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ABSTRACT: Models of gene expression considering host−circuit
interactions are relevant for understanding both the strategies and
associated trade-offs that cell endogenous genes have evolved and
for the efficient design of heterologous protein expression systems
and synthetic genetic circuits. Here, we consider a small-size model
of gene expression dynamics in bacterial cells accounting for host−
circuit interactions due to limited cellular resources. We define the
cellular resources recruitment strength as a key functional
coefficient that explains the distribution of resources among the
host and the genes of interest and the relationship between the
usage of resources and cell growth. This functional coefficient
explicitly takes into account lab-accessible gene expression
characteristics, such as promoter and ribosome binding site
(RBS) strengths, capturing their interplay with the growth-dependent flux of available free cell resources. Despite its simplicity,
the model captures the differential role of promoter and RBS strengths in the distribution of protein mass fractions as a function of
growth rate and the optimal protein synthesis rate with remarkable fit to the experimental data from the literature for Escherichia coli.
This allows us to explain why endogenous genes have evolved different strategies in the expression space and also makes the model
suitable for model-based design of exogenous synthetic gene expression systems with desired characteristics.
KEYWORDS: gene expression, burden, resources allocation, growth rate, RBS strength, promoter strength, protein synthesis mass fractions

1. INTRODUCTION

The interrelations among the cell environment from which the
cell uptakes substrates, its metabolism, and the engagement of
cell resources needed for gene expression result in host−circuit
interactions between gene circuits and their cell host. These
interactions induce competition for common shared cell
resources affecting gene expression and cell growth.
Endogenous genes have evolved different strategies to deal
with the problem of optimal protein expression under different
needs and cell conditions.1 As for exogenous genes, one of the
fundamental problems in the rational design of synthetic
genetic circuits of increasing complexity, partly explaining the
current disparity between the ability to design biological
systems their actual experimental performance, is the lack of
systematic design methods considering the host−circuit
interaction.2 Cells have reached an optimal use of their
resources during evolution. The overexpression of exogenous
genes by a genetically modified microorganism as well as the
production of metabolites by the addition and/or modification
of their metabolic pathways introduce a metabolic load that
takes the microorganism off its natural state.3 The resulting
competition for common shared cell resources affects cell
growth and introduces spurious dynamics,4 leading to
problems of malfunctioning of the synthetic circuit. It also

triggers its elimination by evolutionary mechanisms trying to
restore the natural optimal state.5

Mathematical models of gene expression accounting for
cellular resources competition can be used to decipher the
mechanisms underneath gene expression strategies that have
evolved to optimize different criteria. This is not only useful to
understand natural systems but also addresses the rational
design of synthetic genetic circuits. Therefore, in the last years,
there has been an increasing interest in the development of
models and methods for model-based design of synthetic gene
circuits considering host−circuit interactions.6
The simplest burden-aware models deal with the inter-

actions among genes in a gene network and consider shared
cell resources as an external source, without considering the
host behavior. This approach has proved very useful to deal
with the so-called retroactivity,7 the loading interaction among
circuit modules and host originated from mass exchange.
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Retroactivity poses problems when predicting the behavior of a
large network from that of the composing modules. It is a
problem analogous to modeling the coupling between
electrical circuits connected to a real energy source. Thus,
the models accounting for it somewhat resemble Ohm’s law.4,8

As these models do not explicitly consider the host behavior,
they cannot be easily used within a multiscale framework
integrating synthetic circuits of interest, host, and cell
environment at the macroscopic level.
Alternatively, one may develop models relating substrates

uptake, cell growth rate, and availability of free resources as a
function of the gene circuits demand. These range from very
coarse-grain ones9−12 to semimechanistic ones with varied
degrees of granularity.13−15 In this last case, the interplay
between circuit, host, and environment can be directly
incorporated into the circuit model of interest to capture the
impact of cellular trade-offs and resource competition on the
circuit function.
The construction of a large-scale mechanistic model of

Escherichia coli has enabled us to integrate and cross-evaluate a
massive, heterogeneous dataset integrating measurements
reported by various groups over decades.15 On the other
hand, medium-size detailed mechanistic models like the one
developed in Weiße et al.13 have been used to study behavioral
modulations of a gene switch16 or a feed-forward circuit.17,18

These medium- and large-scale models, though very useful, are
most often overparametrized and cannot easily be integrated
within a user-friendly and lightweight computational frame-
work for model-based circuit design.
The small-size model presented here has enough granularity

to provide good predictions of the host dynamics, the

expression of the genes of interest, and their interactions
while having a small number of parameters to be estimated. We
derived the dynamics of gene expression as a function of the
fraction of free ribosomes relative to available mature ones
considering protein synthesis on polyribosomes. We also
defined the gene resources recruitment strength (RRS) as the
key functional coefficient that allowed us to explain the
distribution of resources among the host and the genes of
interest and the relationship between the use of resources and
cell growth. An additional goal was to provide a model useful
for model-based circuit design purposes. To this end, the
model considers explicitly lab-accessible gene expression
characteristics such as promoter and ribosome binding site
(RBS) strengths. We derived the equivalence between the
relative resources recruitment strength and the relative mass
fraction of a given protein at steady state. From this
equivalence, the protein synthesis rate can be easily evaluated
using the average host dynamics at steady state. We used
experimental data from the literature to estimate the average
resources recruitment strength for both ribosomal and
nonribosomal proteins in E. coli. This allowed us to evaluate
how the sensitivity of the resources recruitment strength to
RBS and promoter can explain the variation of the cell protein
mass fractions with growth rate and the differential roles they
play. These data also can show how host−circuit interaction
shapes the optimal abundance rates of both endogenous and
exogenous proteins in the expression space.

2. RESULTS

2.1. Burden-Aware Model of Gene Expression
Dynamics. Our model considers, on the one hand, the

Figure 1. (A, C) Schematic view of the partitioned use of cell resources (ribosomes) to synthesize both ribosomal and nonribosomal proteins. The
ribosomal proteins generate functional ribosome molecules to serve as the fundamental resource for protein synthesis. The resources recruitment
strength (RRS) coefficient explains how the cell resources are allocated among the host endogenous genes (A) and both endogenous and
exogenous genes of interest (C) (e.g., exogenous protein(s) expressed by a synthetic genetic circuit). (B) Resource allocation in a host cell in terms
of the fractions of cell dry weight for the ribosomal proteins, nonribosomal ones, and other components. The pie charts represent different
resources allocation scenarios, with increasing growth rates when the available substrate is increasing in the x-axis, and the resulting cell dry weight
in the y-axis. (D) Resource allocation for a host cell expressing an exogenous protein. Two strategies were used for expressing the exogenous
protein: strong promoter with weak RBS and weak promoter with strong RBS. The pie charts show the resource allocation distribution for both
strategies (cell dry weight in the y-axis) for different growth rates (x-axis) caused when the availability of substrate is increased. Both strategies start
from the same mass distribution at 0.5 doublings·h−1 (they share the same pie chart). The substrate was increased in the same quantity for both
strategies. The arrows point to the resulting mass distribution pie chart for each strategy.
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dynamics of the expression of the cell host endogenous
protein-coding genes. These are the genes that contribute to
cell growth (Figure 1A). On the other hand, the model allows
the possibility of considering the expression of protein-coding
exogenous genes (Figure 1C). These do contribute to cell
mass, but not to cell growth, akin to the consideration of
unproductive proteins used in ref 9.
We started by modeling the polysomic gene expression

dynamics for a generic kth protein-coding gene in prokaryote
cells. We considered that transcription is faster than translation
so it can be assumed at steady state, and that ribosomes are the
limiting shared resource required for protein expression (see
Section SI.1, Supporting Information (SI)). Under these
assumptions, we derived the dynamics for the number of
molecules of a kth protein as

p
s

l
J r r d p

( )
( , ) ( )k

pk
k k k

t iν
μ μ̇ = − +

(1)

where pk is the number of copies of the kth protein, lpk is the
protein length expressed as equivalent number of amino acids,
dk is the protein degradation rate constant, μ is the cell specific
growth rate, r is the number of free ribosomes, and νt(si) is the
substrate-dependent effective peptide chain elongation rate.
This one is expressed using the Michaelis−Menten expression

s
s

K s
( )t i

i

sc i
ν ν=

+ (2)

where ν is the maximum attainable peptide synthesis rate and
Ksc is a Michaelis−Menten parameter related to the cell
substrate uptake and catabolic capacity. As a first approx-
imation, we considered that ν is organism-dependent but does
not depend on the sequence of nucleotides (i.e., on the
particular gene being expressed) and Ksc is organism- and
substrate-dependent but does not depend on the nucleotides
sequence either.
The term Jk(μ, r), defined as the resources recruitment

strength (RRS), is a dimensionless function of the growth rate
μ and the number of free mature ribosomes r that quantifies
the capacity of a kth gene to engage cellular resources to get
expressed (Figure 1A). It is the key functional coefficient in
our model that explains the distribution of resources among
the host and the genes of interest and the relationship between
the usage of resources and cell growth (see its derivation in
Section SI.1, SI). Besides depending on the cell growth rate
and the availability of cell resources, the RRS is a function of
the promoter and RBS strengths. For a generic protein-coding
gene, its RRS is defined as

J r E l l T
r

( , ) ( , ) ( )
1

k mk pk k d
K

e f
mk
k
C0

μ ω
μ

≜
+

(3)

On the one hand, the resources recruitment strength Jk(μ, r)
depends on the availability of cell resources: the flux of free
ribosomes μr and the ribosomes density-related term
Emk(lpk,le). This one is obtained (see Section SI.1, SI) as
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where 1/le is the specific ribosomes density, with le expressed
as equivalent number of codons. The ribosomes density can be
estimated as an inversely log-linear function of the protein

length lpk (see eq S92 in Section SI.13, SI). Interestingly, Emk
can accurately be approximated as Emk(lpk,le) ≈ 0.62lpk/le (i.e., a
linear function of the number of ribosomes elongating along
the transcript) for a wide range of values of lpk and le (see
Figure SI.2).
On the other hand, the RRS Jk(μ, r) also depends on gene

expression characteristics: mRNA transcription rate ωk(Tf) or
the promoter strength, mRNA degradation rate constant dmk
and the effective ribosome binding site (RBS) strength KC0

k (si).
This one is defined as

K s
K

K K s
( )

( )
k

k

kC i
b

u e i
0 ≜
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where Kb
k and Ku

k are, respectively, the association and
dissociation rate constants between a free ribosome and the
RBS, and Ke(si) = νt(si)/le is the translation initiation rate
constant, which depends on the availability of intracellular
substrate (see Section SI.1 for details).
The resources recruitment strength of a given protein-

coding gene can be related with its translation rate and number
of transcripts. Consider the standard dynamic model for the
expression of a protein p19

p
d

pp m

m

β β
μ̇ = −

(6)

where βm (mRNA/t) is the transcription rate, βp (protein/
(mRNA·t)) is the translation one, and dm is the mRNA
degradation rate constant. Comparing with eq 1, we derived
the relationship

J
l

s d r( )
1

k
pk

t i

p m

mν

β β
=

(7)

The expression eq 7 allows us to calculate the theoretical
maximum RRS, Jk|r=1, from the available experimental data (see
Section SI.12, SI).
The dynamics of the total number of ribosomes can be

obtained by considering an analogous expression to eq 1 for
each of the Nr proteins forming up a ribosome (see Section
SI.2, SI). The total number of ribosomes in the cell at any one
time instant, rT, is the sum of the mature (ra) and inmature (ri)
ones. In turn, the mature ribosomes ra available for translation
comprise the free ribosomes r and the ones already bound
either to the RBSs or elongating along the transcripts. The
number of available mature ribosomes is a fraction of the total
number of ribosomes so that ra = ΦmrT. We assumed the
fraction Φm varies little in time (see Section SI.2, SI) so that
the dynamics of the total number of ribosomes and that of the
number of available ribosomes are the same but for a scale
factor. Without loss of generality, we considered average
protein-coding endogenous genes with RRSs Jr and Jnr,
respectively. This allowed us to obtain the relationship
between free and total number of ribosomes (see Section
SI.3, SI) as

r
r

r1 WSum( , )
a

μ
=

+ (8)

with

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00131
ACS Synth. Biol. 2021, 10, 3290−3303

3292

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00131/suppl_file/sb1c00131_si_001.pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00131?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÄ

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

r N
E

J r N
E

J r
E l l

J r

WSum( , ) 1
1

( , ) 1
1

( , ) 1
1

( , )
( , )

k

N

mk pk
k

r
mr

r nr
mnr

nr
1 e

exo

∑

μ μ

μ μ

= + + +

+ +
=

where Nr and Nnr are the number of ribosomal and
nonribosomal protein-coding endogenous genes, respectively,
and Nexo allows for the existence of exogenous genes.
Cell growth can essentially be explained as the time variation

of the protein fraction of the total cell mass (Figure 1B). Yet,
not all protein mass contributes to cell growth. There are
proteins which may be undergoing active degradation while
other proteins, e.g., the exogenous ones will not have any active
role positively contributing to the cell growth. Therefore, we
considered only the endogenous ribosomal and nonribosomal
proteins to compute the cell specific growth rate. We used the
dynamics eq 1 and assumed an average amino acid mass maa to
obtain the time variation of the total endogenous protein mass
content mh of the native host cell (see Section SI.5, SI)

m m s r m( )h aa t i t
h

m T hν μ̇ = Φ Φ − (9)

where

N J r N J r
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( , ) ( , )

1 WSum( , )t
h r r nr nrμ μ

μ
Φ =

+
+ (10)

is the fraction of ribosomes elongating along endogenous
ribosomal and nonribosomal transcripts relative to the total
number of mature available ribosomes (see Section SI.4, SI).
Next, we considered that the total biomass dry weight

variation (i.e., that of the whole population of cells) is mainly
caused by cell duplication (i.e., population growth), and the
dynamics of cell mass accumulation are much faster than those
of cell duplication. Under this assumption, the protein mass for
each cell quickly reaches steady state (ṁh ≈ 0). Thus, from eq
9, we obtained the expression for the cell specific growth rate

s
m
m

s r( ) ( )i
aa

h
t i t

h
m Tμ ν= Φ Φ

(11)

where note that Φt
hΦmrT is the number of ribosomes actively

elongating along endogenous transcripts at a given time instant
(see Sections SI.4 and SI.5, SI).
To relate the growth rate μ(si) obtained from the

intracellular dynamics with the extracellular measure of growth
rate, μ(s), derived from cell population dynamics, we followed
a reasoning derived from the model developed in ref 13, where
the quantity of intracellular substrate si is related to the one of
extracellular substrate s through the dynamics of nutrient
import and catabolism (see Section SI.6 for details). Under the
condition of steady-state growth where the rate of total cell
mass growth is identical to the rate of cell number growth20

and assuming that the maximum import and catabolism fluxes
are balanced, we obtained the Monod population growth
kinetics
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where Vm is a parameter related to the effective volume of
culture broth for each cell and kt is the Michaelis−Menten
constant for substrate transport into the cell. Note that we

recuperate the maximum specific growth rate μm as a linear
function of the number of ribosomes actively elongating along
transcripts at a given time instant. Finally, the Monod constant
Ks as a function of the substrate transport capacity and the cell
harvesting volume.
Our model accounts for the protein mass distribution

(Figure 1B) but does not consider the relationship between
growth rate and the total cell protein mass. Cells growing at
faster growth rates are larger and heavier, thus affecting their
total protein content.21 To model the relationship between the
cell protein content and the specific growth rate for the native
host celli.e., mh = mh(μ)we postulated the relationship

m
m

d
d

h
hμ

β=
(13)

with mh(0) = 77.375 fg and β = 61.781 min as best fits
obtained for E. coli cells using the data in ref 22. We also
considered an analogous model relating the cell dry weight
mh,cDW(μ) with the growth rate (see Section SI.7 for details).
Finally, we structured our model in such a way that it can be

used to analyze the resource allocation trade-offs (see Figure
1D) among the endogenous protein-coding genes from the
native E. coli host cell, and a given set of exogenous ones of
interest (e.g., a synthetic gene circuit). In the latter case, we
have considered, without losing generality, a single exogenous
protein of interest A to exemplify the model expressions and
the interaction between the host cell and the exogenous
additions.
For the endogenous protein-coding genes, we considered

the ensemble of ribosomal and nonribosomal genes as lumped
species with average values of Emr(lp

r ,le), Emnr(lp
nr,le) and Jr(μ, r),

Jnr(μ, r), respectively. Then, we obtained the dynamics of the
total mass of ribosomes mrT and nonribosomal endogenous
proteins mnr, and the dynamics of the mass mA of the
exogenous protein (see Sections SI.8 and SI.9 for details) as
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where NA is the gene copy number of A, the number of free
ribosomes r is obtained using eq 8, and the specific growth rate
μ is calculated using eq 11.
The denominator in the fraction of RRSs only includes the

host protein-coding genes. The protein mass mh(μ) is that of
the native host cell, comprising only the cell endogenous
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proteins. We defined the mass of the strain ms = mh + mA as the
one comprising the mass of the host and that of the exogenous
proteins. We obtained the relation between the protein mass of
the strain ms(μ) and that of the native host mh(μ) (see Section
SI.9, SI) as

m m
N J N J N J

N J N J
m( ) ( ) ( )s

t
s

t
h h

r r nr nr A A

r r nr nr
hμ μ μ=

Φ
Φ

=
+ +

+ (17)

In addition, we also considered the cell dry weight mcDW(μ),
comprising the mass mh(μ) of the endogenous ribosomal and
nonribosomal proteins, the mass of the exogenous proteins
mA(μ) and the mass of other constituents of the cell, denoted
as mQ(μ). Thus, mcDW(μ) = mh(μ) + mA(μ) + mQ(μ) = ms(μ)
+ mQ(μ). To obtain mQ(μ), we used the estimation of the cell
dry weight mh,cDW(μ) for the E. coli host native cell, i.e.,
without expression of exogenous genes (see Section SI.7 for
details), assuming that mQ(μ) does not depend on the
expression of exogenous genes. This allowed us to estimate
the mass fractions with respect to the total cell dry weight.
To evaluate the productivity rate of a given protein of

interest, we obtained its mass synthesis rate as the steady-state
mass of protein produced per cell and generation (see Section
SI.9, SI). In the case of an exogenous protein A and using eqs
16 and 17, we obtained
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We defined the specific mass synthesis rate (spMSR) relative
to the cell dry weight as
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For a given protein A, both the protein mass synthesis rate (g·
min−1) and the specific one (g·min−1·gCDW−1) are directly
related to its relative RRS fraction.
From the results above, we obtained the cell specific growth

rate at steady-state exponential balanced growth as

s
m
m

s( ) ( )ss i
aa

rib
t i m t

rμ ν= Φ Φ
(20)

where mrib is the average ribosome mass (see Section SI.9 for
details). That is, the cell growth rate at steady state depends
linearly on the fraction ΦtΦr

t of bound ribosomes being actively
used to build up ribosomes themselves (i.e., ribosomes actively
elongating along and translating ribosomal transcripts) relative
to the total number of ribosomes.
2.2. Ribosomal and Nonribosomal Genes Differ in

Their Average Resources Recruitment Strength. Using
the experimental data in ref 19, we evaluated the maximum
expected magnitude of the resources recruitment strength for
each gene using eq 7 with r = 1, i.e., the theoretical maximum
RRS for a given availability of intracellular substrate, Jk,max =
Jk|r = 1,νt(si). The data in ref 19 correspond to E. coli cells under
fast-growing conditions (doubling time td = 21.5 min).
Therefore, we could assume saturation of substrate, allowing

us to consider the maximum substrate-dependent effective
translation elongation rate νt(si) = ν to evaluate eq 7. Note that
this is equivalent to estimating the maximum RRS for the
maximum specific growth rate. E. coli has around 4225 protein-
coding genes.23,24 From ref 19, we obtained data for a
representative enough set of genes, comprising 3551 non-
ribosomal and 68 ribosomal ones, accounting for around 86%
of all E. coli genes.
First, the results allowed us to estimate the order of

magnitude of the resources recruitment strength for ribosomal
and nonribosomal genes in E. coli and their maximum average
value. Then, we obtain how many genes of each class are active
at any one time.
As expected, the values obtained spanned several orders of

magnitude. For the ribosomal genes, the average value Jmax,r
avg =

124.5 and a coefficient of variation CVJmax,r
≈ 1, while for the

nonribosomal ones, the values were Jmax,nr
avg = 3.78 and CVJmax,nr

≈
6. The average maximum RRS for the ribosomal genes was 2
orders of magnitude higher than for nonribosomal ones. Yet,
the coefficient of variation was much smaller for the ribosomal
resources recruitment strengths than for the nonribosomal
ones. Figure 2 shows the values of Jk,max we obtained for each

gene sorted by the log-magnitude of the ratio between the
maximum RRS and the length of the associated protein. The
results did not essentially change from the non-normalized
ones (see Figure SI.6, SI). That is, the resources recruitment
strength of E. coli genes is not fundamentally determined by
the lengths of the proteins they code. This suggests that factors
such as the effective transcription and translation rates are
more relevant.
But not all genes are expressed all of the time. As a proxy to

estimate how many genes are active at any given time, we
calculated the cumulative sum of the maximum RRS and
obtained how many genes being expressed are required to
explain both 95 and 99% of the total cumulative sum (see
Figure SI.8). We did this independently for both ribosomal and

Figure 2. Log-magnitude of the ratio between the maximum
resources recruitment strength and the length (aa) of the associated
protein for the set of nonribosomal (top) and ribosomal (bottom)
protein-coding genes in ref 19. The genes were ordered by decreasing
value of the ratio.
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nonribosomal proteins. Our results showed that out of the 68
ribosomal genes, 49 of them (72%) explained 95% of the
cumulative sum of the maximum resources recruitment
strength. To explain 99%, we needed 57 ribosomal genes
(84% of them). However, for nonribosomal genes, we needed
875 out of 3551 genes (25%) to explain 95% of the cumulative
sum and 1735 (49%) to explain the 99%.
2.3. Resources Recruitment Strength Explains the

Distribution of Ribosomal and Nonribosomal Protein
Mass Fractions. The relative mass fractions of ribosomal and
nonribosomal proteins in the cell depend on the cell growth
rate so that the ribosome content increases linearly with
growth rate.9,22,25,26 Existing resource allocation models
explain this as a result of optimal allocation of cell resources
between the ribosomal and nonribosomal fractions, balancing
the demands of protein synthesis and nutrient influx under the

constraint that the sum of both fractions remains constant.9 In
our model, the relative resources recruitment strength of a
given protein equals its relative mass fraction in the cell at
steady-state balanced growth (see eqs 14−16 and Section S.8,
SI). Therefore, the relative distribution of mass between
ribosomal and nonribosomal proteins must be reflected in the
relative distribution of their resources recruitment strengths.
We first studied the E. coli host cell, i.e., without any

exogenous protein-coding genes. We used the data in ref 22 to
check whether our model was able to predict the linear
increase of ribosomes content with growth rate and the relative
distribution of endogenous ribosomal and nonribosomal
protein mass fractions as a function of growth rate. We did
not estimate the model parameters to try and directly fit the
experimental relative distribution of resources recruitment
strengths, as this would not inform on the capability of the

Table 1. Average Best-Fit Estimated Values for E. coli of the RBS-Strength-Related Parameters Kb
k, Ku

k and Transcription Rates
ωk for Ribosomal (k = r) and Nonribosomal (k = nr) Proteins and the Fraction Φt of Mature Ribosomes with respect to the
Total Number of Ribosomes

parameter (units) Ku
r (min−1) Ku

nr (min−1) Kb
r (molecule−1·min−1) Kb

nr (molecule−1·min−1) ωr (mRNA·min−1) ωnr (mRNA·min−1) Φm (adim.)

mean 129.9 3.09 5.57 12.86 5.65 0.028 0.90
std. 4.07 0.14 0.78 1.50 0.29 0.25 × 10−3 0.5 × 10−2

Figure 3. (A) Estimated versus experimental growth rate (left). Experimental and estimated number of total ribosomes as a function of the growth
rate and estimated number of free ribosomes (right). (B) Estimated versus experimental mass fractions of ribosomal (ϕr = mr/mh) and
nonribosomal (ϕnr = mnr/mh) proteins in E. coli (left). Ribosomal (mr), nonribosomal (mnr), and total host cell protein mass (right). In all plots, the
x-axis corresponds to the estimated and experimental growth rates evaluated for the range of peptide chain elongation rates νt(si) extracted from ref
22.
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model to capture the intrinsic relationship among growth rate,
use of cell resources, and distribution of protein mass fractions.
Instead, we analyzed if a good fit of the specific growth rate
implied our model could generalize and predict the relative
mass fractions in the cell. This, in turn, implies fitting the
ribosomal and nonribosomal resources recruitment strengths.
To this end, we fitted the model parameters using the

experimental growth rate as output to predict. We used the
values of the peptide chain elongation rates νt(si) as a function
of growth rate available from ref 22 as the only input
information given to the model. This is tantamount to feed the
model only with the available amount of substrate si (see
Section 5.2). Then, we minimized the sum over the
experimental data points of the absolute growth rate prediction
error (see Section 5.2). We considered the lumped resources
recruitment strengths for both the ribosomal and non-
ribosomal endogenous proteins (see expressions 14 and 15)
and estimated the fraction of mature ribosomes and the
parameters corresponding to the RBS strength and tran-
scription rates. This would provide our model a good fit of the
specific growth rate. The best-fit estimated parameters are
given in Table 1.
The estimated values of the RBS-strength-related parameters

Kb
k, Ku

k implied ribosomal RBSs much weaker than the
nonribosomal ones. Interestingly, the values we obtained for
the transcription rates were in the same order of magnitude as
the mean values obtained from the data in ref 19ωr = 2.4
and ωnr = 0.05, respectively. Therefore, this demonstrates a
much higher value for the average transcription rate of
ribosomal proteins than for the nonribosomal ones. Our results
also estimated an average high transcription−low translation
rate expression strategy for the ribosomal endogenous genes
and the opposite strategy for the nonribosomal ones.
Figure 3A shows the results of the model parameter fitting

and the good agreement between the experimental and the
estimated growth rate. The estimation of the number of free
ribosomes for cells growing at doubling time td = 25 min (μ ≈
0.028 min−1) was consistent with the result r ≈ 350 obtained
using the experimental data in ref 19 (see Section SI.14, SI).
For cells growing faster, the number of free ribosomes much
increased. Note, though, that also the total number of
ribosomes (both experimental and estimated) greatly increased
for very fast-growing cells. Thus, the fraction of free ribosomes
with respect to the total number only increased from 0.08 up
to 1.37% for cell doubling times between 100 and 24 min,
respectively (even though the number of free ribosomes varied
by almost 200-fold). Similarly, the computed fraction Φm of
mature ribosomes with respect to the total number of
ribosomes was consistent with the estimated fraction of active
bound ribosomes Φt

hΦm ≈ 0.78 (see Figure SI.11) in
agreement with refs 12 and 22.
We evaluated the mass fractions of the endogenous

ribosomal and nonribosomal proteins at steady state using
the expressions 14 and 15. The model predictions were in very
good agreement with the experimental values, as shown in
Figure 3B. Therefore, our model reproduced the known linear
increase of the ribosomal fraction with growth rate. The
differential behavior between the ribosomal and nonribosomal
resources recruitment strengths was behind the differential
protein mass distribution as the cell growth rate increases.
The effective RBS strength used in our model is a function

of the intracellular substrate because it varies with the cell
growth rate according to eq 5. Figure 4 shows the estimated

values as a function of the specific growth rate μ. The
estimated effective RBS strength of the nonribosomal protein-
coding genes (KC0

nr ) was much higher than that of the ribosomal
ones (KC0

r ). As the growth rate increasedtantamount in our
model to an increasing intracellular substrate sithe ribosomal
effective RBS strength kept almost constant (with a slight
decrease around 12%) while the nonribosomal one decreased
by almost a 40%. We could explain this trend as a result of the
difference in the ratio between the transcript degradation rate
and the RBS strength, dmk/KC0

k for both ribosomal and
nonribosomal genes. The ribosomal genes kept much higher
values of dmk/KC0

k for all values of the flux of free resources μr.
This, taking into account the monotonous increasing power-
law relationship between the growth rate and the number of
free ribosomes predicted by our model (see Section SI.14, SI)
implies the observed trends in the values of the RRS in Figure
4 (bottom). The ribosomal RRS Jr(μ,r) decreases much slower
than that of the nonribosomal ones as the growth rate
increases.
Section 2.1 shows that in endogenous genes, steady state is

reached for balanced exponential growth when their relative
fraction of resources recruitment strength equals their mass
relative to that of the host cell. Since the ribosomal resources
recruitment strength decreases much slower than the non-
ribosomal one as the growth rate increases, the fraction of
ribosomal RRS with respect to the total sum of ribosomal and
nonribosomal RRSs will increase. As a consequence, its relative
mass fraction will increase.

Figure 4. Estimated translation initiation rate ke for the average
ribosomal and nonribosomal endogenous genes as a function of the
specific growth rate μ (top). Estimated effective RBS strengths KC0

r

and KC0
nr (middle). Estimated total resources recruitment strengths NrJr

and NnrJnr as a function of growth rate μ (bottom).
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It is important to stress again that we estimated the
parameters in our model so as to fit not the experimental mass
fractions but the cell growth rate. By doing that, the internal
structure of the modelsubstantiated in the structure of the
resources recruitment strength functional coefficientscap-
tured the correct differential mass distribution between
ribosomal and nonribosomal cell protein content as a function
of growth rate.
2.4. Host−Circuit Interaction Shapes the Optimal

Synthesis Rate of Exogenous Proteins. There are multiple
ways to increase the expression of an exogenous protein of
interest, including the choice of the expression vector of the
synthetic gene circuit, optimizing the use of codons, co-
expression of chaperones to aid protein folding, etc.27 We
focused on varying the expression spacei.e., the gene
induction space defined by the values of the mature mRNA
synthesis rate and the effective RBS strengthat the same
values of cell growth conditions and intracellular substrate
availability. We used the average host dynamics at steady-state

balanced growth to evaluate the distribution of cell mass
fractions and the specific protein mass synthesis rate (specific
synthesis rate for short or spMSR) of a given exogenous
protein of interest A as defined in eq 19 (see also Section SI.9)
as a function of variations in the expression space.
We first considered the RBS-strength-related parameters Kb

A,
Ku
A of the exogenous gene to be constant with values equal to

the estimated averages for an endogenous nonribosomal
protein in E. coli (see Table 1) and only the mRNA synthesis
rate was varied. To this end, we changed the gene copy
number times the transcription rate (or promoter strength)
NAωA in the range [10−1, 105] times the average promoter
strength of endogenous nonribosomal genes given in Table 1.
This gave a maximum value NAωA ≈ 3.3 × 103 mRNA·min−1,
which is an attainable value for E. coli considering an average
transcription rate ωA = 3 mRNA·min−1 and a high copy
number plasmid with NA = 1100.
Figure 5A shows the variation across the mRNA synthesis

space NAωA of the mass fractions and the cell growth rate (left)

Figure 5. (A) Left: effect of increasing the mRNA synthesis rate of an exogenous protein A on the cell growth rate (right axis) and on the cell mass
fractions (left axis). Right: specific protein mass synthesis rate (spMSR) for the exogenous protein A as a function of its mRNA synthesis rate. Even
though the growth rate decreases for increasing mRNA synthesis rates, the spMSR increases, reaching a maximum value (yellow dot) at fast mRNA
synthesis rates around 2000 mRNA·min−1 and eventually decreases for larger mRNA synthesis values. (B) Left: Effect of varying the RBS strength
on the cell growth rate (right axis) and the protein mass fractions (left axis) for three increasing values of the mRNA synthesis rate (low, medium,
high). Right: spMSR of the exogenous protein as a function of RBS strength variation.
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and the spMSR, πA, of the exogenous protein (right). The
distribution of mass fractions was consistent with the behavior
of the cell. As the mRNA synthesis rate of the gene A was
increased (moving toward the right in the plot Figure 5A, left),
the mass fraction corresponding to the protein A also increased
(purple) while that of ribosomal proteins decreased (blue)
with a corresponding decrease in the cell growth rate (white
line). Consequently, there appeared a maximum specific
protein mass synthesis rate value (Figure 5A yellow dot, πA
≈ 2.8 × 103 g·min−1·gCDW−1) which was achieved for an
mRNA synthesis rate of 100 mRNA·min−1. This value
represents a low copy plasmid number NA ≈ 20 and a
constitutive promoter with a transcription rate ωA ≈ 5 mRNA·
min−1.
The model predicted an increasing mass fraction of the

protein A as we continue increasing the value of the mRNA
synthesis rate. However, this situation happens at the cost of
reducing the fraction of ribosomal proteins, resulting in a very
small growth rate. The relationship between the fraction of
exogenous protein and growth rate in our model is a
decreasing exponential (something consistent given its
mathematical smooth differential continuous-time nature).
Therefore, even if the zero growth rate is achieved in the
limit for 100% of exogenous protein, note that this is a
theoretical point only achieved in the limit, i.e., at infinite cell
doubling time. In practice, the cell viability will be lost before.
Figure 5B (left) shows the results obtained when we

analyzed three representative values of the mRNA synthesis
rate NAωA = {150, 400, 800} corresponding to an average
transcription rate in E. coli (ωA ≈ 3 mRNA·min−1) combined
with a low, medium, and high plasmid copy number,

respectively. Then, we varied Kb
A, Ku

A in the ranges considered
in Section 5.2 to obtain a range of values for the effective RBS
strength KC0

A (si). The mass fraction corresponding to protein A
increased and the cell growth rate decreased for high levels of
the RBS strength. Figure 5B (right) shows that the main factor
affecting the spMSR is the mRNA synthesis rate NAωA. Thus,
for low values of the mRNA synthesis rate, the spMSR
increased for strong RBSs until a maximum appeared for one
of the stronger ones (e.g., KC0

A = 10−0.8 = 0.15 molecule−1). For
medium values of NAωA, there soon appeared a maximum
spMSR for the exogenous protein as a function of the RBS
strength. Finally, for high values of the mRNA synthesis rate,
increasing the RBS strength rapidly produced a decrease in the
specific protein mass synthesis rate. Our model correctly
predicted that there is a critical (optimal) protein synthesis rate
that is achieved for lower RBS strength as the mRNA synthesis
rate increases.
The location of the optimal spMSR as a function of

variations in the full range of the expression space can be seen
in Figure S.12C in Section SI.15, which shows the variation of
the specific synthesis rate of the exogenous protein across the
expression space NAωA, KC0

A (si) in log−log scale. The optimal
subspace corresponded to a line in the log−log promoter−RBS
space, showing the existence of a trade-off between the mRNA
synthesis rate (tantamount to the gene induction) and the RBS
strength. The pronounced slope of the optimal subspace
explains the different sensitivity of the specific synthesis rate to
the variations of either the promoter or the RBS strengths that
were obtained in Figure 5A,B. Our model predicted that the
specific synthesis rate is more sensitive to variations of the
mRNA synthesis rate than to variations of the RBS strength.

Figure 6. Effect of varying the mRNA synthesis rate and the effective RBS strength on (A) the specific synthesis rate of protein A and (B, C) the
resources recruitment strength (JA) for different substrates. (B) Low substrate scenario νt(si) = 720 min−1. (C) High substrate scenario νt(si) =
1260 min−1. The value of JA was evaluated for the full range of RBS values (KC0

A (si)) and a representative range of promoter values (NAωA), with
EmA and dmA equal to endogenous ribosomal values (without loss of generality).
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Thus, for intermediate values of NAωA, there is a wide range of
RBS strengths that keep the specific synthesis rate close to its
optimal value. This is also reflected in the smoother transition
between the mass fractions resulting when the RBS strength is
modified compared to changing the mRNA synthesis rate.
Note that, as predicted by eq 19, for a given substrate
availability, different expression strategies resulting in the same
specific synthesis rate will correspond to the same distribution
of mass fractions.
Differently from modifying the mRNA synthesis rate for a

fixed RBS strength value, or vice versa, the maximum spMSR
of the exogenous protein significantly changed when the
substrate availability does not remain constant. The effect of
the differential role of RBS and promoter combinations for
scenarios with varying substrate is analyzed in the next section.
2.5. Substrate Level Emphasizes the Differential Role

of RBS and Promoter Strengths. It is well known that
varying combinations of transcription and translation rates
affect the stability of metabolic networks28 and the trade-off
between desired expression levels and noise19 and between
expression of endogenous and synthetic genes and growth.11,13

In the previous section, we showed that for a constant
availability of substrate rich in nutrients, there are different
promoter and RBS combinations that can achieve the same
expression level (tantamount the same specific protein mass
synthesis rate) of an exogenous protein A. This leads to a
multimodal design problem. One can choose between design
strategies ranging from using a combination of a weak
promoter strength and a strong RBS (NAωA ↓ KC0

A ↑) to
using a strong promoter and a weak RBS (NAωA ↑ KC0

A ↓). The
results depicted in Figure 5 show that for the case of constant
substrate, there is no difference between using one promoter−
RBS combination or another as long as the desired spMSR of
the protein A remains the same.
However, changes in the substrate have a different impact on

the protein expression depending on which one is the
promoter−RBS combination selected. Figure 1B,D illustrates
how the mass fractions of ribosomal, nonribosomal, and
exogenous proteins change as a function of the growth rate μ,
which is indirectly dependent on the availability and quality of
the substrate. For a given gene following the weak-RBS strong-
promoter strategy (the one followed by the endogenous
ribosomal genes), the mass fraction corresponding to the
exogenous protein increased as the availability of substrate
increased. On the contrary, the strong-RBS weak-promoter
strategy (as followed by the endogenous nonribosomal genes)
caused the exogenous protein mass fraction to decrease with
increasing availability of substrate.
To understand the differential role of RBS and promoter

strengths, we first evaluated the dependence of the specific
protein mass synthesis rate of an exogenous protein A on the
mRNA synthesis rate and the effective RBS strength as a
function of the substrate. Figure 6A shows the results for two
representative substrate levels: low substrate νt(si) = 720 min−1

(left) and high substrate νt(si) = 1260 min−1 (right). The
maximum protein synthesis rates (black dashed lines) are
located at different places in the design space. Increasing the
substrate had the effect of increasing the spMSR (the right plot
is whiter than the left one). In addition, the optimal synthesis
rate moved to the right, i.e., for the same mRNA synthesis rate,
a higher effective RBS was required to reach the optimum.
This implies that a cell configured to obtain the optimum

protein synthesis rate for some substrate level will become
suboptimal when changing the substrate level.
The resources recruitment strength (RRS) explains this

differential effect of RBS and promoter strength on protein
expression. For a given protein, its RRS eq 3 is directly
proportional to the mRNA synthesis rate. Figure 6B,C shows
that the mRNA synthesis rate effectively modifies the RRS
value regardless of the substrate or the growth rate. As the
mRNA synthesis rate increases (displacement to the right in
the x-axis) the value of the RRS increases. Therefore, tuning
the promoter strength implies tuning the RRS level without
affecting the RRS sensitivity to changes in the substrate, the
growth rate or the changing availability of free ribosomes.
Different from the promoter strength, the RBS strength

determines the sensitivity of the resources recruitment strength
to changes in the substrate. It has two different effects on the
value of the RRS. The first effect is related to the definition of
the RBS in eq 5. It depends on the association−dissociation
rate constants Kb

k and Ku
k and indirectly on the substrate

through Ke(si). For a given substrate si, there is a set of infinite
combinations of Kb

k and Ku
k that might provide the same RBS

strength level. This causes the strength of the RBS to vary with
changes in the substrate so that it decreases as the substrate
increases. However, the RBS strength (and therefore the RRS
value) with a high dissociation constant rate Ku

k ≫ Ke(si) will
be less sensitive to changes in the substrate.
On the other hand, note, from eq 5, that the RBS strength

defines the sensitivity of the RRS to the flux of free resources
μr. Decreasing the RBS strength will always reduce the RRS
value. However, increasing the RBS strength will increase the
RRS value until it eventually saturates. In particular, when dm/
KC0
k ≪ μr, the RRS eq 5 becomes

J r E l l
T
r

( , ) ( , )
( )

k mk pk
k

e
fμ

ω
μ

=
(21)

in this case, the RRS value becomes independent of the RBS
strength. Thus, there is a maximum RRS value that can be
obtained by increasing the RBS strength. Figure 6B shows that
for low substrate availability, the RBS can increase and yet the
RRS value decrease, and Figure 6C shows the saturating effect
of increasing the RBS strength for a high substrate.
For exogenous protein-coding genes, the situation is

different depending on whether they do add or not a relevant
burden on the cell. In case the exogenous genes do not
overload the cell, the expression patterns will be the same as
those for the endogenous genes analyzed above. In case the
exogenous genes impose an important burden on the cell, the
effects of RBS and the promoter change. In this case, μr will be
very small and the differential effect of the promoter and RBS
strengths is partly lost. In this overloaded scenario, the RRS
can be approximated as

J r E l l
T K s

d
( , ) ( , )

( ) ( )
k mk pk

k
k

mk
e

f C i0
μ

ω
=

(22)

Therefore, the RRS only depends on the substrate through the
substrate-dependent value of the RBS strength. This causes the
RBS−promoter strength strategies to become less differ-
entiated. Yet, it is still possible to apply the analysis above
for the distribution of mass fractions as a function of the RRS.
Thus, the strong-promoter weak-RBS strategy will allow us to
have RRS whose value is less sensitive to changes in the
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substrate compared to the weak-promoter strong-RBS one, as
observed in Figure 1D.

3. DISCUSSION
Our model defined the gene resources recruitment strength as
the key functional coefficient that explains the distribution of
resources among the host−circuit and the relationship between
the use of these resources and cell growth. The RRS
generalizes similar proposals in the literature, allowing us to
analyze not only scenarios with high cell burden but also
scenarios where the competition for cell resources does not
overload the cell extremely. Conversely from the resource
demand coefficient defined in ref 4, where the resource
limitation effect is local, we considered that the cell resources
(ribosomes) are accessible to all genes in the cell, so exogenous
and endogenous host genes compete to recruit cellular
resources. The assumption of constant growth rate, constant
total number of ribosomes, and highly overloaded cell in ref 4
implies a static resource demand coefficient that is
independent of the availability of free resources or the growth
rate. This assumption is equivalent to the overloaded scenario
in our model with RRS given in expression 22. However, our
RBS strength does depend on the substrate. Therefore, our
model can be used in scenarios where the demand on
resources changes over time since the RRS explicitly captures
the mass distribution dependence on cellular growth and
substrate availability.
The RRS of a gene plays an important role in the value of

the specific protein mass synthesis rate. Note, from eq 19, that
RRS and the spMSR are related. The specific mass synthesis
rate is essentially a function of the ratio between the RRS of
the gene of interest and the total sum of RRSs of the cell.
Therefore, it provides information about the resources that the
gene of interest is capturing and sharing with other cell
components to get expressed. In this sense, spMSR is a
context-dependent magnitude that requires knowledge of the
spMSRs of the remaining genes. The resources recruitment
strength is somewhat a more fundamental characterization of a
protein-coding gene than the specific protein mass synthesis
rate. It is kind of a context-dependent intrinsic magnitude. Its
shape only depends on the gene characteristics. Its actual value
is only defined by the generic flux of free resources μr and the
effect of the substrate availability (which may integrate the
nutrient quality) on the effective RBS strength. Therefore, the
RRS measures the intrinsic avidity of a given protein-coding
gene for cell resources.
Interestingly, the spMSR, i.e., the mass synthesis rate of a

given protein per cell mass can be related to the definition of
capacity as proposed in refs 29 and 30. There, a cell capacity
monitor is implemented by including the constitutive
expression of a GFP gene and determining capacity as the
GFP production rate per cell of their capacity monitor. Both
concepts, capacity and spMSR, are not the same but are
related. In ref 30, the authors show the existence of a critical
capacity. Our results, as seen in Figure 5A,B, also showed an
upper bound or “critical” spMSR as a function of the mRNA
synthesis rate (mRNA·min−1). The existence of this critical
spMSR is not directly related to energy limitation, but it is the
result of the peptide optimal allocation for building blocks
(aas) to synthesize either a given (possibly exogenous) protein
or more ribosomes. Indeed, energy limitations will indirectly
affect the critical capacity value insofar as they interfere with
the flow of building blocks to build up the peptide chains.

From the perspective of energy as a resource, our model
implicitly incorporates this concept as a fundamental part of
the substrate. That is, all of the resources needed by the cell
eventually come from the substrate. Consequently, our model
captures this substrate−energy interaction and it is quantified
by the resources recruitment strength and the substrate-
dependent effective RBS strength. This approach differs from
others such as ref 13, where energy is modeled explicitly after
defining additional gene expression thresholds and a sigmoidal
transcription/translation dependence on the energy levels.
The results obtained with our model were relevant both for

the analysis of the native host cell, i.e., without exogenous
protein-coding genes, and for the case of having a strain
hosting exogenous protein-coding genes.
In the first case, we showed that endogenous ribosomal and

nonribosomal genes clearly differ in their average resources
recruitment strength and, therefore, in their average require-
ment for cell resources. The ribosomal proteins, essential for
the cell and continuously being expressed, have higher RRS
values than the nonribosomal ones. Moreover, its range of
variation over the ribosomal proteins was much lower than for
nonribosomal ones. This result was not fundamentally
determined by the lengths of the coded proteins and is
consistent with the fact that to great extent all ribosomal
proteins are equally important for the cell. Transcription and
translation are energetically expensive processes. It is usually
accepted that around 60% of genes are expressed in standard
laboratory conditions at any one time in E. coli, with only a
small fraction making up a large percentage of the total protein.
The cumulative sum of the maximum resources recruitment
strength gave a good estimation of the percentage of genes
expressed at any time. This is consistent with the fact that
ribosomal genes are continuously needed for the cell so they
are continuously expressed. On the contrary, nonribosomal
genes are regulated to be expressed only when they are
required. This also explains the very low RRS values obtained
for them and reflects these genes are down-regulated most of
the time.
It is known that weakly expressed endogenous genes exhibit

low RNA polymerase (RNAP)/ribosome ratios, while strongly
expressed genes have higher RNAP/ribosome ratios, as this is
metabolically efficient.11 Our model predicted that it is not
possible to achieve high expression and high robustness with
respect to the resources recruitment strength by only adjusting
the RBS strength. There is a trade-off among protein
expression, RBS strength, robustness, and flux of free resources.
The RBS strength sets the sensitivity of the resources
recruitment strength with respect to the flux of free resources.
Thus, strong RBSs were predicted to be associated with
resources recruitment strengths more sensitive to variations in
the flux of free resources (i.e., at different growth rates) while
weak RBSs provide robustness with respect to the growth rate.
This defines how much of a given protein (e.g., ribosomal or
nonribosomal) will be expressed at different growth rates.
This trade-off was consistent with the estimated values of the

average transcription rates and RBS strengths we obtained for
the cell endogenous ribosomal and nonribosomal genes. We
found that the low RBS strength and high transcription rate of
ribosomal genes make their resources recruitment strength
robust with respect to changes in the flux of free resources with
growth rate. On the contrary, for nonribosomal genes, our
model predicted an average high RBS strength and a low
transcription rate expression strategy. This differential strategy
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allowed us to explain the relative mass fractions distributions of
endogenous ribosomal and nonribosomal proteins as a
function of growth rate. Thus, the differential expression
strategies in E. coli encode the mass distribution of ribosomal
and nonribosomal proteins for varying growth rates. Our
model suggested that the cell achieves a fairly constant
absolute expression of nonribosomal proteins using a high RBS
strength to express them. On the other hand, the cell uses
much weaker RBSs to express the ribosomal proteins. This
way, the value of the total ribosomal RRS remains mostly
constant with respect to the nonribosomal one. As a
consequence, the absolute expression of ribosomal proteins
increases with growth rate.
The results were applicable to the expression of exogenous

protein-coding genes. For a given ratio of RRSs, increasing the
expression of exogenous genes decreases the growth rate
thereby reducing the absolute mass of endogenous proteins.
However, the mass of exogenous proteins accumulates in the
cell, which allows the total mass of the cell to increase even if
the growth rate decreases. Two extreme cases can be
differentiated: either the exogenous genes imposing negligible
loading on the cell or strongly overloading it. In the first case,
the exogenous proteins behave in an equivalent way to the
endogenous ones. Therefore, all of the results obtained for the
last are applicable. This situation is of interest in situations like,
e.g., when designing gene synthetic circuits for feedback
regulation of enzymes expression in metabolic pathways. In
this case, one of the goals is that the exogenous circuit does not
load the cell in excess, as this will affect the overall performance
of the regulated pathway. In the highly overloaded scenario,
the RRS no longer depends on the flux of free resources. This
causes a diminished differential effect of the RBS and promoter
strength. Yet, the different sensitivity of the RBS to the
available substrate as a function of its strength still has
consequences in scenarios with variable substrate. In between,
the definition of the RRS allows us to consider a wide range of
scenarios with varying cell burden.

4. CONCLUSIONS
In this work, we have presented a small-size model of gene
expression dynamics accounting for host−circuit interactions.
The good agreement between the predictions of our model
and experimental data highlights the relevance of the cellular
resources recruitment strength defined in our model as a key
functional coefficient. Our resources recruitment strength
coefficient allows us to explain the distribution of resources
between the host and the genes of interest. Additionally, it
shapes the relationship between the use of resources, cell
growth, and protein productivity. This functional coefficient
explicitly considers the interplay between the flux of available
free resources and lab-accessible gene expression character-
istics. In particular, the promoter and RBS strengths.
Though we only considered E. coli, our findings can be

extrapolated to other microorganisms, and the model can be
easily fitted using a small amount of experimental data of the
host cell.
Among other predictions, the model provides insights into

how the differential role of promoter and RBS strengths in
protein expression may have evolved in E. coli and other
microorganisms to encode the mass distribution between
ribosomal and nonribosomal proteins as a function of cell
growth rate. Weak transcription and strong translation and the
complementary strong transcription and weak translation

emerge as two potentially equally optimal strategies in the
expression space but with different characteristics from the
point of view of the sensitivity of the specific synthesis rate of
the expressed protein to variations in the cell growth. The
capacity of the defined resources recruitment strength
functional coefficients to capture the interaction between
growth, cell resources, and gene expression characteristics is
reflected in the fact that the model was able to infer good
predictions of the experimental distribution of the cell
endogenous ribosomal and nonribosomal protein mass
fractions when fitted to estimate the cell specific growth rate.
The model also explains some of the phenomena typically

encountered when building protein expression systems in
synthetic biology. Thus, for instance, it explains the limited
effect that increasing the RBS strength has to increase the
expression of a given protein of interest, saturating at high RBS
strengths. Design of synthetic genetic circuits without
considering the impact of host−circuit interactions results in
an inefficient design process and lengthy trial-and-error
iterations to appropriately tune a circuit’s expression levels.13

In this context, our model may also be useful for design
purposes in synthetic biology where it can be used to design
the proper promoter−RBS strategy depending on the desired
behavior of the genes expression as a function of growth rate.
In this sense, the resources recruitment strength can be used as
a context-dependent intrinsic magnitude for the standard
characterization of protein-coding transcription units.
Further extensions of the model can be easily implemented.

Thus, the model explicitly considers the relationship between
the cell specific growth rate and the population dynamics. As a
consequence, it can be integrated within a multiscale
framework that considers the macroscopic extracellular
dynamics of the substrate and population of cells in a
bioreactor. The model only requires as input a measure of
the fraction of available substrate with respect to the saturated
case and predicts both the resulting cell specific cell growth
rate and the mass and mass rates of the expressed proteins.
This makes its integration with constraint-based models of
metabolism rather straightforward. The possibility to consider
expression systems using orthogonal ribosomes can also be
implemented without much difficulties. All this makes the
model useful in the context of model-based design of gene
synthetic circuits and protein expression systems.

5. METHODS
5.1. Model Parameters. Table SI.2 in Section SI.11 shows

the set of parameters used in the model.
5.2. Estimation of the Parameters for Ribosomal and

Nonribosomal Endogenous Proteins. We considered the
model expressions at steady state in Section 2.1 and estimated
the RBS-strength-related parameters Kb

k, Ku
k with the tran-

scription rates ωk with k = {r, nr} and the fraction Φm so that
our model provided a good fit of the specific growth rate at
steady state.
The only input information given to the model was the value

of the peptide chain elongation rate values νt(si) as a function
of growth rate obtained from ref 22. This is equivalent to
feeding the model only with the available amount of substrate
si. To this end, we expressed the effective maximum translation
rate as νt(si) = νf(si), where ν is the maximum attainable
peptide synthesis rate (see eq 2) and f(si) = si/(Ksc + si). Note
that f(si) is monotonous with the amount of intracellular
substrate si. From the experimental values of νt(si) as a function
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of growth rate and knowing the maximum attainable peptide
synthesis rate ν (see Table SI.2), we obtained the experimental
values of f(si) for each growth rate. We used these to feed our
model. This is tantamount to feeding the model with the
substrate si, but the value of the substrate- and host-dependent
Michaelis constant Ksc needs not to be known.
Then, we fitted the model parameters using the experimental

growth rate as the output to predict. So as not to penalize large
errors in excess, which in our case are more prone to happen
for larger values of the growth rate, we minimized the sum over
the experimental data points of the absolute prediction error of
the growth rate

I s s( ) ( )
k

n

k k
1

exp i, i,

p

∑ μ μ= | − ̂ |
=

We considered Nr = 57; and Nnr = 1735, corresponding to the
number of genes that explain 99% of the cumulative sum of the
resources recruitments strengths for ribosomal and non-
ribosomal proteins, respectively (see Section 2.2). We also
considered the average mRNA degradation rates dm,r = 0.16
min−1 and dm,nr = 0.2 min−1 (see Table SI.2). Using the value
of ν in Table SI.2 and the range of le obtained in Section SI.14,
we estimated 40, 70 molecule min

l
1 1

e
⊂ [ ] ·ν − − .

Moreover, the values of the association and dissociation
rates of the ribosome to the RBS, Kb

k and Ku
k, may vary in a

large range. Values Kb
k ⊂ [3, 15] molecule−1·min−1 are found in

the literature (see Table SI.2). We used a conservative upper
bound Kb

max = 10 molecule−1 for the search space, considering
binding is diffusion controlled. From the literature, we also
considered a search range for the dissociation rate Ku

k ⊂ [3,
135] min−1. Overall, these estimates gave us a range KC0

k ⊂
[0.02, 0.2] molecule−1 for the effective RBS strength under the
assumption of intracellular substrate saturation. We ran 200
instances of the parameter fitting algorithm using the global
optimization software MEIGO31 (available at http://gingproc.
iim.csic.es/meigo.html) and obtained the weighted mean of
the 25 runs achieving the best minimum value for the sum over
the experimental data points of the absolute growth rate
prediction error. The resulting average best-fit estimated
parameters are given in Table 1.
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