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Abstract: This study focuses on the acetylation modification of polysaccharides from Rhododendron
dauricum leaves (RDPs) with a high degree of substitution (DS) and then discusses their character-
ization and biological activity. The optimum acetylation conditions of RDPs were optimized by
response surface methodology, which were reaction time 3 h, reaction temperature 50 ◦C, and the
liquid-solid ratio 16 mL/g. Under the optima schemes, two eco-friendly acetylated polysaccharides
from R. dauricum leaves (AcRDP-1 with DS of 0.439 ± 0.025 and AcRDP-2 with DS of 0.445 ± 0.022)
were prepared. The results of structural characterization showed that the AcRDP-1 (9.3525 × 103 kDa)
and AcRDP-2 (4.7016 × 103 kDa) were composed of mannose, glucose, galactose, and arabinose with
molar ratios of 1.00:5.01:1.17:0.15 and 1.00:4.47:2.39:0.88, respectively. Compared with unmodified
polysaccharides, the arabinose content and molecular weight of the two acetylated polysaccharides
decreased, and their triple helix conformation disappeared, and further improved their anticom-
plementary activity. The two acetylated polysaccharides showed stronger a complement inhibition
effect than the positive drug by blocking C2, C3, C4, C5, C9, and factor B targets in the classical and
alternative pathways. This research indicated that acetylation modification could effectively enhance
the anticomplementary activity of RDPs, which is beneficial for the development and utilization of
R. dauricum leaves.

Keywords: polysaccharides; Rhododendron dauricum leaves; acetylation modification; anti-complemen
-tary activity

1. Introduction

As a widely cultivated medicinal plant, Rhododendron dauricum L. belongs to Ericaceae
family and is mainly distributed in Northeast China, North Korea, and Russia [1]. The
leaves of R. dauricum are of high economic value as a medical herb, containing various
chemical constituents (e.g., volatile oil, polysaccharides, flavonoids), and is commonly
applied for the treatment of pulmonary infectious diseases (e.g., cough, asthma, acute, and
chronic bronchitis) [2]. Polysaccharides as the main bioactive component of R. dauricum
leaves, our previous study showed that the two neutral polysaccharides that were derived
from R. dauricum leaves (RDP-1: 1.0948 × 104 kDa and RDP-2: 1.1899 × 105 kDa) were
composed of mannose, glucose, galactose, and arabinose [3]. However, the antioxidant
activity of RDP-1 and RDP-2 is weak, which is unsatisfactory for the utilization of polysac-
charides from R. dauricum leaves (RDPs). Therefore, the investigation on the modification of
polysaccharides and their new biological activity may contribute to the development of RDPs.
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Recently, the modification to natural polysaccharides has been proposed as an ap-
proach to enhancing the biological activities or inducing entirely new activities through a
change to the substituents, which has attracted increasing attention [4]. Acetylation mod-
ification has become one of the common methods of polysaccharides chemical structure
modification due to its advantages of fast reaction speed, mild reaction, and high yield [5].
Previous studies by Xie et al. and Hitri et al. showed that acetylated polysaccharides
have strong biological activities, because acetyl groups can improve the molecular chain
extension, molecular weight, and conformational properties of polysaccharides, resulting in
the exposure of polysaccharide hydroxyl groups and affecting their biological activity [6–8].
Thus, acetyl modification is considered an ideal solution to improving the biological activity
of RDPs. In spite of this, there is still no report that has been published on the modification
process, characterization, and activity of acetylated RDPs.

The complement system refers to a set of more than 30 proteins that function as a
significant effector in the immune system and contribute to the first-line host defense [9,10].
However, excessive activation and dysregulation of the complement system can lead to a
variety of autoimmune diseases [11–13]. In particular, several reports have shown that patients
with severe COVID-19 show prominent complement activation in their lungs [14,15], which
suggests the potential of the complement being closely related to pulmonary infectious
diseases. Simultaneously, the medicinal plant polysaccharides have also been demonstrated
to be important raw materials for novel complement inhibitors with low toxicity [16–18]. By
taking into account the traditional efficacy of R. dauricum leaves in the treatment of pulmonary
infectious diseases and the potential activity value of its polysaccharides, it is considered
significant to investigate the anticomplementary activity of RDPs and acetylated RDPs.

Therefore, this study is aimed to obtain the acetylated RDPs with a high degree of
acetyl substitution by optimizing the acetylation modification process, which is beneficial
to improve the anti-complementary activity of RDPs. The acetylation modification process
of RDPs was optimized by response surface methodology. The two acetylated polysaccha-
rides (AcRDP-1 and AcRDP-2) were obtained under the optimum conditions, and then
characterized by Fourier infrared spectroscopy, high performance liquid chromatography,
high performance gel chromatography, and UV-vis spectrophotometry. Besides, the anti-
complementary activity of the acetylated polysaccharides were studied and compared with
unmodified polysaccharides, to further identify their specific targets in the complement
system, which provided a theoretical basis for the application of R. dauricum leaves in the
pharmaceutical industry.

2. Materials and Methods
2.1. Materials

The dried leaves of R. dauricum L. were obtained from Yanji city, Jilin Province, China,
and authenticated by Professor Gao Li, and the voucher specimen (YB-RD-201610) has
been deposited at the College of Pharmacy, Yanbian University.

All chemicals and solvents that were used in study were analytical grade. Heparin
was purchased from Coolaber Technology Co., Ltd. (Beijing, China). Sheep and rabbit
red blood cells were purchased from Sbjbio (Nanjing, China). Complement reagents were
purchased from Complement Technology, Inc. (Shanghai, China). Normal human serum
was collected from healthy adult volunteers. On 18 September 2020, the Yanbian University
Institutional Research Ethics Committee accepted all the experimental procedures and
protocols (approval NO. YBU-2020-091801).

2.2. Preparation of Polysaccharides and Their Acetylated Derivatives

The polysaccharides from R. dauricum leaves (RDPs) were extracted and isolated
according to the description of our previous work [3]. Briefly, the dried R. dauricum leaves
were extracted with distilled water (30:1 mL/g) at 85 ◦C for 1.5 h. Then, the crude RDPs
were distilled with water, and decolorized with D101 macroporous adsorption resin, and
deproteinized with the Sevag solvent. Subsequently, the purified polysaccharides were re-



Polymers 2022, 14, 3130 3 of 16

dissolved, and subjected to the DEAE-52 cellulose column which was eluted with deionized
water and 0.1 mol/L NaCl at a flow rate of 1.0 mL/min. The two fractions were dialyzed,
freeze-dried, and named as RDP-1 and RDP-2, respectively.

The acetylated polysaccharides were prepared according to previous literature with
some modifications [19]. In detail, the polysaccharides were dissolved in distilled water,
and the pH of the polysaccharide solution was adjusted to 9 with 0.5 mol/L NaOH solution.
Then, acetic anhydride was gradually added into the polysaccharide solution, and NaOH
solution was added simultaneously to maintain the pH value of the reaction solution at
8~10. The reaction was carried out at a certain time with water bath temperature, and
terminated by adding 1 mol/L HCl until pH = 7. Finally, the acetylated polysaccharide
solutions were dialyzed in a dialysis bag (molecular weight cut-off: 3500 Da), concentrated,
and lyophilized to obtain acetylated polysaccharides for further research.

2.3. Degree of Substitution Measurement

The acetyl group was determined by the hydroxylamine hydrochloride method [20].
The different concentrations of β-D-glucose pentaacetate standard solution were mixed
with hydroxylamine hydrochloride (0.1 mol/L), NaOH (1.5 mol/L) and HCl solution
(2.0 mol/L) in turn, and placed at room temperature for 20 min. Then, FeCl3 solution
(0.4 mol/L) was added and reacted for 10 min. The absorbance was recorded by UV-visible
spectrophotometer at 500 nm. The standard curve of the acetyl content was prepared
with acetyl mass concentration as abscissa and absorbance as ordinate. Similarly, the
absorbance of the sample was measured at 500 nm and substituted into the standard curve
equation to calculate the acetyl content of the sample (W). The degree of substitution (DS)
of polysaccharides was calculated according to the method described [21], as follows:

W (%) = (C × V × N)/M × 100% (1)

DS = (162 × W)/[4300 − (43 − 1)× W] (2)

where C is the concentration of the acetyl group in the sample solution (mg/mL), V is
the volume of sample solution (mL), N is the dilution multiple, and W is the mass of the
sample (mg).

2.4. Single Factor and Response Surface Design of Acetylation Modification

There were three factors that were evaluated to research the effects on the degree of
substitution (DS) of polysaccharides: the ratio of acetic anhydride and polysaccharides was
8, 12, 16, 20, and 24 mL/g; the reaction time was 1, 3, 5, 7, and 9 h; the reaction temperature
was 30, 40, 50, 60, and 70 ◦C; and the DS was used as the evaluation index. Based on the
single factor experimental, the reaction time, reaction temperature, and the ratio of acetic
anhydride solution to polysaccharide powder (i.e., liquid-solid ratio) were determined as
three independent variables (marked as variables X1, X2, and X3) with three levels for each
variable (coded levels as −1, 0, and 1). The Box–Behnken Design (BBD), variance analysis
(ANOVA) and regression model were carried out using design expert software version
8.0.6.1 (Stat Ease Inc., Minneapolis, MND, USA). A quadratic polynomial Equation (3) was
used to predict the optimum modification parameters:

YO = β0 + ∑3
j=1 βjXj ∑3

j=1 βjjX
2
j + ∑3

j=1 ∑3
i=j+1 βijXiXj (3)

where Xi and Xj are the independent variables, Y is the degree of acetyl substitution, βij is the
interaction term, βii is the quadratic coefficient, βi is the linear coefficient, and β0 is the intercept.

2.5. Structural Characterization
2.5.1. Fourier Transform Infrared (FT-IR) Analysis

The dried sample (2 mg) was mixed with KBr (100 mg) powder, and pressed into a
pellet. The infrared spectrum was recorded using an FT-IR spectrometer (Gangdong Sci. &
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Tech. development Co. Ltd., Tianjin, China) in the frequency range of 4000–400 cm−1. The
number of scans was 32 times.

2.5.2. Monosaccharide Composition Analysis

The monosaccharide composition of the acetylated polysaccharides was determined by
1-pheny-3-methyl-5-pyrazolone (PMP) pre-column derivatization according to a reported
reference with some modifications [22]. The sample was mixed with trifluoroacetic acid
(TFA, 2 mol/L) and hydrolyzed at 120 ◦C for 3 h in a hydrothermal synthesis reactor,
and then evaporated with anhydrous ethanol to remove excess acid. The hydrolysis
product was labeled by successively adding NaOH (0.3 mol/L), PMP (0.5 mol/L), and HCl
(0.3 mol/L) solution, and the reaction was carried out in a water bath at 70 ◦C for 60 min.
Finally, the PMP-labeled derivative was analyzed by an HPLC system (Hitachi High-Tech
Science Co. Ltd., Tokyo, Japan). The chromatographic conditions: Supersil ODS2 column
(5 µm, 4.6 mm × 250 mm), acetonitrile, and phosphate buffer solution (0.02 mol/L, pH 6.8)
were used as mobile phase (83:17, v/v), the column temperature was 35◦C, the flow rate
was 0.8 mL/min, and the injection volume was 20 µL. The monosaccharide composition
and molar ratio of the samples were determined by the retention time of monosaccharide
standards and their standard curve. The mannose (Man), glucosamine (GlcN), ribose (Rib),
rhamnose (Rha), glucuronicacid (GlcA), galacturonicacid (GalA), glucose (Glc), galactose (Gal),
xylose (Xyl), arabinose (Ara), and fucose (Fuc) were used as the monosaccharide standards.

2.5.3. Molecular Weight Analysis

The molecular weight of the sample was measured by high-performance gel per-
meation chromatography that was equipped with a refractive index detector (HPGPC-
RID) [23]. The sample solution was filtered through a 0.45 µm filter membrane, and injected
into a Shodex sugar KS-804 column (8.0 mm × 300 mm). The mobile phase was ultrapure
water, the column temperature was 50 ◦C, the flow rate was 1 mL/min, and the injec-
tion volume was 20 µL. The chromatogram data were recorded and analyzed using the
N2000 GPC system (Hangzhou Sno Scientific Instrument Co. Ltd., Hangzhou, China). The
calibration curve was plotted by a series of dextran with different molecular weights.

2.5.4. Congo Red Test

The triple helix conformation of the sample was determined according to previous
report [24]. The equal volume of each sample solution (2.5 mg/mL) and Congo red
solution (80 µmol/L) were mixed, and NaOH was gradually added to the alkali solution
concentrations of 0.1, 0.2, 0.3, 0.4, and 0.5 mol/L, respectively. The mixture alkaline solution
without polysaccharides were prepared as the blank control. After equilibrating for 10 min,
each maximum absorption wavelength (λmax) was measured by UV-vis spectrophotometer
(Shanghai Lengguang Technology Co. Ltd., Shanghai, China) in the range of 200~800 nm
at room temperature.

2.6. Anticomplementary Activity of Polysacchairdes

The anticomplement activity of unmodified and acetylated polysaccharides via classi-
cal pathway (CP) and alternative pathway (AP) were determined by referring to previous
research methods [25]. Human blood was extracted from normal healthy adults and placed
in a rapid coagulation tube. After being placed at 4 ◦C for 1 h, it was centrifuged at 4 ◦C
for 10 min. The supernatant was taken to obtain normal healthy adult serum pool (NHSP)
which was used as the complement source of the classical pathway and stored in a −80 ◦C
refrigerator for standby. Samples with different concentration gradients were diluted with
GVB-Ca2+/Mg2+ as solvent, mixed with NHSP (1:80), and incubated at 37 ◦C for 30 min.
Then, sensitized sheep erythrocytes (EAs, 2.0 × 109 cells/mL) were added and incubated
again for 30 min at 37 ◦C. The reaction mixture was centrifuged to take the supernatant, and
the optical density of the supernatant was measured at 540 nm. The hemolysis inhibition
rate of polysaccharide samples with different concentrations was calculated, followed
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by the 50% hemolysis inhibition rate of the classical pathway (CH50). Similarly, GVB-
Ca2+/Mg2+ buffer was mixed with fresh rabbit blood, centrifuged in a low-temperature
high-speed centrifuge for 5 min, the supernatant was discarded, and 2% rabbit erythrocytes
(ERs) were prepared with Aldrin solution as solvent. The 2% Ers were diluted with GVB-
Mg2+/EGTA to a concentration of 5.0 × 108 cells/mL. NHSP (1:8) in GVB-Mg2+/EGTA and
different dilutions of polysaccharides were mixed with 2% ERs. The reaction was carried
out under 37 ◦C water bath for 30 min. Finally, the reaction was terminated by cooling on
ice. The supernatant was obtained by centrifugation, and the optical density was measured
at 412 nm. The 50% hemolytic inhibition through alternative pathways (AP50) were used to
evaluate the anticomplement activity. Heparin (Activity > 150 USP units/mg) was applied
to positive control, which was derived from porcine intestinal mucosa.

2.7. Determination of Complement Targets

The minimum concentration of polysaccharides that were required to inhibit hemolysis
close to 100% under the CP was selected as the critical concentration of anticomplementary
target. The complement-depleted serum (C2, C3, C4, C5, C9) was mixed with sensitized
sheep erythrocytes and incubated in 37 ◦C water bath for 30 min. The absorbance value
of the supernatant was measured at 540 nm, and the hemolysis rate was calculated. The
minimum concentration of polysaccharides that were required to inhibit hemolysis close to
100% under the AP was selected as the critical concentration of the anticomplement target,
and the depleted serum (Factor B, Factor D, and Factor P) and rabbit erythrocytes were
added successively. Then, the reaction was incubated at 37 ◦C for 30 min, and terminated
in an ice bath for 5 min. After centrifugation, 30 µL supernatant was taken and added to
270 µL GVB-Mg2+/EGTA buffer for dilution. Finally, the absorbance value was measured
at 412 nm, and the hemolysis rate was calculated.

2.8. Statistical Analysis

All the values were presented as the mean ± standard deviation (n = 3). SPSS 17.0
statistical software (SPSS Inc., Chicago, JOT, USA) carried out to calculate the CH50 and
AP50 of biological activity. Statistical significances were calculated by one-way analysis of
variance (ANOVA) using GraphPad Prism 6.0 (GraphPad Software Inc., San Diego, CA,
USA), and the value of p < 0.05 was considered to be significant.

3. Results and Discussion
3.1. Single Factor Analysis

The degree of substitution (DS) was calculated according to the acetyl standard curve
equation (y = 7.1499x − 0.0207, R2 = 0.9993). As shown in Figure 1a, with the increase of
reaction time, the DS of polysaccharides increased rapidly in the range of 1 to 3 h (p < 0.05),
which improved the interaction rate between the polysaccharides and the acetylation
reagent, and was more conducive to the occurrence of nucleophilic substitution reaction.
When the reaction time was more than 3 h, the DS of polysaccharides decreased slightly
and stabilized, which might because the acetyl group that had been successfully substituted
was unstable in the alkaline environment and was cracked with the prolonged reaction
time. Figure 1b shows the effect of the reaction temperature on acetylation modification of
polysaccharides; the DS of polysaccharides acetylation modification gradually increased
with the increase of reaction temperature in the range of 30 ◦C to 40 ◦C (p < 0.05). It is
worth noting that the DS of polysaccharides had no significant change in the range of 40 ◦C
to 60 ◦C (p > 0.05), indicating that the acetyl substitution reaction of polysaccharides was
relatively stable in this range. However, the DS of polysaccharides tended to decrease
when the temperature was higher than 60 ◦C (p < 0.05), which was attributed to the fact
that the hydroxyl groups of polysaccharides were not easily exposed and the substitution
reaction was restricted in the high temperature environment. As shown in Figure 1c, the
effect of the ratio of acetic anhydride solution addition amount to the weight of polysac-
charides sample (i.e., liquid-solid ratio) on the modification substitution degree. When
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the liquid-solid ratio was in the range of 8 mL/g to 16 mL/g, the acetylation modification
of polysaccharides increased with the increase of the liquid-solid ratio, which can also
be interpreted as the increase of acetic anhydride addition in the modification reaction
system increased the chance of interaction between the acetyl reagent and polysaccharides
(p < 0.05). When the liquid-solid ratio exceeded 16 mL/g, the acetylation substitution of
the polysaccharides decreased instead. The reason for the decrease in substitution may be
that the excess of acetic anhydride increased the extent of hydrolysis side reactions in the
synthetic system and the already acetylated polysaccharides inhibited the continuation of
the acetylation reaction.
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3.2. RSM Optimization of Acetylation Modification
3.2.1. Model Fitting

Based on single factor experimental results, the reaction time of 1 to 5 h, reaction
temperature of 40 to 60 ◦C and liquid-solid ratio of 12 to 20 mL/g were employed to further
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optimize the modification conditions of RDPs via BBD with 17 runs, and the actual and
predicted values of DS are displayed in Table 1.

Table 1. Experimental design and the results of the Box–Behnken design.

Run
Reaction

Time (X1, h)
Reaction

Temperature (X2, ◦C)
Liquid-Solid

Ratio (X3, mL/g)

Degree of Substitution

Actual Value Predicted Value

1 3 (0) 60 (1) 12 (−1) 0.34 0.34
2 5 (1) 50 (0) 12 (−1) 0.16 0.17
3 1 (−1) 60 (1) 16 (0) 0.34 0.35
4 3 (0) 50 (0) 16 (0) 0.46 0.47
5 3 (0) 50 (0) 16 (0) 0.47 0.47
6 5 (1) 40 (−1) 16 (0) 0.35 0.35
7 5 (1) 50 (0) 20 (1) 0.36 0.36
8 5 (1) 60 (1) 16 (0) 0.34 0.33
9 1 (−1) 40 (−1) 16 (0) 0.30 0.31

10 3 (0) 60 (1) 20 (1) 0.14 0.15
11 3 (0) 50 (0) 16 (0) 0.46 0.47
12 3 (0) 50 (0) 16 (0) 0.481 0.47
13 1 (−1) 50 (0) 12 (−1) 0.35 0.36
14 3 (0) 40 (−1) 20 (1) 0.33 0.33
15 3 (0) 50 (0) 16 (0) 0.47 0.47
16 1 (−1) 50 (0) 20 (1) 0.12 0.12
17 3 (0) 40 (−1) 12 (−1) 0.19 0.18

According to the multiple regression analysis of experimental data, the response value
and independent variables are expressed as quadratic polynomials:

Y = 0.47 + 0.011 × X1 −0.00009199 × X2 − 0.011 × X3 − 0.013 × X1 × X2 + 0.11 × X1 × X3 − 0.087 × X2 × X3 − 0.069 × X1
2 − 0.068 × X2

2 − 0.15 × X3
2 (4)

As shown in Table 2, the statistical differences of the model were evaluated by ANOVA.
The model F-value was 238.69 and p-value was <0.0001, which implied that the model
was significant. The lack of fit F-value (2.25) and p-value (0.2242) demonstrated the lack
of fit is not significant relative to the pure error. The coefficient of determination (R2), the
adjusted coefficient determination (Adj-R2), the predicted coefficient determination (Pred
R2), and the coefficient of variation (C.V. %) in the regression model were 0.9968, 0.9926,
and 3.06, respectively, which suggested that the model had excellent correlation between
the predicted value and the experimental value [26]. The p-values of linear coefficients X1
and X3 (p < 0.05), quadratic coefficients X1×2 were significantly (p < 0.05), and the p-values
of other coefficients (X1X3, X2X3, X1

2, X2
2, and X3

2) were extremely significant (p < 0.01),
which indicated that the reaction time and liquid-solid ratio had a strong correlation with
the substitution degree of acetylated RDPs. However, the p-value of X2 indicated that the
correlation between the reaction temperature and polysaccharide modification was poor
within the range of 40 to 60 ◦C (p > 0.05), which was consistent with the above single factor
experiment results.

Table 2. Analysis of variance for response surface quadratic model.

Source Sum of Squares Df Mean Square F-Value p-Value

Model 0.23 9 0.025 238.69 <0.0001 **
X1 0.001033 1 0.001033 9.74 0.0168 *
X2 0.0000000677 1 0000000677 0.0006385 0.9805
X3 0.0009834 1 0.0009834 9.27 0.0243 *

X1X2 0.0007224 1 0.0007224 6.81 0.0349 *
X1X3 0.047 1 0.047 438.82 <0.0001 **
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Table 2. Cont.

Source Sum of Squares Df Mean Square F-Value p-Value

X2X3 0.030 1 0.030 283.14 <0.0001 **
X1

2 0.020 1 0.020 187.10 <0.0001 **
X2

2 0.019 1 0.019 181.79 <0.0001 **
X3

2 0.097 1 0.097 911.72 <0.0001 **
Residual 0.0007422 7 0.022 — —

Lack of Fit 0.0004664 3 0001555 2.25 0.2242
Pure Error 0.0002758 4 0.00006896 — —
Cor Total 0.23 16 — — —

R2 0.9968 — Adj R2 0.9926 —
C.V. % 3.06 — Pred R2 0.9655 —

* Indicates significant differences (p < 0.05); ** Indicates extremely significant differences (p < 0.01).

3.2.2. Response Surface Analysis

Three-dimensional (3D) and two-dimensional contour plots (2D) of the response
surface provide an initial visualization of the effect of each variable on the degree of
polysaccharides acetyl substitution and the interaction between the two variables. As
shown, Figure 2b,c showed steeper response surfaces than other 3D picture, meanwhile
Figure 2d,e exhibited more elliptical contour lines than other 2D plot, which indicated that
interaction effects of reaction time and liquid-solid ratio, and the reaction temperature and
liquid-solid ratio had extremely significant differences on DS of RDPs. In addition, it can
be seen that there was a peak of each response surface graph, which also indicated that the
setting of variable range was reasonable.
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3.2.3. Verification of the Predictive Model

According to multiple regression analysis and model prediction, the optimal acety-
lation modification conditions of RDPs were obtained by Design-Expert 8.0.6 statistical
software as follows: a reaction time of 3.15 h, reaction temperature of 49.98 ◦C, and a
liquid-solid ratio of 15.96 mL/g. Under these conditions, the predicted DS was 0.472.
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Considering the actual operation process, the optimal parameters were as follows: reaction
time of 3 h, reaction temperature of 50 ◦C, liquid-solid ratio of 16 mL/g, the actual DS of
RDPs was 0.465 ± 0.014 (n = 3), which was close to the predicted value, indicating the
accuracy and reliability of the optimization model for the acetylation modification process
of RDPs. Furthermore, two acetylated polysaccharide fractions (AcRDP-1 and AcRDP-2)
were obtained by acetylation modification of two fractions from R. dauricum leaves (RDP-1
and RDP-2) under this optimal condition. The results showed that the DS and modification
yields of AcRDP-1 and AcRDP-2 were 0.439 ± 0.025 and 73.08 ± 1.82%, 0.445 ± 0.022,
and 78.32 ± 2.13%, respectively. In addition, the extraction yields of RDP-1 and RDP-2
were 13.21 ± 1.22% and 9.87 ± 1.04%, respectively, which were similar to polysaccharides
from leaves that were reported in previous studies [27–29], and provided a relatively stable
source of raw materials for the industrial production of polysaccharides.

3.3. Structural Characterization of AcRDP-1 and AcRDP-2
3.3.1. FT-IR Analysis

The FT-IR spectra of two acetylated polysaccharides (AcRDP-1 and AcRDP-2) were
presented in Figure 3. The strong absorptions at 3400 cm−1 and 2930 cm−1 were attributed
to the stretching vibration of O-H and C-H, respectively. The peak at around 1614 cm−1

was assigned to bound water [30]. The peak at approximately 1370 cm−1 was related
to the bending vibration of C-H [31]. The signal peak at about 1070 cm−1 was ascribed
to the symmetric stretching vibration of the C-O-C [32]. Compared to the unmodified
polysaccharides that were reported in our previous study [3], the new absorption peak that
was found at about 1740 cm−1 was attributed to the vibration of C=O of the O-acetyl group,
and the enhanced absorption peak at around 1245 cm−1 was caused by the asymmetric
stretching vibration of C-O-C in carbonyl groups, which proved that the two acetylated
polysaccharides were successfully modified [6,33].
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3.3.2. Monosaccharide Composition Analysis

As shown in Figure 4, AcRDP-1 and AcRDP-2 were composed of Man, Glc, Gal, and
Ara with molar ratios of 1.00:5.01:1.17:0.15 and 1.00:4.47:2.39:0.88, respectively. The results
showed that the monosaccharide types of the two acetylated polysaccharides were the same
as those of the unmodified polysaccharides in the previous study [3], and they consisted
of four monosaccharides. However, the molar ratio of each monosaccharide of acetylated
polysaccharides was changed. Among that, the content of glucose remained the highest,
while the content of arabinose decreased, and the molar ratio of mannose to galactose was
different from that of the unmodified polysaccharides. It was speculated that it might be
due to the breakage of glycosidic chains in the preparation of acetylated polysaccharides,
and the substitution of several arabinose units by acetyl groups [6].
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Rha, rhamnose; GlcA, glucuronicacid; GalA, galacturonicacid; Glc, glucose; Gal, galactose; Xyl,
xylose; Ara, arabinose; Fuc, fucose).
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3.3.3. Molecular Weight Analysis

The HPGPC of AcRDP-1 and AcRDP-2 exhibited a single and symmetrical peak, in-
dicating that AcRDP-1 and AcRDP-2 were homogenous polysaccharides (Figure 5). The
molecular weight (Mw) of AcRDP-1 and AcRDP-2 were calculated to be 9.3525 × 103 kDa
and 4.7016 × 103 kDa, respectively. Compared with the unmodified polysaccharides
(RDP-1: 1.0948 × 104 kDa and RDP-2: 1.1899 × 105 kDa), the Mw of the two acetylated
polysaccharides decreased significantly, which was due to the degradation of the polysac-
charides under the action of acetylating agents. Similarly, several studies also found that
the Mw of acetylated derivatives is significantly reduced during the modification pro-
cess [19,34,35]. Interestingly, the decrease rate of molecular weight of AcRDP-2 (96.04%)
was higher than that of ACRDP-1 (14.57%), suggesting that AcRDP-2 may be more suscep-
tible to degradation.

Polymers 2022, 14, 3130 13 of 19 
 

 

 
Figure 5. High performance gel permeation chromatography of AcRDP-1 (a) and AcRDP-2 (b). 

3.3.4. Congo Red Test 
The Congo red test is a common method to evaluate the existence of triple helix con-

formation in polysaccharides. The complex that is formed by polysaccharide with triple 
helical conformation and Congo red solution, and the maximum absorption wavelength 
(λmax) of the complex can be red shifted with the increase of concentration of NaOH solu-
tion [36]. However, as shown in Figure 6, the change trend of AcRDP-1 and AcRDP-2 was 
the same as that of the blank group. With the increase of NaOH concentration in the solu-
tion, the λmax continued to decline, and no complex was formed with Congo red, indi-
cating that AcRDP-1 and AcRDP-2 had no triple helix conformation. It can be seen that 
the triple helix conformation of polysaccharides disappeared through acetylation modifi-
cation, which may be caused by the breakage of glycosidic chains and the change of the 
force between glycosidic bonds in the modification process. 

Figure 5. High performance gel permeation chromatography of AcRDP-1 (a) and AcRDP-2 (b).

3.3.4. Congo Red Test

The Congo red test is a common method to evaluate the existence of triple helix
conformation in polysaccharides. The complex that is formed by polysaccharide with triple
helical conformation and Congo red solution, and the maximum absorption wavelength
(λmax) of the complex can be red shifted with the increase of concentration of NaOH
solution [36]. However, as shown in Figure 6, the change trend of AcRDP-1 and AcRDP-2
was the same as that of the blank group. With the increase of NaOH concentration in
the solution, the λmax continued to decline, and no complex was formed with Congo
red, indicating that AcRDP-1 and AcRDP-2 had no triple helix conformation. It can be
seen that the triple helix conformation of polysaccharides disappeared through acetylation
modification, which may be caused by the breakage of glycosidic chains and the change of
the force between glycosidic bonds in the modification process.
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3.4. Anticomplementary Activity Analysis

The anticomplementary activity of unmodified polysaccharides (RDP-1 and RDP-2)
and acetylated polysaccharides (AcRDP-1 and AcRDP-2) were evaluated on the CP and AP
of the complement system, and their 50% hemolytic inhibition concentrations (CH50 and
AP50) are shown in Table 3. Compared with RDP-1, AcRDP-1 produced anti-complement
activity through acetylation modification, and the CH50 and AP50 values of AcRDP-1 were
significantly lower than those of the positive control (p < 0.05), indicating that ACRDP-1
had a strong complement inhibitory effect. Although RDP-2 showed weak complement
inhibition effect in the CP, its CH50 value was significantly higher than that of heparin
(p < 0.05), and it was inactive in the AP. Excitingly, the CH50 and AP50 of AcRDP-2 were also
significantly lower than the positive drugs (p < 0.05), suggesting that AcRDP-2 produced
a stronger new anticomplementary activity than the positive drug through acetylation
modification. Compared with other polysaccharides that were previously reported [16–18],
AcRDP-1 and AcRDP-2 have stronger complement inhibition ability in the CP and AP,
which indicated that the acetylated polysaccharides from R. dauricum leaves have higher
development potential.

Table 3. Anticomplementary activities of unmodified and acetylated polysaccharides.

Samples CH50 (mg/mL) AP50 (mg/mL)

RDP-1 NE NE
RDP-2 0.870 ± 0.030 a NE

AcRDP-1 0.009 ± 0.003 c 0.015 ± 0.003 b

AcRDP-2 0.004 ± 0.001 c 0.028 ± 0.005 b

Heparin 0.114 ± 0.013 b 0.138 ± 0.012 a

Data are expressed as the mean ± SD (n = 3); CH50 and AP50 stand for the 50% hemolytic inhibition concen-
trations through the classical pathway and alternative pathway, respectively. Heparin was positive control for
anticomplementary activity. “NE” denotes that this sample has no inhibitory effect at the maximal concentration
that was tested. Different letters (a–c) indicate significant differences in the same complement pathway (p < 0.05).

Ulteriorly, the complement-depleted serum was used to identify AcRDP-1 and AcRDP-2
targets in the complement activation cascade. As shown in Figure 7a, AcRDP-1 did not
restore the hemolytic activity in C2-, C3-, C4-, C5-, C9-, Factor B-, or Factor D-depleted sera
(the hemolysis percentage was less than 20%), while it did obviously restore hemolysis in
Factor P-depleted sera. Thus, AcRDP-1 interacted with C2, C3, C4, C5, C9, Factor B, and
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Factor D targets. Meanwhile, as shown in Figure 7b, AcRDP-2 interacted with complement
components C2, C3, C4, C5, C9, and Factor B to inhibit the overactivation of complement,
but did not block the targets of Factor D and Factor P. Combined with the above results,
AcRDP-1 and AcRDP-2 showed excellent complement inhibition ability via the CP and AP
with multiple targets, which demonstrated the crucial role of acetylation modification in
blocking complement components.
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On the whole, the anticomplementary activity of AcRDP-1 and AcRDP-2 was effec-
tively increased by acetylation modification, which was associated with changes in the
structural characteristics of AcRDP-1 and AcRDP-2. The activity of large molecular weight
polysaccharides was susceptible to spatial hindrance [37], while the lower molecular weight
acetylated polysaccharides may be more conducive to blocking complement components.
Also, a large number of -OH groups were substituted by CH3-CO- groups in the polysaccha-
rides with high DS. Huo et al. [18] stated that the presence of uronic acid in polysaccharides
was considered important. However, unmodified polysaccharides (RDP-1 and RDP-2) do
not have uronic acid, which may be one of the factors that cause the anticomplementary
activity of RDP-1 and RDP-2 to be significantly weaker than that of heparin. With the
introduction of acetyl groups, the triple helix conformation was de-rotated, and the extensi-
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bility of the molecular chain was improved, resulting in the enhancement of complement
inhibition effect [4].

Heparin is a highly sulfated glycosaminoglycan that is widely used as an antico-
agulant, which is alternately composed of glucosamine, L-eduraldehyde glycoside, N-
acetylglucosamine, and D-glucuronic acid with linear chains, and the average molecular
weight is about 15 kDa. In the early years, many scholars found that heparin could act
on the classical and bypass pathways of complement and has long been considered as an
inhibitor of complement activation in vitro [38,39]. It interferes with complement activation
at multiple levels, by binding and inactivating C1, blocking the assembly of the C3 con-
vertases, and interfering with the assembly of membrane attack complex (MAC) [40–43].
However, the application of heparin to complement inhibition in vivo is flawed due to
its anticoagulant properties [44]. Compared with heparin, the RDPs and AcRDPs have
completely different monosaccharide compositions, molecular weights, and chain exten-
sibility, which is the reason for their different anticomplementary ability and mechanism.
Heparin induced in vivo anticoagulation mainly through the ionic interaction of its sulfate
group with amino acid residues on coagulation factors [45,46], whereas RDPs and AcRDPs
did not have sulfate groups, which implied that RDPs and AcRDPs may have less side
effects than heparin in vivo. Thus, RDPs and AcRDPs have significant advantages in the
treatment of complement hyperactivation-related diseases.

4. Conclusions

In this study, the optimal acetylation modification parameters of R. dauricum leaves
polysaccharides (RDPs) were as follows: a reaction time of 3 h, reaction temperature of
50 ◦C, and a liquid-solid ratio of 16 mL/g. Under these conditions, two acetylated polysac-
charides from R. dauricum leaves (AcRDP-1 with DS of 0.439 ± 0.025 and AcRDP-2 with
DS of 0.445 ± 0.022) were successfully obtained. The results of structural characterization
showed that both AcRDP-1 and AcRDP-2 were composed of mannose, glucose, galactose,
and arabinose with obvious acetyl characteristic groups and lower molecular weight, but
no triple helix configuration. The two acetylated polysaccharides exhibited a stronger com-
plement inhibitory effect than positive drugs through the classical pathway and alternative
pathway by blocking C2, C3, C4, C5, C9, and Factor B targets, which demonstrated their
potential development as novel anticomplementary drugs in the pharmaceutical industry.
Therefore, this study provided an optimal process for acetylation modification of RDPs and
successfully improved the biological activities of RDPs, which provided a new direction
for the utilization of R. dauricum leaves and laid a theoretical foundation for its industrial
production. However, acetyl group substitution sites and more explicit structure-activity
relationships of acetylated polysaccharides need to be further studied in the future.
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