproducibility analyses show that a
moderate 30% of differentially expressed genes over-
lapped between any two selected controls viral vectors
in the genetic perturbation screening. The MAPK,
VEGF, and T-cell receptor pathways are pointed out for
the most significantly connected breast cancer cell in
chemical and genetic perturbations. A quality control
pipeline of L1000 data quality is recommended before
addressing biological questions.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� LINCS data provide the ability to establish a system
pharmacology view of drug effect on the transcriptome.
This landmark database provides a molecular basis for
further study of single drug and/or drug combinatory
effect at the cell level. LINCS data will eventually lead
to more rational drug selection for patients.

The combination of “omics” technologies and cell-based drug

screening tools have enabled us to evaluate cellular

responses to drug perturbations and explore drug targets

and their mechanisms. Large-scale drug screens for antican-

cer projects, such as the National Cancer Institute 60

(NCI60) human tumor cell line panel,1 Connectivity Map

(CMAP),2,3 Cancer Cell Line Encyclopedia (CCLE),4 Geno-

mics of Drug Sensitivity in Cancer (GDSC),5 and the cancer

therapeutics response portal (CTRP)6 all used cancer cell

baseline genomes and/or transcriptomes to predict drug cell

responses. Cell-based pooled short hairpin RNA (shRNA)

screening is another important strategy for systematically

identifying essential genes, and, eventually, therapeutic drug

targets. The Achilles Project and DPSC-Cancer shRNAs

interference detection7,8 provided genome-wide shRNA

dropout signature profiles for identifying cell vulnerabilities

associated with genetic alterations. These databases

attempted to address various aspects of the associations

between molecular profiles, genetic and chemical perturba-

tions (perturbagens), and cell responses to the perturba-

gens.9 However, using these data sources it is difficult to

form an integrated picture between cancer cell molecular pro-

files and their responses to perturbagens, because these

data were generated through different experimental plat-

forms.11 By combining the chemical compounds and RNAis,

the Library of Integrated Network-based Cellular Signatures

(LINCS) project uses a novel transcriptome platform, L1000,

to assess cell responses to perturbagens (lincs.hms.

harvard.ed).9,12 It allows us to integrate transcriptomes, per-

turbagens, and cell responses to drugs at the same time.12–14
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A cost-effective bead-based assay, the L1000 platform, is
the LINCS primary technology that measures transcriptomic
responses to perturbagens.10 The L1000 platform directly
measures transcripts of 978 landmark genes, from which
the transcript levels of 14,292 genes are computationally
inferred according to Gene Expression Omnibus (GEO)
genes expression.10,12 The relatively low cost of the L1000
allows the LINCS project to assess transcriptomic
responses to 20,413 small molecule compounds and
22,119 genetic interference perturbagens, under more than
four million different conditions (100-fold larger than other
existing screening studies) (support.lincscloud.org). Howev-
er, the enormous impact of the L1000 technology on chemi-
cal and genetic perturbagen screening depends heavily on
its data quality.

The existing quality control analysis of the L1000 plat-
form10 focused only on 90 differentially expressed
“landmark” genes in a validation experiment. It showed a
high correlation for the 90 landmark genes, 0.92, between
their gene expressions in the L1000 platform and their
reverse-transcription polymerase chain reaction (RT-PCR)
validations. However, the quality control analysis did not
include the 14,292 L1000-inferred genes. Hence, a valuable
and ideal evaluation would be a whole-genome gene
expression comparison between the L1000 and other
established whole-genome microarray platforms. Many cell-
based molecular profiling datasets in public domain data-
bases (e.g., the GEO), allows us to compare L1000 data
quality to the other gene expression platforms. Similar to all
inhibitory RNA (shRNA) libraries, L1000 RNA interference
studies are complicated by the sequence design of pertur-
bation shRNAs, as they affect silencing efficiency.15,31

Thus, the effectiveness of genetic perturbagens on non-
landmark genes should be further investigated too. In
L1000, a number of perturbagens and a number of experi-
mental conditions are used to explore perturbagen-induced
change in transcriptome. It includes different cellular back-
grounds, multiple chemical dosing concentrations, multiple
timepoints,12 as well as different empty control vectors (i.e.,
GFP, RFP, Luciferase, lacZ, and PGW) for single-gene
knockdown or overexpression. These experiment conditions
provide us an opportunity to broadly explore perturbagen

effects on cells. In this study, we are particularly interested

in whether the selection of controls will influence the

shRNAs effect and gene overexpression effect on the cells

and their transcriptome response.
To address the challenges in LINCS data quality control,

more than 6,975 chemicals and 3,827 single-gene knock-

down, and 2,281 single-gene overexpression on three can-

cer cell lines, MCF7 (an estrogen receptor-positive luminal

breast cancer cell16), A375 (human skin cell with malignant

melanoma17), and PC3 (prostate metastatic cell), were

investigated. L1000 data were analyzed from four different

aspects for the first time: 1) cancer cell baseline transcip-

tome (i.e., untreated) in L1000 platform was compared to

their corresponding transcriptome in the Affymetrix HU133A

platform; 2) transcriptomes were compared between chemi-

cal treated groups and controls at multiple timepoints for

three cell lines; 3) RNAi experimental variation and its

sensitivity to different control groups were explored; and

4) connectivity between genetic and chemical perturbations

was investigated. Finally, a guidance on how to use the

L1000 dataset is recommended.

METHODS
Materials general
In this study, level 3 data of the normalized profiles are

used for the quality control data analysis. These data are

described in great detail in the supplemental materials.

L1000 adopts the practice of storing data annotations

(metadata) and datasets separately.12,13 The InstInfo file

describes L1000 signature profiles under different experi-

mental conditions (Supplementary Figure 1 visualizes the

experimental design). Each expression profile is assigned

with a unique identifier, i.e., signature ID (or “distil_id”), and

it connects the data with its metadata in InstInfo. Table 1

lists the samples for L1000 data quality control analysis

and platform comparison with the Affymetrix HU133A. Sup-

plementary Table 2 shows the gene expression profiles

and chemical numbers before and after compound treat-

ments in 6 hours (H6) and 24 hours (H24) in three cell

lines. Supplementary Table 4 lists these records and

genes numbers for three types of cells at 96 hours (H96)

Table 1 The samples number for L1000 data quality control and platform comparison between the Affymetrix HT-HG-U133A and L1000 in 22268 probe sets

Platform Timepoints Experiment Types

Cell lines

MCF7 PC3 A375

L1000 H6 Compounds #Gene expression profiles 43862 39605 27428

#Chemical compounds 5434 4737 3083

H24 Compounds #Gene expression profiles 57475 57380 28601

#Chemical compounds 6976 5845 2169

H96 Knockdown #Gene expression profiles 36023 41414 40640

#Genes 3472 3824 3827

Overexpression #Gene expression profiles 9220 10271 10109

#Genes 2160 2281 2281

H144 Knockdown #Gene expression profiles 20204 20414 /

#Genes 1838 1726 /

L1000 Base Line #Gene expression profiles 2922 27 24

Affymetrix HT-HG-U133A Base Line #Gene expression profiles 56 8 16
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and 144 hours (H144) for knockdown and overexpression

experiments against different control vectors.

Methods
The flow of data processing and analysis is shown in Figure 1.

Differentially expressed gene analysis
An unpaired two-tailed Student’s t-test was used to evalu-

ate the gene expression difference in data from two differ-

ent groups, including the following: before and after

chemical treatments (the gene profiles of chemical treat-

ment vs. those incubated with dimethyl sulfoxide (DMSO)

control) in MCF7, PC3, and A375 cells at 6 hours and 24

hours, respectively; before and after shRNAs/overexpression

perturbations (the gene knockdown/overexpression group vs.

its different control groups, such as empty vector GFP,18

eGFP,19 Luciferase, HcRed,20 or lacZ,21 respectively). The dif-

ference was considered significant if P < 0.01.
Data batch effects due to the plate are removed by the

quartile normalization. In the LINCS L1000 experimental

design, each plate will have its own control samples (i.e.,

DMSO) and perturbagen-treated samples. Our two-sample

t-tests use perturbagen-treated and control samples from

the same plate to analyze differentially expressed genes

(DEGs). In order to let the statistical t-test be less sensitive

to outliers or small variance, a minimum sample size of

three was required for each group.

shRNAs interference and gene overexpression scale

calculation
shRNA knockdown scale quantifies the gene knockdown

accuracy. At first, a gene expression is normalized by the

Figure 1 The overall L1000 quality control data analysis procedure. The figure shows the data analysis process and its associated
methods in the study. The data analysis procedure can be divided into four steps. First, L1000 data is reannotated, retrieved, and
extracted. Second, analysis of a differentially expressed gene (DEG) is performed before vs. after perturbation (chemical and genetic
both type) through two-sample equal variance Student’s t-test. Third, L1000 data quality is analyzed. It includes the mRNA correlation
analysis between different platforms, the genetic perturbation comparisons using different control vectors through R-square; shRNA
interfere scale and gene overexpression scale are calculated to evaluate the reliability of genetic perturbation experiments. Fourth, con-
nectivity analysis is performed between chemical and genetic perturbations by GO enrichment and KEGG pathway analysis.
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housekeeping gene expression. Then, the knockdown scale
quantifies an interfered gene expression change related to
its uninterferred gene (i.e., control) in a cell. Denoting the
control group as ctr, and the shRNA group as exp, the
knockdown scale calculation is:

Gene_ctr 5 shRNA gene expression in control group/housekeeping
gene expression in control group;

Gene_exp 5 shRNA gene expression in shRNA experimental group/
housekeeping gene expression in the shRNA experimental group;

shRNA Knockdown Scale: siRi 5 1- (Gene_exp/Gene_ctr);
In the article, if siRi > 0, the experiment is defined as a success;

otherwise it is a failure.

To calculate the gene overexpression scale, the formula
is similar to the shRNAs interference scale:

Gene_ctr 5 Gene overexpression in control group/housekeeping
gene expression in control group

Gene_exp 5 Gene overexpression in overexpression experiment
group/housekeeping gene expression in overexpression experiment
group

Gene Overexpression scale: oeRi 5 (Gene_exp/Gene_ctr)21
When oeRi > 0, the experiment is deemed successful; otherwise

the experiment is deemed failure.

According to the housekeeping gene list in the referen-

ces,22,23 13 housekeeping genes are selected as control

genes. These genes have corresponding probe sets in Affyme-

trix HU133A Chip: ACTB (b-actin), CHMP2A, EEF1A1, EMC7,

GAPDH, GPI, PSMB2, PSMB4, RAB7A, REEP5, SNRPD3,

TUBA1A (a/b-tubulin), and VCP. Figure 2 describes an exam-

ple for shRNA knockdown scale calculation for gene BRCA1.

“Pseudo” R-squared calculation
Assuming x0 is a variable, and y0 is another control variable.

x0 and y0 is normalized by x5log10(0.51x0) and

Figure 2 The BRCA1 knockdown scale calculation scheme under the lacZ control vector. (a) The scatterplot of two gene expressions
(BRCA1 and housekeeping gene ACTB) under various conditions in two separate plates. (b) The same two gene expressions organized by
different conditions, such as LacZ control, gene probes, and shRNAs targeting BRAC1. x-axis denotes different shRNAs, and y-axis denotes
the gene expression value. (c) BRCA1 relative interfere scale calculation to control lacZ for the shRNA TRCN0000010305. First, the average
expression of these probe sets for ACTB and BRCA1 was used to calculate siRi. Then the BRCA1 shRNA interference scale, with respect
to ACTB, was siRi 5 1-(Gene_exp/Gene_ctr)5 1-(5.544/13.055)/(6.479/12.685) 5 0.1685. The shRNA TRCN0000010305 (the fifth shRNA
targeting BRCA1) knocks down BRCA1 gene expression by 16.85% against its control vector lacZ. (d) BRCA1 shRNA interference scale
relative to ACTB among different shRNAs. The x-axis is the shRNA clone, and the y-axis is the gene expression value. The shRNAs inter-
ference scales of 11 shRNA clones for BRCA1 are shown at 96 hours in MCF7.
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y5log10(0.51y0), respectively. According to the following

formula to calculate R2:

R2512
SS x2yð Þ

SS xð Þ1SS yð Þð Þ=2

where SS xð Þ5
Pn

i51 x2
i , SS yð Þ5

Pn
i51 y2

i , SS x2yð Þ5
Pn

i51 xi 2yið Þ2, is the sum square of error that x is not

explained by y, and vice versa. SS xð Þ1SS yð Þð Þ=2 is the

average sum of square between x and y. Their ratio repre-

sents the percent of variation in x or y that are not

explained by each other. Our defined R-square, which is

one minus this ratio, represents the variations in x or y that

can be explained by each other.

Software
MatLab (MathWorks, Natick, MA) was used to analyze the

data and advanced graphics and visualization. The parse_gctx

function was used to read .gct and .gctx files format and

extract data according to its annotation in MatLab; for all

the code source, see Supplementary Code.
Database for Annotation, Visualization, and Integrated Dis-

covery (DAVID, https://david-d.ncifcrf.gov/) is an online analy-

sis resource. It provides a comprehensive set of functional

annotation tools for researchers to identify biological function

by gene lists.32 Gene Ontology (Go) function and Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathway enrich-

ment analyses are conducted on the selected differential

genes. These analyses are performed in DAVID v. 6.8.

Figure 3 Transcriptome Pearson correlation analysis of within- and between-platforms: L1000 and Affymetrix HU133A. Baseline tran-
scriptomes of L1000 and Affymetrix HU133A are compared for MCF7, A735, and PC3 cells, in I, II, and III, respectively. Subfigures
titled in “a” present the within L1000 platform correlations; “b” shows cross-platform correlations; and “c” shows within-Affymetrix
platform correlation.
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RESULTS
Highly correlated transcriptomes between the L1000

and the Affymetrix HU133A platforms
The baseline samples for platform comparison between the

Affymetrix HU133A and L1000 are described in Table 1.

The detailed GEO datasets for Affymetrix HU133A platform

are provided in Supplementary Table 1. A Pearson corre-

lation is calculated for 22,268 probes between an L1000

sample or an Affymetrix sample. Figure 3 depicts the tran-

scriptome profile correlation analysis. It reveals that the

L1000 platform shows the mean of within-platform correla-

tion is 0.86 among 2,922 MCF7 samples (Figure 3I.a); the

mean of cross-platform correlation between the L1000 and

Affymetrix HU133A is 0.80 (Figure 3I.b); and the mean of

within-platform correlation for the Affymetrix HU133A is

0.90 (Figure 3I.c). These correlations demonstrate the

reproducibility of the L1000 related to the Affymetrix plat-

form. Considering that the L1000 transcriptome is predicted

from 978 landmark genes and the mean within-L1000 plat-

form correlation is 0.86, the between-platform correlation of

0.80 clearly shows strong correlation between the two plat-

forms. Similar results were observed in both PC3 and A375

cells (Figure 3II–3III).

High concordance of differentially expressed gene

numbers, but with moderate overlaps, in genetic

perturbations using different controls
We examined five lentivirus control constructs (GFP, eGFP,

Luciferase, RFP, HcRed and lacZ) to evaluate the reproduc-

ibility among them using L1000 in MCF7, PC3, and A375

cells. A transcriptome signature of a genetic shRNA pertur-

bagen is composed of DEGs calculated from two-sample t-

tests (P < 0.01) against each of the control vectors. Each

shRNA has its own set of perturbated DEGs. Among

shRNAs targeting the same gene, their perturbated DEG

sets are merged together. This merged DEG set represents

the targeted gene’s shRNA overall impact on the transcrip-

tome. In our analysis of lentivirus control constructs, each

selected control generates a collection of shRNA perturbated

gene sets. In order to compare two lentivirus controls, their

Figure 4 The genome analysis to chemical sensitivity and genetic perturbation sensitivity. (a) The chemical sensitivity to each of the
genes. x-axis denotes 14,292 genes, while y-axis is the ratio of chemicals that perturbate the gene expressions number over the total
number of chemicals. The upper panel of (a) ranks genes from the highest chemical sensitivity (left) to lowest sensitivity (right) after 6-
hour chemical treatment of MCF7 cells (H6); and the lower panel of (a) displays the corresponding chemical sensitivity of at 24 hours
(H24). (b) The pathway enrichment analysis for the top 5% genes with highest chemical sensitivity (a: red box with dot-line), using
DAVID. (c) Genetic perturbation sensitivity to each of the genes in H96 and H144 for MCF7. The number of differentially expressed
genes (DEGs) measures the impact of a genetic perturbation (y-axis). x-axis represents the common 1,622 knockdown genes between
H96 and H144. The upper panel of (c) ranks gene knockdown from the highest impact (left) to lowest impact (right) at 96 hours (H96),
while the lower panel shows the corresponding gene knockdown impact at 144 hours. (d) The pathway enrichment analysis for the top
500 genes (c) red box with dot-line).
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corresponding shRNA perturbated gene sets were first com-
pared using the R-square method. This R-square calculates
the relative amount of variance of shRNA perturbated gene
numbers under one control against that under another control.
An R-square close to one indicates a strong concordance
between two different controls. Pairwise analysis shows that
the concordance for shRNA-induced DEGs among five con-
trols is high after either 96- or 144-hour infection times, where
the R-square ranges from 0.94 to 0.98 (Supplementary
Figure 2). Similarly, the concordance for the overexpressed
DEGs among different controls is even higher, ranging from
0.97 to 0.99.

Between two control groups, the genome-wide DEG
overlapping analysis focuses on not only statistically signifi-
cant DEGs (P < 0.01), but also DEGs sharing the same
direction of effect (i.e., upregulation or downregulation). The
overlapping DEG scale is defined as the ratio of the com-
mon DEGs between two controls over the union of DEGs
from two controls. The overlapping DEG scale is then cal-
culated between any pair of control vectors. Supplementa-
ry Table 4 shows average overlap scales for shRNA
knockdown among any control pairs. The average is 0.36
at 96 hours and 0.26 at 144 hours, and the average over-
lapping scale of cDNA overexpression is 0.36 at 96 hours
in the MCF7 cell. Moderately overlapped DEGs among dif-
ferent controls indicate potential differences between con-
trol vectors.

The whole-genome scale shRNA DEG numbers change
with the time of cell after infection. Supplementary Figure 4
compares the DEG numbers between 96- and 144-hour infec-
tion under each of the five controls in MCF7, and their aver-
age effects. We observe that shRNA infection leads to more
downstream signaling changes (i.e., more DEGs) in 96 hours
than 144 hours. This trend is consistent among five control
groups (Figure 3). In addition, we observe that the DEG
number in the lacZ control vector group is always less than
those using the other controls, while DEGs in the PGW and
Luciferase controls are always higher than those of the other
groups. The pattern of DEGs is generally in agreement
between 96 hours and 144 hours.

In particular, some genes, when knocking down and
affecting a large number of other genes under one control,
they also show the same impact under another control or in
a differential timepoint. For instance, in Supplementary
Figure 3G,H, knocking down ABL1 leads to 15,000 DEGs
at 96 hours and around 5,000 DEGs at 144 hours. Supple-
mentary Figure 4 shows the top perturbagen sensitivity
genes for cell MCF7 in 6 hours, 24 hours, and 144 hours.

Housekeeping gene selection does not affect the
calculation of the effectiveness of genetic
perturbations
The effectiveness of genetic perturbations is usually com-
pared to the levels of shRNA knockdown target or overex-
pressed genes, relative to the expression of stable
housekeeping genes. The shRNA interference scale
approximates the ratio of gene expression before and after
shRNA interference, normalized to the ratio of housekeep-
ing gene expression before and after treatment. An shRNA
interference scale larger than 0 means a successful

knockdown experiment. A gene overexpression scale is
defined similarly as a shRNA interference scale. To investi-
gate the sensitivity of the scale calculation, 13 housekeep-
ing genes were selected. Table 2 shows shRNA
interference and overexpression scales after 96 hours and
144 hours MCF7 cell infection. This suggests that there is
very small variation in shRNA interference scales and over-
expression scales among 13 housekeeping genes. The
average shRNA interference scale is 0.64 at 96 hours
(H96) and 0.70 at 144 hours (H144). The average gene
overexpression scale is 0.53 for 96 hours (H96). In addition,
these scales are consistent when different controls are
used. The transfection efficiency and the shRNA knock-
down scale of H144 are higher than that of H96 by one-
sided Student’s t-test for scales (P < 0.05). This suggests
that a longer transfection time enhances transfection effi-
ciency. In addition, according to the housekeeping gene
recommendation,23 a suitable housekeeping gene should
show minimal variability under various experimental condi-
tions. In LINCS, all 13 housekeeping genes generate fairly
consistent inference scales. Thus, genetic perturbation
quantification is not sensitive to the housekeeping gene
selection (Table 2).

Connectivity analysis between MC7 cell chemical
perturbation-sensitive and genetic perturbation-
sensitive genes
Transcriptomic responses to perturbations can identify
genetic biomarkers and their pharmacological mechanisms
of chemical compounds in killing cancer cells, and detect
essential genes and their signaling pathways associated
with genetic perturbations. The impact of a chemical pertur-
bation to a cell can be illustrated by a list of DEGs before
and after perturbation. Large-scale chemical perturbation is
helpful to understand genes that are sensitive to various
perturbations. The gene sensitivity is calculated with its
DEG frequency among all chemical perturbations (P <
0.01), i.e., relative DEG frequency (y-axis in Figure 4a).
For instance, there were 5,433 chemicals tested at 6 hours
to MCF7, 2,188 chemicals caused ATFI gene expression
change. Hence, ATFI sensitive ratio to chemicals is 2,118/
5,433 5 0.39 at 6 hours. Similarly, the ATFI sensitive ratio is
2,580/6,975 5 0.37 at 24 hours. Figure 4a shows gene
sensitivity to all chemicals at 6 hours (H6) and 24 hours
(H24), in which x-axis denotes 14,292 genes ranked by
their sensitivity ratios (y-axis). The upper y axis is for time-
point 6 hours data, while the lower y axis is 24 hours. The
Pearson correlation between H6 and H24 gene sensitivities
is 0.712 (P < 0.01). The overall trend of the ratios is con-
sistent between 6 hours and 24 hours. The red dotted box
of Figure 4a displays the high sensitivity for the top 5%
genes across all the chemicals in both H6 and H24. The
top 24 sensitive genes in both H6 and H24 in MCF7 are
displayed in Supplementary Figure 4; and the top 50 sen-
sitive genes after 6- and 24-hour treatments are ranked in
Supplementary Table 5. Figure 4b provides the pathway
analysis for the top 5% sensitive genes (1,113 genes) by
the DAVID tool (https://david.ncifcrf.gov/). The similarity of
shRNA interfered DEGs is observed in MCF7 cells between
96 and 144 hours (Figure 4c). Figure 4d shows the
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pathway analysis for the top 500 interference genes by the

DAVID tool. Comparing the sensitive gene pathways (Fig-

ure 4b) and shRNA interfere pathways (Figure 4d), several

common pathways are identified between chemical and

genetic perturbations. They include mitogen-activated pro-

tein kinase (MAPK), T-cell receptor, and vascular endotheli-

al growth factor (VEGF). These shared cancer pathways

reveal potential connections between chemical and genetic

perturbations. Additional GeneOntology (GO) analyses fur-

ther confirm the connectivity between chemical and genetic

perturbations in Supplementary Figures 5–7.

DISCUSSION

The feasibility of using the L1000 platform for the LINCS

project is due to its cost-effectiveness in measuring tran-

scriptomic responses under millions of genetic and chemi-

cal perturbation conditions. Technically, L1000 measures

only 978 landmark gene transcripts10 upon which the

expression of another 14,292 genes is computationally

inferred.9 Before using L1000 data to answer significant

biological questions, it is critical to assess its quality. To

that end, we compared L1000 and Affymetrix HU133A tran-

scriptome measurements of MCF7, A375, and PC3 cancer

cells. We found a mean within-platform transcriptome corre-

lation of 0.86 for L1000 and 0.90 for Affymetrix, while the

cross-platform transcriptome correlation was around 0.80.

This demonstrates the remarkable reproducibility of L1000,

considering that its transcriptome is predicted from only

978 landmark genes.
Control vectors play a critical role in gene silencing or

overexpression experiments. Transcriptomic changes in

cells treated with nonsilencing controls provide a baseline

reference, which can guard against false positives in either

molecular or cell responses of genetic perturbagens.31

LINCS investigates a variety of “control hairpins” such as

GFP, eGFP, Luciferase, RFP, HcRed, lacZ, and PGW.24 We

analyzed the number of DEGs from genetic perturbations

using various control vector groups after cell lentivirus

infection for 96 and 144 hours to PC3 and A375 cells. It

demonstrated consistent numbers and patterns of DEGs.

R-squares ranged from 0.95 to 0.98 for both shRNA and

overexpression perturbations in MCF7. A more stringent

analysis of overlapping DEGs (i.e., same identities, statisti-

cally different, and same directional change) shows less

consistency between the five control vectors. The average

DEG overlapping of any pair of control vectors is 0.38 and

0.26 in MCF7 cells before and after shRNA transduction for

96 and 144 hours, respectively; and 0.36 for 96 hours gene

Figure 5 Recommended data processing schema for L1000 data analysis. L1000 data analysis starts from a data annotation retrieval
and a data extraction. Then empty and batch effect is removed. Unsuccessful experiment records (i.e., failed shRNA knockdown or
failed gene overexpression experiments) need to be filtered out before a DEG or other data analysis. Overlapped DEGs with respect to
multiple controls are recommended for the genetic perturbation analysis.
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overexpression experiments. Therefore, we feel the most

reliable control selection is to use the overall overlapping

DEGs among all the controls.
Through interference scale calculation, the average

shRNAs interference scale is around 0.67 and the average

gene’s overexpression scale is 0.53, using the L1000 plat-

form. These results illustrate the likely existence of a num-

ber of unsuccessful genetic perturbation experiments, due

to off-target interference and small signal-to-noise scales.

Consequently, we highly recommend removing these failed

experimental records before the final analysis by its interfer-

ence or overexpression scale calculation.
Both chemical and genetic perturbations influence cell

viability. It is very interesting to investigate whether chemi-

cal and genetic perturbations stimulate similar signaling

pathways. Through GO and KEGG pathway analyses of

the two sets of gene signatures from chemical and genetic

perturbations, a number of shared signaling pathways

are identified, including MAPK, VEGF, and T-cell receptor

pathways, all well-established signaling pathways in breast

cancer.25 Although the estrogen receptor alpha (ERa)

signaling pathway is a primary carcinogenic mechanisms

of MCF7 cells, it is not selected as a shared pathway

between two perturbations. However, it is well established

that ERa cross-talks with the MAPK cell proliferation

pathway, as MAPK is a primary mediator of ERa
activation.26,27

In order to improve the LINCS data quality, the following

data processing and filtering steps are recommended,

before it is used to answer biological questions.

• Data annotation and extraction: L1000 uses a specific data storage
style separate from its annotation. Several data annotation files
exist, but they cannot be fully integrated because of inconsistent
perturbagen annotations. Hence, the first step is annotation before
extracting the corresponding LINCS dataset from the depository.

• Data preprocessing: Relatively sparse (e.g., less than 5%) empty
data points among microarray probes in samples can be imputed
based on the average value of several close-by probes. Otherwise,
remove these empty data points from the dataset.

• Some unsuccessful genetic perturbation records should be filtered
out. Only keep the record where the shRNA interference scale or
overexpression scale is larger than zero.

• Within-plate DEG comparison of control vector and experimental
groups, to reduce the technical variation between different plates or
batches.

• Overlap analysis among different controls: To reduce the impact of
off-target prediction in shRNA or overexpression experiments, over-
lapping DEGs in multiple control vectors is necessary (see Figure 5).
The overlapped genes should keep the same up- or down-gene reg-
ulations under different control vectors and different timepoints in
genetic perturbations. In chemical perturbation-sensitive gene analy-
ses, the chemical compound names, dose, and time should be con-
sistently annotated before and after treatment.

• Genetic perturbation-targeted gene annotations: Before a genetic
perturbation function analysis, a consistent mapping annotation is
necessary between probes and genes in Affymetrix U133A platform
and shRNA or overexpressed gene names, as well as their affected
probes.

In summary, we conclude that despite the above-

mentioned considerations needed for LINCS data analysis,

L1000 is reliable in assessing transcriptomic responses to

a myriad of perturbagens. Several promising antineoplastic

compounds have already been identified by the LINCS pro-

gram.28–30 We strongly believe that the additional consider-

ations we present here will even further expedite the

identification of therapeutic chemical/genetic agents.
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