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Despite multiple therapeutic approaches, the presence of liver metastases carries a
guarded prognosis, urgently necessitating further clinical and scientific research to
develop curative interventions. The liver is an immunoprivileged organ that suppresses
the effectiveness of immunotherapies in patients with hepatic metastases. Cancer
immunotherapies have been successfully bolstered by low-dose radiotherapy (LDRT),
which is capable of reprogramming the tumor microenvironment (TME) from an
immunosuppressive to an immunostimulatory one. Likewise, LDRT may be able to
revoke the immune privi lege enjoyed by the l iver, permitt ing successful
immunotherapies there. Here, we first review challenges that face the treatment of liver
metastases. We next outline emerging preclinical and clinical evidence supporting
enhanced systemic tumor control of LDRT in the context of cancer immunotherapy.
Finally, we will discuss the rationale of combining liver-directed LDRT with
immunostimulatory strategies to overcome immune resistance and achieve better
clinical response. This notion is supported by a recent case study in which a patient
who had progressed following T cell therapy experienced a complete response after
LDRT to the liver.

Keywords: low dose radiation, radiotherapy, immunotherapy, liver cancer, stroma
INTRODUCTION

Most cancers in the liver develop from colonizing metastases, rather than primary malignancies. Up
to 50% of patients with various cancer diagnoses develop liver metastasis during the course of their
disease (1). This is partly because the liver is associated with a unique “dual vascular supply”,
comprising venous supply from abdominal tissue, as well as systemic arterial supply originating
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from extra-abdominal tissues. Of the numerous possible
locations throughout the body for cancer to metastasize, it has
been estimated that the liver accounts for roughly a quarter (2).
Indeed, liver metastases are common for multiple solid tumors,
and rates of liver metastases can vary from one tumor to another.
For example, rates of liver metastases are high for uveal
melanoma (~50%) (3, 4), colorectal cancer (30-50%),
pancreatic adenocarcinoma (30-40%), and neuroendocrine
tumors (20-46%); whereas cutaneous melanoma (10-20%),
lung (4-17%), breast (6-38%), and gastrointestinal stromal
tumors (5-40%) (1, 5) have more variable and generally lower
rates of liver metastases.

A multitude of therapeutic approaches have been levied in
attempt to improve the outcomes of liver metastasis patients.
Recently, several preclinical and clinical studies (6–11) reported
the outstanding safety, efficacy, and/or relating mechanisms of a
novel non-ablative treatment termed low-dose radiotherapy
(LDRT), which is defined as radiotherapy of 0.5-2 Gray (Gy)
per fraction for up to 1-10 Gy total. These promising findings
provide the rationale for the development of LDRT as a potential
treatment alternative for patients with liver metastases.
CLINICAL TREATMENT OF LIVER
METASTASES

In an effort to address multiple ongoing questions regarding
therapy for liver metastases, we have summarized the results of a
systematic search of clinicaltrials.gov for enrolling randomized
trials for patients with liver metastases (Supplementary Table 1).
For oligometastases in the liver (up to 3 lesions) (12), others have
also evaluated a variety of local therapy options (1, 13, 14). These
include but are not limited to: surgical resection; embolization by
means of chemotherapy (e.g. trans-arterial chemoembolization
[TACE]) or radionuclides (e.g. yttrium-90); hepatic artery
chemotherapy infusion; immune embolization techniques;
fractionated or stereotactic external beam radiotherapy (SBRT);
or other ablative procedures (e.g. radiofrequency, microwave, or
cryoablation). However, once the cancer reaches a polymetastatic
state, such aggressive local therapeutic techniques can no longer
be employed due to the damage they cause to the liver at that
scale. Whole-liver RT or partial-liver RT has been shown to
effectively palliate such patients, thereby improving quality of life
(15–17), but may often lead to radiation-induced liver disease
and may generate an unfurling hydra of complications that are
difficult to manage (18).

Although checkpoint inhibition (CPI), adoptive cell therapy
(ACT), and other immunotherapies have shown significant
clinical benefit in patients with extrahepatic tumors, patients
with metastases to the liver had been historically identified to
respond poorly to immunotherapy (19, 20). For example, a sub-
analysis of two phase-III trials, demonstrated decreased overall
survival (OS) in non-small cell lung cancer (NSCLC) patients
with liver metastases treated with nivolumab compared to the
overall pooled population treated with nivolumab (3-year OS:
17% vs. 8%; median OS: 11.1 vs. 6.8 months, respectively) (21).
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In a phase-II trial conducted at MD Anderson Cancer Center, we
found that response rates in non-irradiated tumors were 31% for
lung versus 14% for liver metastases (P<0.061) (22). Similarly,
an unpublished post-hoc analysis of a randomized phase II
trial (23) showed that patients with liver metastases had
significantly worse clinical response rates to treatment (either
pembrolizumab alone or pembrolizumab + RT) than patients
without liver metastases (Supplementary Figure 1).

Collectively, liver metastasis bodes poorly for patient survival
or treatment response. Existing therapeutic regiments have
proven ineffective, and new strategies are therefore needed to
improve antitumor immunity and increase response rates in
patients with liver metastases.
LOW-DOSE RADIOTHERAPY (LDRT)

Similar to immune-oncology agents, LDRT is capable of
reprogramming the tumor microenvironment (TME),
facilitating the infiltration of effector immune cells, and
modulating the stroma in favor of tumor eradication. This has
been borne out by a growing number of studies over the past
decade, prompting much interest in the increasingly evident
benefits of LDRT in the context of cancer immunotherapy (6–11,
24). Early evidence in a mouse model of localized
neuroendocrine pancreatic tumors suggested that LDRT can
remodel the TME in a variety of ways. LDRT has been shown
to induce M1 macrophage polarization, leading to the
production of cytokines/chemokines, such as IL-12, IFNg, and
RANTES. These attracted effector T cells and induced
normalization of the tumor vasculature (24).

Our recent work builds upon the work of Klug and colleagues,
confirming that LDRT polarizes pro-tumor M2-macrophages to
the antitumor M1-phenotype, enhances the infiltration of CD4+

T cells and NK cells, and downregulates TGF-b inhibitory
cytokine (6). In another study, we conducted proteomic
analysis to evaluate the upregulation of TME-specific cytokines
and stimulatory factors following LDRT. We found upregulation
of Granzyme B, MIP1a, and CD137 (4-1BB) in tumor-
infiltrating CD4+ T cells, indicating activation and effector
functions (11). LDRT further augmented the efficacy of CPIs
such as anti-CTLA-4 and anti-PD1 in murine lung
adenocarcinoma models, as evidenced by reduced tumor
growth and significantly prolonged survival.

Another advantage of LDRT is that it can readily be paired with
more conventional high-dose radiotherapy (HDRT). HDRT can be
directed toaprimary tumor to releaseneoantigens andprimeTcells
(25), while LDRT can be administered to secondary metastatic
lesions to modulate their stroma and create a welcoming
environment for the responding T cells and NK cells, a novel
combinatorial modality that we call the RadScopal™ technique (6).
The efficacy of this technique is illustrated in another preclinical
study, wherein a single-dose of HDRT (22 Gy), followed by four
daily LD fractions (4 × 0.5 Gy), so called “postablation modulation
(PAM)”, improved both local tumor control and remote lung
metastases by reducing Tregs and M2 macrophages, hence
December 2021 | Volume 12 | Article 812210
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enabling the infiltration of effector T cells into lung and breast
carcinomas (8). Of note, this novel non-ablative regimen is safe and
comesatminimal additional cost to that incurredbyHDRT(9).The
safety and efficacy of RadScopal™ treatment has been further
validated by our recently published phase II trial of HDRT – with
or without LDRT – for metastatic disease after progression on
immunotherapy (9). This study showed that RadScopal™ therapy
increased the response rate to 55%, compared to an 11% abscopal
(HDRTalone) response rate,without added toxicity (3%RadScopal
vs. 5% HDRT, grade ≥3 toxicity); while the RadScopal™ response
rate for checkpoint-resistant liver lesionswas even higher at 71%by
our (unpublished) post-hoc analysis.

Recently, a randomized phase II trial of combined PD-L1 and
CTLA-4 inhibitors with targeted LDRT (0.5 Gy per fraction) or
hypofractionated radiation (HFRT, 3 fractions of 24 Gy) in
patients with metastatic colorectal cancer revealed that both
LDRT and HFRT impacted the local immune microenvironment
and systemic immunogenicity (10). Once again, LDRT was found
to increase the M1-to-M2 macrophage ratio and was associated
with increased CD8+ T cell infiltration. Notably, the favorable
enhanced M1/M2 ratio was not found in HFRT patients,
illustrating the unique value of LDRT (10). Another elegant
study by Herrera and colleagues confirmed our findings and
supported the rationale for the combination of LDRT with
immunotherapy in metastatic ovarian cancer. In this phase I
clinical trial, LDRT paired with immunotherapy promoted CD4+

T cell infiltration, induced de novo inflammation, and promoted
tumor regression in an IFNg-dependent manner (7), thus
supporting the rationale for combining LDRT with
immunotherapy in tumors with low T cell infiltration.
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LOW-DOSE RADIOTHERAPY (LDRT) FOR
LIVER METASTASES

The liver is an immune-privileged site, in that it can tolerate
foreign antigens without invoking acute inflammatory responses
(26). This immune quiescence makes the liver fertile soil for
metastatic seeds to take root. Once embedded, tumors begin
“terraforming” the liver, making it even more hospitable for
them. Crosstalk between tumor and hepatic cells drives fibrosis
through pro-fibrogenic interleukins production (IL-6, IL-8),
integrin expression, and collagen deposition, which, together,
enshroud the tumor in a stiff, protective barrier that shields it
from immune surveillance and clearance (27–31). An overview
of the immunostimulatory and inhibitory factors that drive
outcomes in the hepatic TME is depicted in Figure 1.
Specifically, the crosstalk between the hepatic and metastatic
environments without LDRT (Left portion) and with LDRT
(Right portion) is illustrated.

Other liver-resident cells such as Kupffer cells (KCs), hepatic
stellate cells (HSCs), monocytic myeloid-derived suppressor cells
(mMDSCs), and liver sinusoidal endothelial cells (LSECs) also
contribute to T cell inactivation in the liver, as they secrete IL-10
and TGF-b that neutralize T cells and NK cells, promote T
regulatory cells (Tregs), and polarize macrophages to pro-
tumorigenic M2 phenotype (1). KCs are resident phagocytes of
the liver that help protect and clear the liver of bacterial
infections (32). However, in the presence of cancer, KCs may
help shuttle tumor cells from circulation into the liver (1). The
normally quiescent HSCs can be activated by KC factors such as
TGF-b (1). Hepatocytes, LSECs, KCs, HSCs and dendritic cells
FIGURE 1 | Reprogramming the tumor stroma by LDRT in liver metastases. (Left) The efficacy of immunotherapy is limited by unfavorable conditions in liver
metastatic tumors such as a dense stroma, a low ratio of M1-to-M2 macrophages, increased TGF-b, vascular endothelial growth factor (VEGF) and cancer
associated fibroblasts (CAFs). Liver resident cells, Kupffer cells, monocytic myeloid-derived suppressor cells (mMDSCs), and hepatic stellate cells (HSCs) promote
Treg expansion through IL-10 and TGF-b release. (Right) Effect of low-dose radiotherapy (LDRT) on the immunosuppressive tumor microenvironment. LDRT
repolarizes macrophages, decreases CAFs, and reduces TGF-b and VEGF. T cells and NK cells infiltrate the tumor through the disrupted stroma and receive positive
stimulation from M1 macrophages.
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can present antigens to recruited cells. However, antigen
presentation by these cells can preferentially lead to immune
tolerance rather than activation via expression of PD-L1 and
engagement of PD1 on T cells, leading to T cell exhaustion and
yet more production of immunosuppressive molecules such as
IL-10 or TGF-b (1, 26, 33, 34). The direct impact of LDRT on
KCs warrants further investigation.

TGF-b induces M2 macrophage polarization and production
of vascular endothelial growth factor (VEGF) to promote tumor
angiogenesis (1). Macrophages play a substantial role in driving
tumor outcomes. Stromal macrophages limit CD8+ T cell
infiltration and migration (35). Recently, it was reported that
liver metastases can recruit immunosuppressive macrophages
that actively promote apoptosis in antigen-specific T cells,
further raising their profile as potential therapeutic targets
(36). Accordingly, the same study found that liver-directed RT
(8 Gy/1 fraction) decreased intrahepatic myeloid cells, coinciding
with reduced CD8+ T cell apoptosis. This, when paired with anti-
PD-L1, increased IFNg production, CD4+ and CD8+ T cell
proliferation, tumor regression, and overall survival.

As discussed above, homing of effector immunocytes such as
T cells and NK cells to the tumor is increased following LDRT
(6). This may partly result from the observed reduction in
cancer-associated fibroblasts (CAFs) after LDRT (by >50%)
(37). LDRT, by breaking the stroma barrier and modulating
the TME, can enhance effector T cells activity and persistence
that is required for successful CPI and ACT. A recent study
showed that the activation of NK cells can be suppressed by
HSCs (38). Thus, an NK cell-stimulating treatment such as IL-15
may further augment the antitumor effect of LDRT to liver
metastases. Preliminary post-hoc analysis of our ongoing Phase-
II trial (NCT02710253) (9), showed a lesion-specific response
rate after LDRT that was higher for liver metastases (71%, n=7)
compared to lung metastases (29% in lung, n=17).
Frontiers in Immunology | www.frontiersin.org 4
We recently reported a representative case to illustrate these
observations (11). The patient in the study presented with
stage-IV melanoma with multiple metastases in liver, lung,
bone and brain, which had progressed 3 months after T cell
therapy and 1 month after resuming ipilimumab + nivolumab
(Figure 2A). He received 4 fractions of 12.5 Gy (50 Gy in total)
to a lung lesion, and 4 fractions of 1.4 Gy (totaling 5.6 Gy) to
nearly the entire liver (Figure 2B). Four-months later, the
patient achieved a partial response in liver. No changes in
liver function or hepatic/pulmonary toxicity were noted. Two
years after liver radiation treatment, the patient has no evidence
of disease, with a durable and complete response for the liver
metastases (Figure 2C).
CONCLUSION AND FUTURE DIRECTIONS

Pre-clinical and clinical data indicate that the immune
suppressive environment in the liver is a major contributor for
the lack of response of liver metastases to immunotherapy.
Evidence from animal models and in patients with liver
metastases support the notion that liver-directed LDRT could
convert this environment into an immune-active state by
reprogramming the stroma, which subsequently translates into
improved responses to CPI. Another potential use of LDRT in
liver metastasis disease is the combination with adoptive cell
therapy (ACT), such as chimeric antigen receptor T-cell therapy
(CAR-T) and engineered T-cell receptor therapy (TCR-T). One
hurdle that ACT currently faces is the inhibitory stroma of solid
tumors that is rich with immunosuppressive M2 macrophages,
TGF-b and CAFs, which together limit cell-therapy infiltration
and efficacy. Local delivery of LDRT could induce a higher M1/
M2 ratio, decrease TGF-b and reduce CAFs, which results in
enhanced T cell penetration and antitumor activity (37). Our
A

B

C

FIGURE 2 | Complete Response with LDRT to Liver metastases. (A) CT scanning (9/4/2019) before LDRT showed multiple liver metastases. (B) The patient
received 50 Gy/4 fractions to a lung lesion and 5.6 Gy/4 fractions to nearly the entire liver from 10/8/2019 to 10/11/2019. (C) 19 months after LDRT, CT scans (4/
19/2020) showed a complete response in the liver.
December 2021 | Volume 12 | Article 812210
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ongoing preclinical studies (LDRT in combination with an anti-
EGFR CAR-T) and clinical trial (NCT03132922) support the
safety and antitumor potency of LDRT plus ACT in multiple
solid tumors. More experimental studies based on liver
metastatic models are needed to disclose liver-specific
mechanisms of LDRT, and randomized clinical trials are
required to support this novel strategy to get into common
clinic applications.
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