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Abstract: Recently, widespread concern has been aroused on environmentally friendly materials.
In this article, barium phytate (Pa-Ba) was prepared by the reaction of phytic acid with barium
carbonate in deionized water, which was used to blend with intumescent flame retardant (IFR)
as a flame retardant and was added to epoxy resin (EP). Afterward, the chemical structure and
thermal stability of Pa-Ba were characterized by Fourier transform infrared (FTIR) spectroscopy and
thermogravimetric analysis (TGA), respectively. On this basis, the flammability and flame retardancy
of EP composites were researched. It is shown that EP/14IFR/2Ba composite has the highest limiting
oxygen index (LOI) value of 30.7%. Moreover, the peak heat release rate (PHRR) of EP/14IFR/2Ba
decreases by 69.13% compared with pure EP. SEM and Raman spectra reveal the carbonization quality
of EP/14IFR/2Ba is better than that of other composites. The results prove that Pa-Ba can cooperate
with IFR to improve the flame retardancy of EP, reducing the addition amount of IFR in EP, thus
expanding the application range of EP. In conclusion, adding Pa-Ba to IFR is a more environmentally
friendly and efficient method compared with others.

Keywords: intumescent flame retardant; barium phytate; epoxy resin; synergistic effect

1. Introduction

In recent years, safety and environment protection requirements have become higher
and higher for many materials used in industry and daily life. Epoxy resin (EP) plays a
significant role in mechanical properties, electrical insulation, heat resistance, corrosion
resistance and so on, thus becoming one of the most indispensable resins. It is extensively
used in coatings, electronic and electrical industries, handicrafts, and photoelectric indus-
tries. However, EP is composed of chains of hydrocarbon with high flammability, which
will produce comparatively great toxicity in the process of combustion. Therefore, there is
an urgent need to improve the flame retardancy of EP [1–5].

In order to improve the flame retardancy of EP [6–9], there are several commonly
used methods, such as surface modification [10], superrefining [11–13], complex cooper-
ation [14,15], and cross-linking. A lot of research works have been carried out, and the
direct addition of flame retardants has the advantages of convenience and economy, thus
becoming the most chosen approach. Halogen flame retardant has advantages of high
flame retardant efficiency [16], low dosage and good compatibility with materials, however,
a large amount of smoke and poisonous and corrosive gases, such as dioxins, will be
produced during combustion, causing great harm to the environment. Moreover, metal
hydroxide is also an available flame retardant synergist, which is non-toxic and has good
stability, while plenty of additive amounts and poor flowability will reduce the mechanical
properties of materials. Therefore, we consider IFR as an environmentally friendly flame
retardant [17], which is halogen-free and has low smoke. The most familiar and commercial
IFR system is ammonium polyphosphate (APP) [18] and pentaerythritol (PER) [19–21], but
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its flame retardant efficiency is not high enough for EP. In order to decrease the additive
amount and improve the flame-resistant efficiency, more and more attention has been paid
to adding synergistic agents, a productive approach to improve flame retardancy.

At present, with the development trend of social environment friendliness, wide
attention has been paid to bio-based flame retardants. Some natural materials have been
used as flame retardants, such as deoxyribonucleic acid [22], gluten [23–25], starch [26], tea
saponin [27–29], chitosan [30], and phytic acid (Pa) [31–33]. Pa consists of six phosphate
groups, which is beneficial to the electrochemical stripping and makes the system have high
flame retardancy. The recent researches reveal that Pa has been used as a bio-based flame
retardant due to its biodegradability, compatibility, high phosphorus content (28 wt%)
and non-toxic properties, and is able to improve the flame retardancy of ethylene-vinyl
acetate [34], polypropylene [35–37], polylactic acid [38], cotton fabrics [39], and epoxy
resin. Jaime C.Grunlan et al. first used Pa as a flame retardant [40]. They deposited
Pa and chitosan on the surface of cotton fabrics to prepare completely renewable and
environment-friendly electrolyte films. The PHRR of the coated fabric with pH 4 decreased
by 60% by micro-combustion calorimetry. Wang et al. combined Pa with nitrogen and
silicon compounds to improve the flame retardancy of polylactic acid [28]. They deposited
nitrogen-containing silane hybrid and Pa coating on polylactic acid by layer-by-layer
self-assembly technology, which significantly improved the fire resistance. However,
the direct incorporation of Pa with acidity into EP may reduce its thermal stability and
mechanical properties.

It is widely known that metal compounds have the ability to dehydrogenate and are
excellent synergistic carbonization agents, especially barium compounds. The barium ion
has been proven to effectively promote the reaction between APP and PER and enhance
its flame retardant efficiency. Additionally, the reaction of cationic Ba2+ with the anion of
Pa may have a dual synergistic effect, thus enhancing the flame retardancy of the EP/IFR
system. It is found that even a small amount of barium compounds could markedly increase
the LOI of EP, concurrently improving the compactness of the carbon layer after combustion.
At the same time, Pa can chelate with zinc, cobalt, nickel, barium, aluminum and other
metal ions to form the corresponding compound, named phytate [41,42]. Hu et al. applied
the graphene functionalized by ferric phytate to the flame retardant study of EP [33], which
remarkably reduced the HRR of EP materials, forming a highly protective carbon layer
and relatively lowing yield of CO. Phytate, assigned to a green and environment-friendly
bio-based material and used as the antioxidant of oil, preservative of food and fruit, and
corrosion inhibitor of metal materials, can be extensively applied in food, petrochemical
and medical fields, thus having a good prospect of development and application.

Currently, there are few studies on adding more environmentally friendly phytate
as a synergistic agent in EP/IFR system, mostly adding silicon flame retardant or surface
modification. However, these are not environmentally friendly compared with phytate,
and the flame retardant effect is not efficient enough. APP in IFR system is derived from
non-renewable phosphate rock resources, and the main component of Pa-Ba is renewable
bio-based material Pa. Replacing non-renewable flame retardants with renewable flame
retardants can effectively alleviate the problem that phosphate rock resources will eventu-
ally be exhausted, which is the general trend under the current environment. In this article,
barium phytate (Pa-Ba) was prepared from phytic acid (Pa) and barium carbonate, the
synthesized Pa-Ba and IFR were then added to EP by blending to prepare EP composites.
The thermal stability was investigated by thermogravimetric analysis (TGA), and the flame
retardancy was analyzed by limiting oxygen index and cone calorimeter. Therefore, phytic
acid, a bio-based raw material with flame retardancy, was selected to combine inorganic
metal ions with a catalytic effect to prepare a synergist to improve the flame retardant
efficiency and reduce the adjunction amount of IFR in EP. This method can not only im-
prove the effect of a high content of flame retardant on EP matrix, but also become more
economical because of the reduction in the amount of APP originating from non-renewable
resources and the increase in Pa-Ba and make EP widely used in various fields.
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2. Materials and Methods
2.1. Materials

Epoxy resin (EP-51) and APP (n > 1500) were purchased from Beijing Hanlongda
Technology Development Co., Ltd. (Beijing, China). Phytic acid (70% aqueous solution)
was purchased from Chengdu Huaxia Chemical Reagent Co., Ltd. (Chengdu, China),
pentaerythritol (PER) was provided by Qingdao Keer Science and Trade Co., Ltd. (Qingdao,
China), barium carbonate was bought from Shanghai Gaoxin Chemical Glass Instrument
Co., Ltd. (Shanghai, China), and polyamide curing agent (PA651) was purchased from
Beijing Mairuida Technology Co., Ltd. (Beijing, China).

2.2. Preparation of Pa-Ba

The synthesis diagram of Pa-Ba prepared from Pa and barium carbonate is shown
in Scheme 1. First, 11.96 g (0.06 mol) BaCO3 was suspended in 100 mL deionized water
under 35 ◦C, and 9.43 g (0.01 mol) Pa (70% aqueous solution) was dissolved into 50 mL
of deionized water. After they dissolved completely, the Pa solution was placed in a
constant pressure droplet funnel, which was added to the BaCO3 suspension at the rate of
5 drops 10 s within 30 min, with mechanical stirring. The reaction was kept at a constant
temperature for 3 h, until there was no precipitation. Afterwards, the white precipitation
yielded was filtered and rinsed with deionized water no less than 5 times until PH was
equal to 7. Finally, the product was dried at 75 ◦C for 10 h, and a white powder, namely
Pa-Ba, was obtained. The yield of Pa-Ba is about 85.88%.
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Scheme 1. Synthesis route of Pa-Ba.

2.3. Preparation of EP Composites

The composition of EP is shown in Table 1. At the very beginning, EP systems were
slowly stirred for 30 min under 75 ◦C after the participation of IFR and Pa-Ba, so that the
flame retardant was uniformly dispersed in the epoxy resin. The curing agent PA651 (the
mass ratio of EP to PA651 was 3:1) was added into EP composites, stirring until the mixture
was uniform. Afterwards, the blends were dried in a vacuum oven at 100 ◦C for 3 h and
injected slowly into the mold which was preheated in 10 min and cured in a constant
temperature drying box by the curing system of 110 ◦C/3 h + 130 ◦C/3 h + 150 ◦C/2 h.
The EP composites were obtained after natural cooling.
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Table 1. The formulations of flame retarded EP.

Samples EP (wt%) Pa-Ba (wt%) IFR (wt%)

EP 100 / /
EP/16IFR a 84 / 16

EP/15IFR/1Ba 84 1 15
EP/14IFR/2Ba 84 2 14
EP/13IFR/3Ba 84 3 13
EP/12IFR/4Ba 84 4 12
EP/11IFR/5Ba 84 5 11
EP/10IFR/6Ba 84 6 10

a IFR: APP:PER = 3:1

2.4. Measurements

The FTIR was performed with the Thermo Fisher Nicolet ls10 spectrometer (Beijing
Ruili Analytical Instrument Co., Ltd., Beijing, China) by recording the frequency of 16 scans,
and the region was 400–4000 cm−1. The sample functional groups were tested by KBr
pressing method.

Thermogravimetric analysis (TGA) (Netzsch, Germany) was responded under the
heating rate of 20 ◦C/min from 40–800 ◦C in N2 atmosphere.

The LOI tests were performed on a DRK304B oxygen index tester (Kunshan Modisco
Combustion Technology Instrument Co., Ltd., Kunshan, China). The dimension of epoxy
splines was 130.0 × 6.5 × 3.0 mm3.

Based on the ISO 5660-1:2002, cone calorimeter was utilized with the heat flux
35 kW/m2, the dimension of epoxy splines was 100 × 100 × 3 mm3.

The synthesized samples and the residual chars after burning were observed by ZEISS
EV0 MA15 scanning electron microscope(Carl Zeiss, Germany).

With the laser wavelength 532 nm, the Raman spectra were recorded in the range
200–2000 cm−1 by using the Thermo Fisher Dxr2xi Confocal Raman spectrometer (REN-
ISHAW plc, Wotton-under-Edge, UK).

3. Results and Discussion
3.1. Characterization of Pa-Ba

In accordance with Scheme 1, Pa-Ba was produced. Figure 1 indicates the FTIR spectra
of Pa, BaCO3 and Pa-Ba [43]. As shown in Pa, 3416.67 cm−1 is associated with the O–H
absorption of H2O, the appearance of the O–P–O telescopic vibration is shown in 1639.30 cm−1,
and CH2 meets the conditions of characteristic vibration peak at 2846–2942 cm−1, the position
of 2820.32 cm−1 is attributable to the vibration shrinkage range of P–OH. It is found that
BaCO3 shows the absorption peak of C=O at 1447.34 cm−1, 692.28 cm−1 is the characteristic
band of barium salt. As for Pa-Ba, some characteristic peaks are observed from barium
salt and Pa, for example, the peaks at 692.28 cm−1, just as the same with BaCO3 and the
absorption for (PO3)2− at 1007.18 cm−1 shifts to 1072.20 cm−1, which means the interaction
between ions is changed. Moreover, the vibration of P–OH at 2820.32 cm−1 and the
absorption peak of C=O at 1447.34 cm−1 both disappeared. The results above suggested
that Pa-Ba was synthesized.

Barium phytate was characterized by Scanning electron microscopy (SEM) and energy-
dispersive spectroscopy (EDS) as shown in Figure 2 [44]. Figure 2a shows the SEM morphol-
ogy of Pa-Ba which has an irregular granular shape. The EDS data of Pa-Ba are depicted
in Figure 2b–e, which demonstrate the composition and distribution of main elements
in Pa-Ba. It is evident that there are four main elements oxygen (O), phosphorus (P),
carbon (C), and barium (Ba) in Pa-Ba. In addition, the four main elements are distributed
homogeneously, which further confirms that Pa-Ba was synthesized.
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3.2. Thermal Stability

To investigate the reactions among Pa-Ba, EP and IFR, their thermal decomposition
behaviors are researched using TGA in the N2 atmosphere as displayed in Figure 3. The
details are shown in Table 2.
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Table 2. TGA data of pure EP and EP composites obtained in nitrogen atmosphere.

Samples T5 wt% (◦C) T50 wt% (◦C) Tmax (◦C) Residues at 800 ◦C (wt%)

EP 372 420 414 7.25
EP/16IFR 320 372 349 23.27

EP/15IFR/1Ba 315 377 342 23.08
EP/14IFR/2Ba 313 382 347 25.90
EP/13IFR/3Ba 325 379 349 25.22
EP/12IFR/4Ba 306 376 335 24.70
EP/11IFR/5Ba 314 379 346 25.06
EP/10IFR/6Ba 318 377 345 23.50

The degradation of pure EP can be divided into the following two stages. The first
stage occurs from 350 to 500 ◦C, which is also the main thermal degradation stage of EP. The
degradation of EP can release a large amount of heat and produce CO, CO2, CH4 and other
thermal degradation gases. In the second stage, after 500 ◦C, EP continuously degrades
and carbonizes to form a carbon layer. With the addition of IFR and Pa-Ba, the carbon
layer increases ulteriorly, which can better isolate the exchange of heat and gas and prevent
combustion. Furthermore, there are some exothermic and endothermic events in TGA.
The endothermic reaction occurs when APP is heated to 300–330 ◦C, and the side-chain
structure decomposes and removes part of the amino groups to form hydroxyl groups.
The exothermic reaction occurs after the thermal decomposition of APP, which reacts with
PER to form a homogeneous carbon layer. The char formation of IFR is instrumental in
restraining the combustion of EP composites, thus improving thermal stability. In addition,
Pa-Ba reacts with IFR exothermically at 350–600 ◦C to form a more stable carbon layer.

As exhibited in Figure 3a and Table 2, the initial decomposition temperature (T5 wt%)
of pure EP occurs at 372 ◦C, and there is obvious weightlessness at 300–500 ◦C. After
adding Pa-Ba and IFR, the weightlessness stage of EP composites is identical to that of
pure EP. However, the T5 wt% of EP composites decreases in different degrees, for example,
the T5 wt% for EP/16IFR and EP/14IFR/2Ba decreases from 372 ◦C to 320 ◦C and 313 ◦C,
respectively, which reveals that IFR and Pa-Ba advance the decomposition of EP [43]. The
residue of EP/IFR with 23.27 wt% at 800 ◦C enhances remarkably in comparison with
that of pure EP with 7.25 wt%, which means that a stable carbon layer was generated by
the reaction of APP and PER. After adding Pa-Ba, the residue of EP composites increases
further, especially, EP/14IFR/2Ba composite has the highest residue of 25.90 wt%.

From the DTG curves in Figure 3b, the maximum weight loss rate and the Tmax of EP
composites both show downward trends. EP/IFR/2Ba composite has the lowest maximum
thermal decomposition rate, corresponding to a temperature of 347 ◦C, which is 67 ◦C
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lower than that of pure EP. It is proved that IFR and Pa-Ba can reduce the Tmax of EP,
generating more residues and forming more stable carbon layers.

Lower initial decomposition temperature, the reduction in the Tmax and the increase
in the residues demonstrate that Pa-Ba can be used as a carbon source, which can protect
the matrix degradation, having the effect of heat insulation and oxygen insulation, thus
producing more stable carbon layers.

3.3. Flame Retardancy

As demonstrated in Table 3, the pure EP shows high flammability when the LOI
reaches 19.1%. Obviously, the adjunction of IFR increases the LOI of EP from 19.1% to 24.3%,
which availably improves the flame retardancy of EP, revealing IFR can be considered as a
productive flame retardant. With Pa-Ba added into EP composites, the LOI values exhibit a
trend of increasing at first and then decreasing, especially, EP/14IFR/2Ba composite has
the highest LOI reaching 30.7%. The results demonstrate that Pa-Ba can increase the flame
retardant efficiency of IFR in EP, thus making EP widely used in various fields. This section
may be divided into subheadings. It should provide a concise and precise description of
the experimental results, their interpretation, as well as the experimental conclusions that
can be drawn.

Table 3. LOI values of pure EP and EP composites.

Samples Pa-Ba (wt%) LOI (%)

EP / 19.1
EP/16IFR / 24.3

EP/15IFR/1Ba 1 26.7
EP/14IFR/2Ba 2 30.7
EP/13IFR/3Ba 3 29.0
EP/12IFR/4Ba 4 28.6
EP/11IFR/5Ba 5 27.5
EP/10IFR/6Ba 6 26.8

Cone calorimeter test (CCT) is adopted to test the flammability of polymer materials,
the combustion behavior in a fire can be assessed in accordance with the experimental
data [41]. There are many combustion parameters of combustible materials obtained by
CCT in a fire. The flame retardancy in an actual fire can be evaluated by heat release rate
(HRR), peak heat release rate (PHRR), and total heat release (THR). Meanwhile, the smoke
suppression properties can be estimated by smoke production rate (SPR), peak smoke
production rate (PSPR), total smoke production (TSP).

Curves of HRR and THR are displayed in Figures 4 and 5, respectively. It can be
recognized that pure EP has high flammability, showing the HRR is a single peak and
changes rapidly over time, and the PHRR is as high as 794.09 kW/m2. The HRR curves
of EP composites are analogous to those of pure EP. The addition of IFR slows down
the heat release and decreases the PHRR value. After the addition of Pa-Ba, the value
of PHRR decreases further, especially, the PHRR of EP/14IFR/2Ba reduces to the lowest
level of 245.15 kW/m2, a decrease of 548.94 kW/m2, which is only 30.87% of that of pure
EP. As displayed in Figure 5, pure EP has a THR of 95.45 MJ/m2. The THR of EP/IFR
is remarkably lowered, which attains to 41.18 MJ/m2. After adding Pa-Ba, the value of
THR decreases further, especially, the THR of EP/14IFR/2Ba drops to the lowest level of
27.16 MJ/m2, a decrease of 68.29 MJ/m2, which is only 28.45% of that of pure EP. From the
HRR and THR curves, the addition of IFR and Pa-Ba can effectively reduce the PHRR and
THR values, which attests that the flame retardancy of EP was improved [45].
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Curves of SPR and TSP are exhibited in Figures 6 and 7, respectively. As shown in
Figure 6, the PSPR value of pure EP is 0.255 m2/s, which is much higher than that of EP
composites. The addition of IFR and Pa-Ba slows down the smoke production of EP and
decreases the PSPR value, especially, the PSPR of EP/14IFR/2Ba reduces to the lowest
level of 0.109 m2/s, a decrease of 0.146 m2/s. From Figure 7, the TSP of EP composites
decreases remarkably. Pure EP can produce smoke constantly and promptly, and the TSP is
as high as 28.62 m2/m2. After adding IFR and Pa-Ba, the TSP of EP composites decreases
dramatically, especially EP/14IFR/2Ba, the TSP value cuts down to the lowest level, which
is only 6.48 m2/m2, a decrease of 22.14 m2/m2. From the SPR and TSP curves, the addition
of IFR and Pa-Ba can availably decrease the SPR and TSP values and the total smoke
volume of materials, which proves that EP composites have excellent smoke suppression
performance. All these indicate that in the process of combustion, the existence of Pa-Ba
can promote the cross-linking of IFR into carbon more efficiently, and the formed carbon
layer can be used as an obstacle to block the transmission of heat and combustible gas, thus
playing a better role of flame retardant.
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3.4. Residual Char

Consecutive and dense residual char can have the effect of heat insulation and oxygen
insulation, thus forestalling secondary combustion of the EP matrix. Figure 8 displays the
digital photos of EP, EP/16IFR and EP/14IFR/2Ba after CCT. It is shown that pure EP is
nearly burnt out and rarely produces residual char. Moreover, EP/16IFR has generated an
expanded carbon layer, which is not compact enough and has a relatively low expansion
height of 3.8 cm. However, the carbon layer generated by EP/14IFR/2Ba with the expansion
height of 5.0 cm is relatively dense and consecutive, which means that the carbonization
quality of EP/14IFR/2Ba is better than that of EP/16IFR.
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Figure 8. Digital photos of EP, EP/16IFR and EP/14IFR/2Ba after cone calorimeter testing.

Furthermore, the SEM of char residues is shown in Figure 9. For pure EP, although the
surface is relatively smooth, numerous pores and cracks were found on the discontiguous
residual char surface, making it impossible to delay the combustion of the underlying
EP. In contrast, the continuance of the carbon layer of EP/16IFR is remarkably improved,
with few pores produced and a compact and continuous carbon layer. Compared with
EP/16IFR and pure EP, the addition of Pa-Ba forms a denser wrinkled carbon layer, which
can be considered as a more effective protective barrier, not only to prevent molten droplets
and the escape of combustible gas, but also have great effects on heat insulation and
oxygen insulation.
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The residual chars after cone calorimeter testing are further researched as demon-
strated in Figure 10. Based on the Raman spectra, we analyzed the characteristic peak
of D-band and G-band in graphite, which appeared at 1348 and 1590 cm−1 in turn [46].
The D-band mainly corresponds to the defect of the graphitized layer, while the G-band
is mainly equivalent to the ordered graphite layer. The ratio of R intensity of the D band
to the G band (ID/IG) reflects the graphitization degree. Moreover, ID/IG is inversely pro-
portional to graphitization degree. The R values of pure EP, EP/16IFR and EP/14IFR/2Ba
are 3.93, 3.52 and 3.15, respectively, indicating that the R value of EP/16IFR is lower and
the degree of graphitization is higher compared with pure EP. After adding Pa-Ba, the R
value decreases further, which means that the graphitization degree of the carbon layer
is higher than that of EP/16IFR. Therefore, the carbon layer formed by EP/14IFR/2Ba
after combustion is more orderly and dense, and its quality is better than that of the other
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two materials, which can be conducive to preventing the formation of cracks during and
after combustion.
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Curves of the FTIR spectra of residual chars are exhibited in Figure 11. As shown in
EP/16IFR, 3462.01 cm−1 is associated with the O–H absorption, the appearance of the C–H
telescopic vibration is shown in 2933.42 and 2863.26 cm−1, C=C meets the conditions of
characteristic vibration peak at 1637.82 cm−1, the position of 1401.27 cm−1 is attributable
to C–N stretching and N–H bending vibration absorption peak, and 1085.91 cm−1 is the
characteristic band of P=O. It can be recognized from EP/14IFR/2Ba that there is no
obvious difference between the two FTIR curves, demonstrating that the addition of Pa-Ba
does not change the degradation products, only accelerating or delaying the reactions.
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4. Conclusions

Barium phytate (Pa-Ba) was prepared from phytic acid and barium carbonate and
characterized by FTIR and SEM. EP composites were produced by the addition of the
synthesized Pa-Ba and IFR. The thermal stability was studied by TGA. EP/14IFR/2Ba has
the highest residue of 25.90 wt%, which is much higher compared with pure EP (7.25 wt%).
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Afterwards, the flame retardancy was analyzed by LOI and CCT. The results show that
Pa-Ba can cooperate with IFR to flame retardant EP, and EP/14IFR/2Ba has the highest
LOI value of 30.7%. The PHRR value of EP/14IFR/2Ba decreases dramatically, from
794.09 kW/m2 to 245.15 kW/m2; meanwhile, the PSPR value reduces from 0.255 m2/s to
0.109 m2/s. From the residue char of EP composites after combustion, the expanded carbon
layer generated by EP/14IFR/2Ba is dense and continuous, with a height of 5.0 cm. SEM
and Raman spectroscopy were adopted to investigate the residue char further. They reveal
that the carbonization quality of EP/14IFR/2Ba is better than that of other composites,
which is conducive to preventing the formation of cracks during and after combustion.

The results demonstrate that Pa-Ba can be used as a carbon source, which can protect
matrix degradation, prevent the escape of combustible gas, and have significant effects on
heat insulation and oxygen insulation, thus forming more stable carbon layers. Meanwhile,
Pa-Ba can improve the flame retardant efficiency of IFR in EP and reduce the total smoke
volume of materials, so as to cooperate with IFR to improve the thermal stability, flame
retardancy and smoke suppression performance of EP, thus playing a better role in reducing
the probability of fire as well as expanding the applicable scope of EP.
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