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Introduction
Communities within the Central Appalachia region, con-
taining areas within Virginia, West Virginia, Kentucky, and 
Tennessee, experience some of the most severe economic 
and health disparities across the United States.1 Although 
poverty has generally decreased since the mid-1900s, the 
region has not experienced corresponding expected health 

gains,2 and continues to lag behind national poverty esti-
mates, with increased rates of unemployment, lower levels of 
postsecondary education, and lower life expectancy.3 Surface 
mining became more widespread in the 1990s, and repre-
sented over 60% of coal mined in 2019.4 Within Central 
Appalachia, coal production has declined in the 2010s and 
there were nearly double the amount of surface mines as 
underground mines in 2019, despite relatively similar levels 
of coal production.4 Surface mining has disrupted the local 
environment, where the forest is cleared, rocks and topsoil 
are loosened through explosives to expose the underlying 
coal seams, and the resultant rubble is dumped into nearby 
valleys and headstreams.5,6

These surface mining activities have been previously asso-
ciated with adverse health outcomes.1,7,8 For example, a 
county-level cross-sectional analysis found higher rates of 
respiratory disease, hypertension, and kidney disease among 
populations living in counties with greater coal production, 
as compared with those living further away from coal mining 

What this study adds

Previous work published in Environmental Epidemiology has 
determined an association between living near surface mining 
activities within Central Appalachia and an increased risk of 
adverse birth outcomes. The exposure pathways underlying this 
association; however, remain unclear, including inhalation of 
particulate matter versus exposure to contaminated water. This 
work aims to identify the potential exposure pathways under-
pinning this relationship, which may be mediated by one or 
both pathways. Our results suggest that the association between 
surface mining and adverse birth outcomes is driven in part by 
exposure to airsheds near active surface mining activities, while 
mediation via watersheds was less clear.
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Background: Previous work has determined an association between proximity to active surface mining within Central 
Appalachia and an increased risk of preterm birth (PTB) and low birthweight (LBW). Multiple potential exposure pathways may exist; 
however, including inhalation of particulate matter (airshed exposure), or exposure to impacted surface waters (watershed exposure). 
We hypothesize that this relationship is mediated by exposure to contaminants along one or both of these pathways.
Methods: We geolocated 194,084 birth records through health departments in WV, KY, VA, and TN between 1990 and 2015. We 
performed a mediation analysis, iteratively including within our models: (a) the percent of active surface mining within 5 km of maternal 
residence during gestation; (b) the cumulative surface mining airshed trajectories experienced during gestation; and (c) the percent 
of active surface mining occurring within the watershed of residency during gestation.
Results: Our baseline models found that active surface mining was associated with an increased odds of PTB (1.09, 1.05–1.13) and 
LBW (1.06, 1.02–1.11), controlling for individual-level predictors. When mediators were added to the baseline model, the association 
between active mining and birth outcomes became nonsignificant (PTB: 0.48, 0.14–1.58; LBW 0.78, 0.19–3.00), whereas the asso-
ciation between PTB and LBW remained significant by airshed exposure (PTB: 1.14, 1.11–1.18; LBW: 1.06, 1.03–1.10).
Conclusions: Our results found that surface mining airsheds at least partially explained the association between active mining and 
adverse birth outcomes, consistent with a hypothesis of mediation, while mediation via the watershed pathway was less evident.
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activities.9 However, the relative importance of the exposure 
pathways underlying these associations remains less clear. 
Previous research outlining the public health impacts of surface 
mining activities has proposed two possible biological mech-
anisms to explain these relationships.8 First, there is evidence 
that inhalation of particulate matter is increased near-surface 
mining activities.10,11 Within Central Appalachia, surface min-
ing activities result in increased emissions of acidic aerosols 
such as sulfur dioxide and nitrous dioxide,12 as well as partic-
ulate matter smaller than 10 µ in diameter (PM10) as a result 
of trucks hauling coal.13 Studies have found that particulate 
matter collected from nearby surface mines results in increased 
inflammatory responses and vascular tissue damage in a rodent 
model10,11 and increased carcinogenic markers in human lung 
cells,14 which is consistent with the higher rates of cardiovas-
cular and lung disease observed in the region.11 Exposure to air 
pollution is known to result in a range of adverse health out-
comes across life stages, including adverse birth outcomes.15,16

Second, exposure to heavy metals in drinking water contam-
inated by surface mining activities has also been proposed as a 
causal pathway linking adverse health outcomes and proximity 
to surface mining activities.8 However, little research is avail-
able that quantifies the in situ exposure to heavy metals, water 
quality, and sources of drinking water used within Appalachia.1 
Although associations between metals in water and increased 
rates of cancer and chronic disease have been noted, researchers 
have called for a more thorough investigation of these associ-
ations linked specifically to exposure to waterborne contami-
nants and dose of exposure, whereas controlling for behavioral 
risk factors such as tobacco use.8 Despite this lack of evidence, 
other studies within the field of aquatic ecology have noted 
elevated concentrations of heavy metals and nonmetallic ions 
downstream of active and historic surface mining activities, 
resulting in the loss of aquatic biodiversity within Appalachian 
headwater streams.6 Given that these streams are inevitably 
hydrologically connected to source waters for regional drinking 
water supplies, degradation of aquatic ecological health poten-
tially indicates important concurrent public health risks.

Surface mining activities have more specifically been 
shown to correlate with adverse birth outcomes, such 
as birth defects, low birthweight (LBW), and premature 
birth. Among nearly 2 million births across four Central 
Appalachian states, Ahern et al.17 suggested that rates of 
birth defects were higher in areas with mountaintop removal 
as compared with areas with no mountaintop removal, after 
controlling for covariates. Other studies have further sug-
gested that air pollution containing fine particulate matter, 
such as particulates resulting from surface mining activi-
ties, can reach the fetal placenta and trigger inflamma-
tory responses,18 which may, in turn, explain associations 
between air pollution and adverse birth outcomes such 
as LBW and preterm birth (PTB).19,20 Within the Central 
Appalachia region, Ahern et al.21 have documented an inde-
pendent risk of LBW among women living within an area 
with coal mining activities in West Virginia. More recently, 
Buttling et al.22 suggested an increased risk of LBW and PTB 
among women living within 5 km of an active surface mine.

Here, this work builds upon the findings outlined in Buttling 
et al., to examine the potential underlying pathways mediat-
ing the documented association between active surface mining 
activities and adverse birth outcomes. More specifically, we aim 
to explore airshed and watershed exposure pathways as poten-
tial mediators of the association observed between proximity to 
active surface mining activities and adverse birth outcomes.22 
We undertake a mediation analysis within a logistic regression 
modeling framework to examine the odds of PTB, LBW, and 
term LBW outcomes as predicted by maternal proximity to 
surface mining activities during gestation from 1990 to 2015, 
overlaying surface mine airshed and watershed boundaries. 
To undertake these analyses, we use geolocated birth records 

spanning four states in the Central Appalachia region, repre-
senting nearly 200,000 births over 2.5 decades. Specifically, we 
hypothesize that increased odds of PTB and LBW associated 
with proximity to surface mining activities during gestation may 
be mediated by airshed or watershed pathways, or both, and 
examine the potential additive effects of these mediators.

Methods

Data

We obtained birth records for four states across Central 
Appalachia, provided by departments of health in Kentucky 
(KY), Tennessee (TN), Virginia (VA), and West Virginia (WV) 
(Figure 1). This dataset is described in detail in Buttling et al.22; 
briefly, a total of 409,394 birth records were obtained from 
departments of health with street addresses of reported mater-
nal addresses. Records were removed due to missingness in street 
addresses with many records reporting only mailing addresses 
(such as a rural route or P.O. box), resulting in a final dataset 
comprising 194,084 births between 1990 and 2015 with a geo-
coded maternal residential address. Our previous analysis shows 
differences in maternal characteristics of births from the original 
and final dataset are minimal and an additional analysis using 
a zip-code level exposure variable that allowed the inclusion of 
most of the original records resulted in similar effect estimates.22 
The exposure variable of interest within this dataset was the pro-
portion of land designated as “active surface mining” within a 
5-km radius of the maternal address during the majority gestation 
year. Pre-mining areas were defined as areas that were classified 
as actively mined in future years of the study period. Mined areas 
<40 acres in size were removed from the analysis, as the Office 
of Surface Mining Reclamation and Enforcement reported that 
economically viable mines are generally at least 40 acres in size.23

More specifically, yearly active surface mining activities were 
defined using a combination of land cover change and mining 
permits, obtained from Marston and Kolivras for the years 
1986 through 2015 using 30 m resolution Landsat remote 
sensing imagery.24 Specifically, this dataset used remote sens-
ing technology and satellite imagery to quantify changes in the 
extent of surface mining areas greater than 40-acres over the 
corresponding years among areas where mining permits were 
requested. For each year, barren land on which vegetation had 
been removed was identified, and pixels that were tied to other 
types of land disturbance (such as clear-cutting of timber) were 
manually excluded. The remaining barren pixels lying within 
areas permitted for mining within the United States Geological 
Survey-defined Appalachian coalfields were designated as places 
where active mining was likely taking place. Active surface min-
ing was delineated from postmining areas through classification 
of vegetation, where actively mined areas tend to have major 
land disruption and degradation, whereas postmining areas 
tend to show some revegetation through reclamation efforts.25

To assess the accuracy of the mined area dataset, Marston et 
al. applied a standard validation process within remote sensing to 
the identified mined layer. Specifically, 2,250 points were placed 
within eight randomly selected counties across the Appalachian 
coalfield region of Central Appalachia. Data from these counties 
had not previously been used for the initial identification (train-
ing) of mined areas. The classification of these points (mined 
or not) was compared with aerial imagery from the National 
Agricultural Imagery Program (NAIP, 1 m resolution), land cover 
data from the National Land Cover Dataset, and Landsat images 
that were not used for initial classification. The overall classi-
fication accuracy was 0.88, or 88%, and the kappa coefficient 
to measure agreement was also 0.88, indicating “strong” agree-
ment.26 When errors were identified, they tended to be along the 
edges of mined areas. If a pixel at the edge of a cleared area is half 
barren and half forested, the classification process will classify 
that pixel as one or the other, with the potential for error to occur.
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Airsheds for each of the active surface mines in each year of anal-
ysis were estimated using the HYbrid Single-Particle Lagrangian 
Integrated Trajectory (HYSPLIT4) atmospheric trajectory model,27 
which uses meteorological data to compute atmospheric trajecto-
ries, particle dispersion, and air concentrations. Detailed methods 
using HYSPLIT4 to characterize airsheds of surface mines are 
described in further detail in McKnight et al.28 Briefly, we modeled 
individual airsheds of each active surface mine in the study area. 
The results of this process were raster data sets (e.g., a pixelated 
or gridded surface where each pixel or grid square corresponds to 
a specific geographical location and has an associated value) com-
prised of frequency values relating to air movement from surface 
mines per gridded cell. To quantify total exposure in pregnancy 
from all mines, we summed the frequency values of all airsheds 
extracted at each maternal address location for the cumulative 
amount of air from surface mines experienced at the maternal res-
idential address. Watersheds were classified using 10-digit hydro-
logic unit codes (HUC10) within the United States Geological 
Survey’s Watershed Boundary Dataset, which represent the areal 
extent of surface water drainage using an aggregated collection of 
hydrologic unit data and amount of active surface mining within 
watersheds for each year of the study period was calculated.29

Analysis

We employed mediation analyses to explore the potential exposure 
pathways that could explain associations between living in close 
proximity to active surface mining activities and increased odds of 

PTB and LBW described in Buttling et al.22, accounting for prem-
ining differences and additional individual-level covariates avail-
able on birth records. Mediation analyses are helpful in exploring 
the underlying mechanisms underpinning a known relationship 
between an exposure and outcome.30 Generally, mediation is sug-
gested when four criteria are met, as outlined in Table 1.31

Our independent variable of interest was the percent of the 
land within a 5-km radius of the maternal residential address 
that was designated as an active surface mine during the major-
ity year of gestation (n = 23,733). Participant characteristics 
by exposure status are reported in Buttling et al. (2021), and 
are included in Supplementary Information (eTable S5; http://
links.lww.com/EE/A185); http://links.lww.com/EE/A185. Our 
dependent variables of interest included (1) PTB, defined as 
birth before 37 weeks of gestation; (2) low birthweight (LBW), 
defined as birthweight less than 2,500 grams; and (3) term low 
birthweight (TLBW), defined as birth occurring at ≥37 weeks 
gestation and birthweight less than 2,500 grams. Using these 
criteria, we tested whether mediation between proximity to 
active surface mining activities during the year containing the 
majority of the pregnancy (majority gestation year) and these 
adverse birth outcomes occurred via the airshed pathway or 
the watershed pathway. We quantified these potential medi-
ators (Figure  2), respectively, as: (1) the cumulative potential 
exposure to air pollutants via the airshed experienced at the 
maternal residential address during the majority gestation year, 
and (2) the percent of land experiencing active surface mining 
within the watershed of residency during the majority gestation 

Figure 1.  Study area (red) and surface mining coal production (thousand tons) at the county level for 1993 (top) and 2015 (bottom). Coal production data for 
2015 and 1993 were obtained from43 and 44.

http://links.lww.com/EE/A185); http://links.lww.com/EE/A185
http://links.lww.com/EE/A185); http://links.lww.com/EE/A185


Ruktanonchai et al.  •  Environmental Epidemiology (2022) 6:e208	 Environmental Epidemiology

4

year. The cumulative potential exposure to airborne pollutants 
via the airshed is outlined in further detail within Mcknight et 
al.28; briefly, these values represent the cumulative frequency of 
air originating from active surface mines, as modeled via the 
HYSPLIT4 atmospheric trajectory model. Residential addresses 
associated with higher values have higher potential exposure to 
surface mining air pollution, including fine particulate matter.

We firstly employed a Sobel test using the bda package in R 
software to quantify whether mediators significantly influenced 
the relationship between the independent and dependent vari-
ables.32,33 We further performed a logistic regression analysis 
using the stats package within the base R software. Covariates 
within our model included categorical variables found on birth 
records including maternal age (“18–35 years,” “<18 years,” 
“>35 years”), highest education attained by the mother at the 
child’s birth (“8th grade or less,” “9th–12th grade [includes 
high school graduates],” “Post high-school education [with or 
without degree]”), race (“White,” “Black,” “Other”), ethnicity 
(“Hispanic,” “Not Hispanic”), self-reported tobacco use during 
pregnancy (“Yes,” “No”), sex of the child (“Male,” “Female”), 
payment type for birth medical services (“Medicaid,” “Private 
Insurance,” “Self-Pay,” ‘Other”), state (“Kentucky,” “Tennessee,” 
“Virginia,” and “West Virginia”), and continuous percent of 
land within 5 km of maternal residence that was not actively 
experiencing mining activities during the majority gestation 
year but would be subsequently mined in later years (referred 
to as “pre-mining” activities), to account for any temporal base-
line difference before active mining. Because mining activities 
tend to show spatial autocorrelation (e.g., active mining tends to 
move progressively across the landscape and is therefore closely 
correlated with premining landcover), we further included an 
interaction term between the amount of pre-mined land and 
surface mining land within a 5-km buffer of maternal residence. 
Lastly, to allow for nonlinear temporal trends observed within 
the data and account for serial autocorrelation, we included a 
spline with 4 degrees of freedom in the year covariate using the 
splines package within R software. This approach is a mixed 
effect modeling approach, similar to including random effects in 
the model, where fixed effects are allowed to vary at inflection 
(or spline) points, estimated by maximizing a penalized like-
lihood function.34 This model builds on the model detailed in 
Buttling et al.,22 which can generally be specified as:

log ti y M T M T bs t xi m i t i mt i i
k

k ik( ) = + + + + ( )( ) +∑*β0 β β β δ

where logit(yi) represents the odds of an adverse outcome 
(PTB, LBW, and TLBW) occurring for a given woman’s birth, 
i; Mi represents the % of pre-mining land area within a 5km 
buffer of the maternal residence of individual i; Ti represents 
the % of active surface mining area within a 5-km buffer of 
the maternal residence of individual i; βmt i iM T*  represents the 
interaction effect of having land within 5 km of the maternal 
residence of individual, i, that is both likely actively being mined 
(active mining) and will subsequently be mined (premining); 
bs(t) represents a nonlinear spline with 4 degrees of freedom to 
fit temporal trends in the data; and xik  represents the suite of 
fixed covariates K as outlined above.22

To explore hypothesized mediation pathways, we tested three 
model types that iteratively built on each other (Figure  3).33 
Our base adjusted model (Model 0) included the suite of fixed 
effects described above, including the independent variable of 
interest (e.g., % surface mining activities in a 5-km buffer). 
Model 1 included the same suite of variables as Model 0, with 
the addition of the airshed mediator variable alone, whereas 
Model 2 included the watershed mediator alone. Lastly, Model 
3 included the addition of both the airshed and watershed medi-
ators. All models included an interaction term between prem-
ining surface area and active surface area as described above, 
plus an interaction term between the mediator(s) and expo-
sure variable. We report model performance metrics, including 
McFadden’s pseudo-R2 statistic, Akaike Information Criterion 
(AIC), and mean adjusted error (MAE) and root-mean squared 
error (RMSE) measures. AIC represents a measure of model pre-
dictive power as a trade-off with model complexity, with lower 
values generally representing models with better fit.35 MAE and 
RMSE represent model precision and bias, with values closer 
to zero representing better model fit, whereas pseudo-R2 values 
represent variance explained by the model, with values between 
0.2 and 0.4 representing reasonable model fit across a range of 
applications.36–39

Results

Sobel test

Results of the Sobel test suggesting evidence of whether medi-
ation is occurring are presented in Table 2. For each dependent 
variable of interest, we conducted an independent Sobel test 
exploring whether mediation is occurring via the airshed path-
way (M = air) and the watershed pathway (M = water), with the 
independent variable of interest defined as proximity to surface 
mining. Evidence suggested that mediation was occurring via 
the airshed pathway for PTB and LBW outcomes (p < 0.001), 
whereas evidence was less clear for mediation of TLBW. There 
was further evidence suggesting that mediation may be occur-
ring via the watershed pathway for PTB (p = 0.012) but media-
tion was less clear for other birth outcomes.

Unadjusted model results

We first explored unadjusted model results for each depen-
dent variable of interest, as outlined in Table 3. Specifically, 
the results of these unadjusted models are used to test whether 
the independent variable was significantly associated with the 

Table 1.

Mediation Criteria, adapted from31

Criteria Assessed Statistical Test(s) Used

1 Independent variable significantly influences the mediator Unadjusted regression model

Sobel test
2 Independent variable significantly influences the dependent variable (in absence of the mediator)

Adjusted regression model3 Mediator significantly and uniquely influences the dependent variable

4 The effect of the independent variable on the dependent variable shrinks with the addition of the mediator

Figure 2.  Directed acyclic graph outlining potential mediators of the associa-
tion between surface mining and adverse birth outcomes.
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mediator, a key criterion indicating mediation. Towards this, 
we found that proximity to surface mining strongly influenced 
both hypothesized mediator pathways (p < 0.001). We further 
conducted unadjusted models on the dependent variables of 
interest before conducting adjusted models. Across all out-
comes, both mediation pathways were generally strongly sig-
nificant, with the exception of TLBW. Of note, results tended 

to be more strongly significant among the airshed mediation 
pathways, as opposed to the watershed mediation pathway.

Adjusted model results

To test the remaining criteria (Table  1) for whether mediation 
occurred between adverse birth outcomes and proximity to sur-
face mining, we iteratively conducted a logistic regression with 
the addition of mediating variables. Full model results are listed in 
eTable S1; http://links.lww.com/EE/A185–eTable S3; http://links.
lww.com/EE/A185. Overall, in our baseline models (e.g., without 
the addition of mediation pathways), we found that sociodemo-
graphic characteristics such as older age (>35 years), self-reported 
tobacco use during pregnancy, having a female child, race, and type 
of payment used to cover birth services (e.g., Medicaid and “Other”)  
were associated with increased odds of PTB, LBW, and TLBW 
outcomes. We further found significant differences in the odds 
of PTB across states, with women giving birth in Central 
Appalachian counties within Tennessee at higher odds of having 
a PTB and women giving birth in Virginia at lower odds, as com-
pared with women giving birth in Kentucky. Across all outcomes, 
self-reported tobacco use during pregnancy resulted in the highest 
odds ratios of adverse birth outcomes as compared with other 
sociodemographic characteristics within the model, particularly 
for TLBW (OR: 3.06, 95% confidence interval [CI] = 2.80, 3.35).

To explore mediation pathways, we first examined whether 
the independent variable was significantly associated with the 
dependent variables in absence of the mediators (mediation cri-
terion #2), denoted as Model 0. We found proximity to surface 
mining was associated with PTB, such that a 1% increase in 
the amount of land within a 5-km buffer around the maternal 
address being mined was associated with a 9% increase in the 
odds of having PTB (OR: 1.09; 1.05, 1.13) and 6% increase in 
the odds of LBW (OR: 1.06, 1.02, 1.11). In practical terms, the 
highest percentage of surface mining within a 5-km buffer sur-
rounding a maternal address was observed to be just over 15%, 
with a mean of under 1% (0.13%).

To test whether mediators were significantly and uniquely associ-
ated with the dependent variable (mediation criterion #3), we added 
the airshed pathway variable (Model 1), watershed pathway vari-
able (Model 2), and both (Model 3). Results of the adjusted models 
are shown in Table 4. The airshed pathway was strongly significant 
in the PTB model (p < 0.001) and LBW model (p = 0.004), even 
after the addition of the watershed pathway in Model 3. Evidence 

Figure 3.  Model diagrams outlining the iterative model building process. Iterative models were built for each dependent variable (e.g., PTB, LBW, and TLBW).

Table 2.

Sobel Test Exploring Mediation via Airshed and Watershed 
Pathways from Surface Mining Operations on Birth Outcomes

 Z value Significance

M = air, X = surface mining
  Preterm birth 14.20 9.78 × 10−46***
  Low birthweight 5.66 1.53 × 10−08***
  Term low birthweight 1.12 0.261
M = water, X = surface mining
  Preterm birth 2.522 0.012*
  Low birthweight 1.158 0.247
  Term low birthweight 1.857 0.063

Significant codes: 0 = “***,” 0.001 = “**,” and 0.01 = “*.”

Table 3.

Unadjusted Model Exploring Birth Outcomes by Exposure to 
Surface Mining via Airshed and Watershed Mediation

Covariates β SE Significance

Preterm Birth
  PTB – air 0.138 0.009 <2 × 10−16***
  PTB – water 0.061 0.015 2.59 × 10−05***
Low Birthweight
  LBW – air 0.069 0.011 7.04 × 10−11***
  LBW – water 0.047 0.017 0.00473**
Term Low Birthweight
  TLBW – air 0.028 0.017 0.0928
  TLBW – water 0.069 0.026 0.00865**
Mediators
  Surface mining – air 0.228 0.002 <2 × 10−16***
  Surface mining – water 0.729 0.002 <2 × 10−16***

Significant codes: 0 = “***,” 0.001 = “**,” 0.01 = “*.”
LBW, low birthweight; PTB, preterm birth; TLBW, term low birthweight.

http://links.lww.com/EE/A185
http://links.lww.com/EE/A185
http://links.lww.com/EE/A185
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of watershed mediation was less clear among all outcomes, and 
among TLBW, evidence of mediation via either airshed or water-
shed pathways was lacking. Table 4 and Figure 4 show whether the 
effect of the independent variable was reduced after the addition of 
the mediating variables, outlining the odds ratio and 95% CIs of 
proximity to surface mining in predicting each birth outcome. Beige 
lines represent the base model (Model 0) with no mediation vari-
ables, whereas pink represents the addition of the airshed variable 

alone (Model 1), maroon represents the addition of the watershed 
variable alone (Model 2), and brown represents the addition of 
both air and watershed variables together (Model 3). Across all 
outcomes, the odds of PTB, LBW, and TLBW as explained by 
proximity to surface mining were reduced with the addition of the 
airshed mediator, either alone (Model 1) or combined (Model 3).  
Interestingly, the association between surface mining and birth out-
comes became nonsignificant among PTB and LBW in the models 

Table 4.

Selected Adjusted Model Results Exploring Birth Outcomes by Exposure to Surface Mining via Airshed and Watershed Mediation

Covariates 
Model 0 

OR (95% CI)
Model 1 

OR (95% CI)
Model 2 

OR (95% CI)
Model 3 

OR (95% CI)

Preterm Birth
  % Active mining 1.09 (1.05, 1.13) 0.69 (0.38, 1.22) 1.10 (1.04, 1.16) 0.48 (0.14, 1.58)
  Airshed exposure  1.12 (1.09, 1.15)  1.14 (1.11, 1.18)
  Watershed exposure   1.07 (1.01, 1.12) 1.38 (0.45, 4.17)
Low Birthweight
  % Active mining 1.06 (1.02, 1.11) 0.81 (0.42, 1.53) 1.06 (1.00, 1.13) 0.78 (0.20, 3.07)
  Airshed exposure  1.05 (1.01, 1.08)  1.06 (1.03, 1.10)
  Watershed exposure   0.99 (0.93, 1.06) 0.63 (0.16, 2.35)
Term Low Birthweight
  % Active mining 1.00 (0.93,1.06) 0.87 (0.28, 2.64) 0.98 (0.88, 1.09) 0.32 (0.03, 3.27)
  Airshed exposure  1.02 (0.97, 1.07)  1.00 (0.94, 1.05)
  Watershed exposure   1.04 (0.94, 1.14) 0.77 (0.10, 5.66)

Figure 4.  Odds ratios for proximity to active surface mining in predicting adverse birth outcomes. Beige represents the baseline model (no mediators); pink 
represents the addition of the airshed mediator alone to the baseline model; maroon represents the addition of the watershed mediator alone to the baseline 
model; brown represents the addition of the watershed mediator + airshed mediator to the baseline model. Dots represent point estimates of odds ratios and 
lines represent upper and lower 95% confidence intervals. Lines crossing 1 indicate nonsignificance.
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including the airshed mediator (pink/brown), but remained signifi-
cant among models with the watershed mediator alone (maroon), 
with the exception of TLBW, which was not significant regardless 
of the addition of mediators.

Discussion
Previous studies have suggested proximity to surface mining activ-
ities is associated with an increased odds of adverse health out-
comes,7 including adverse birth outcomes,22 and birth defects.17,21 
The direct and indirect causal pathways underlying these asso-
ciations; however, remain less clear.40 Here, we aimed to clarify 
these associations by exploring hypothesized mediating pathways 
linking exposure to coal mining activities and resultant birth out-
comes. Overall, we found evidence that living within airsheds of 
active surface mines is associated with higher odds of PTB and 
LBW outcomes, with airsheds mediating the effect of living in close 
proximity to surface mines on these birth outcomes. Specifically, 
the airshed pathway met all four mediation criteria (Table 1): (1) 
the airshed pathway was significantly associated with active sur-
face mining (Table 3); (2) proximity to active surface mining was 
significantly associated with both PTB and LBW outcomes in the 
absence of the airshed pathway (eTable S1; http://links.lww.com/
EE/A185 and eTable S2; http://links.lww.com/EE/A185, Model 0); 
(3) the airshed pathway significantly and uniquely was associated 
with PTB and LBW outcomes (eTable S1; http://links.lww.com/
EE/A185 and eTable S2; http://links.lww.com/EE/A185, Model 1);  
and (4) the association between proximity to active surface min-
ing sites and both PTB and LBW outcomes was reduced with the 
addition of the airshed pathway (Table 4). Evidence of mediation 
was less clear for TLBW. Although criteria 1 and 4 were met, the 
effect of proximity to active surface mining on TLBW was not 
significant to suggest an association. Although mediation was not 
clear, this outcome was strongly explained by maternal age at 
birth, race, self-reported tobacco use, payment type for birth ser-
vices, and child sex, with the highest odds of TLBW among those 
reporting tobacco use (OR: 3.06, 2.80, 3.35).

Evidence for mediation along the watershed pathway across 
outcomes was less clear. Although the watershed pathway was 
significantly associated with active surface mining, and the 
effect of surface mining on the dependent variables was gener-
ally reduced with its addition, the watershed pathway was not 
significantly and uniquely associated with the adverse birth out-
comes, as evidenced in Table 4 (Model 3). These findings are in 
line with results from the Sobel test (Table 2), which suggested 
mediation along the airshed pathway for PTB and LBW, but not 
along the watershed pathway.

These findings suggest that the most likely exposure pathway 
underlying the association between active surface mining and 
PTB and LBW outcomes likely occurs via air, potentially influ-
enced by particulate matter emissions from coal mining activi-
ties. Evidence suggested mediation via the watershed pathway 
was less likely, which is unsurprising given the pathway between 
water pollution and drinking water is more complex than expo-
sure to air pollution. For example, the majority of residents in this 
region are served by municipal drinking water, which is treated 
before distribution and consumption41; adverse changes to source 
water quality will only have an impact if these treatment systems 
fail. In addition, it is well-documented that changes in household 
water quality can alter consumption source patterns: specific to 
this region, a residential survey conducted in West Virginia found 
that perceptions of poor water quality within the area resulted 
in behavior changes among the respondents, such as consuming 
bottled water over tap water.42 Exposure to developmental tox-
icants via contamination of surface or groundwaters, therefore, 
represents a potential indirect exposure pathway, which might be 
alleviated by water treatment before reaching the household tap 
or alternative drinking water sources (e.g., bottled water).

These analyses should be considered within the context of 
their associated limitations. First, we did not directly measure 

air pollutants or water pollutants, but instead used proxy atmo-
spheric models and geological boundaries. For example, we used 
satellite imagery to designate temporal surface mining activities 
based on mine permits and barren land cover; whereas this classi-
fication likely represents active surface mining activities because 
the change in landcover due to surface mining is stark, it does 
not capture on-the-ground information about mining activities 
and air or water emissions. Using these proxies, therefore, does 
not quantify an individual’s actual exposure to air and water 
pollutants, heavy metals, etc., and future research could aim to 
better characterize individual exposure via prospective studies. 
Further, the time scale of the main exposure variable (proximity 
to active surface mining) is annual due to limitations in obtaining 
reliable imagery of surface mining activity on a monthly times-
cale.24 We calculated an airshed for each mine for every year of 
the study time period and matched the relevant year’s cumulative 
airshed frequency value to a birth record’s gestational majority 
year. Given that we had one mine boundary for each year, we 
were not able to calculate airsheds at a finer time scale than one 
year (e.g., at the gestational trimester level). Although we do not 
expect that mine boundaries shift significantly at a finer time 
scale, exploring exposure during the gestational trimester rep-
resents a promising opportunity for future study.

Second, our analyses are limited to women with an identifi-
able street address (e.g., excluding post office boxes, etc.). It was 
necessary; however, to restrict our analyses at this level to link 
individual births to surface mining airsheds and watersheds. Our 
previous analyses using ZIP code level exposures that allowed 
for the inclusion of most birth records in the dataset showed 
that ZIP code and street-level analyses provided similar results,22 
increasing our confidence that the current analysis is minimally 
biased due to this limitation. Third, our analyses rely on second-
ary data sources and are therefore limited to socioeconomic and 
demographic characteristics existing on birth records. Namely, 
tobacco use within these records was self-reported, which may 
not represent actual tobacco use in pregnancy. Further, other 
important characteristics such as illicit substance use, household 
income, etc. were not included in our analyses, as these covari-
ates did not exist on birth records, and could be a source of 
potential bias in the present analysis. However, while these non-
observed maternal characteristics could be associated both with 
mothers’ place of residence and birth outcomes, active surface 
mining is estimated yearly, such that birth outcomes from the 
same area before or after active surface mining are compared 
with births in which gestation occurs during active mining. 
Future research could incorporate additional area-level socio-
demographic characteristics within a hierarchical framework.

Conclusions
Surface mining activities have dramatically altered the Central 
Appalachia landscape, and the environmental and public health 
consequences are still being characterized. Although previous 
literature links proximity to surface mining activities and resul-
tant adverse birth outcomes, the exposure pathways underlying 
these associations remain poorly understood. Our study rep-
resents a novel mediation analysis using nearly 200,000 geolo-
cated birth records spanning four states in Central Appalachia 
from 1990 to 2015 to explore airshed and watershed exposure 
pathways as mediators of the relationship between surface min-
ing activities and adverse birth outcomes. Our findings suggest 
that the airshed pathway mediates the association between sur-
face mining activities and PTB and LBW outcomes, but evidence 
of mediation via the watershed pathway was less clear.
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