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ARTICLE INFO ABSTRACT

Dataset link: https://www.oasis-brains.org/ The quantity and quality of a dataset play a crucial role in the performance of prediction models.
Increasing the amount of data increases the computational requirements and can introduce
negligible variations, outliers, and noise. These significantly impact the model performance. Thus,
instance selection techniques are crucial for building prediction models with informative data,

Dataset link: https://adni.loni.usc.edu/

rds:
I;zx;ﬁir's disease reducing the dataset size, improving performance, and minimizing computational costs. This
Deep learning study proposed a novel methodology for identifying the most informative two-dimensional slices
Hippocampus derived from magnetic resonance imaging (MRI) to study Alzheimer’s disease. The efficacy of
Instance selection our methodology was attributable to a hippocampus-centered analysis using data from multiple

atlases. The methodology was evaluated by constructing convolutional neural networks to
identify Alzheimer’s disease, using a consolidated dataset constructed from three standard
datasets: Alzheimer’s Disease Neuroimaging Initiative, Australian Imaging, Biomarker & Lifestyle
Flagship Study of Ageing, and Open Access Series of Imaging Studies. The proposed methodology
demonstrated a commendable subject-level classification accuracy of approximately (95.00%)
when distinguishing between normal cognition and Alzheimer’s.

1. Introduction

Alzheimer’s disease (AD), the leading cause of dementia in older adults, affects more than 55 million people worldwide. This
progressive brain disorder causes nerve cell death, leading to a significant reduction in brain volume and affecting nearly all brain
functions [1]. Medical imaging techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), and
diffusion tensor imaging (DTI) are crucial for visualizing brain structures for AD diagnosis and treatment.
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A region of interest (ROI) refers to a specific anatomical structure or area within an image selected for further analysis or processing
based on its relevance. Key regions affected by AD include the entorhinal cortex, fornix, and hippocampus. This results in cognitive
impairment [2-4]. Hippocampal atrophy, which is a critical MRI marker of AD progression, has been studied extensively [5-8].

Deep learning methods, particularly convolutional neural networks (CNNs), have demonstrated potential for detecting brain
structural changes via MRI and analyzing entire images or specific ROIs using two-dimensional (2D) or three-dimensional (3D) models.
However, the selection of informative instances to train these models remains challenging. The challenge in instance selection lies
in the optimization of the selection from large datasets to improve the model performance and efficiency. Balancing the dataset size
reduction, model effectiveness, and computational costs remains difficult [9,10].

The existing selection methods based on a fixed number of instances are plagued by significant limitations. The performance of
the model depends significantly on the location and number of slices per volume [11]. The entropy technique sorts slices by using
entropy values and retains the top slices [12]. This is unsuitable for 3D CNNs because it results in the loss of 3D information and
includes dispersed slices from regions not associated with AD. Similarly, the slice percentile position method, which selects slices
based on their percentile position within the volume [11], cannot determine the ROI accurately and often selects slices from irrelevant
regions. Including excessive number of non-informative slices increases the computational cost and noise, whereas too few slices may
exclude vital information necessary for AD diagnosis.

This study proposed a groundbreaking methodology to address these limitations by selecting the most informative 2D image slices.
In contrast to existing methods, the proposed approach merged hippocampus-containing regions from multiple atlases and calculated
an adjusted centroid (¥, y) to capture the most informative content. This innovative technique preserved 3D information and leveraged
context by selecting only the adjacent slice instances related to the ROIL. The number of instances selected was dependent on the plane,
hemisphere, and ROI, thereby providing a more accurate and representative data selection.

Our study employed a hybrid ensemble that merged homogeneous and heterogeneous methods. This ensemble incorporated
the most diverse and highest-accuracy CNN models to evaluate the proposed instance selection method. Homogeneous ensemble
methods employ a single-base classifier with diverse training data to assess the versatility, whereas heterogeneous ensemble methods
use different classifiers with the same data to evaluate the dataset quality.

This proposed method comprised three main phases.

« Data preparation (Phase 1): This phase involved splitting the dataset into training, validation, and test sets. In addition, raw MRI
volumes were subjected to skull-stripping and registration preprocessing to create two refined datasets.

« Instance selection (Our proposal) (Phase 2): This phase included slice instance selection to identify slices containing the ROI
(hippocampus) and ROI position localization to calculate the centroid position (x, y) based on the mode.

« Instance selection validation (Phase 3): This phase included batch data generation, training and testing diverse classification
models, and hybrid ensemble integration. Predictions from accurate models trained on varied datasets and algorithms were
combined.

The significant contributions of this study are summarized as follows:

1. Multi-atlas ROI-based instance selection: The hippocampus ROI annotations from multiple atlases were integrated, thereby re-
taining informative slices and ensuring representativeness.

2. ROI content extraction: This method utilized the statistical mode to determine the most informative content by adjusting the
centroid (x, y) position to obtain the content of the ROI for precise 2D slice cropping.

The proposed methodology aimed to enhance the diagnostic accuracy, reduce computational costs, and improve the efficiency of
AD tasks, thereby offering significant advancements in the field and potentially improving patient outcomes.

2. Related works

Most proposed approaches for image instance selection for AD classification differ in terms of the number of slices selected and
the technique used to obtain the most informative slices or discard the least informative slices. For example, in [13], the interclass
variance criterion was used to select a single slice from 3D volumetric data. In [14], skull stripping was performed on raw MRIs using
a trained U-Net model, and 3D images were cropped and resized to 64 x 64 x 64 pixels for the proposed model. In [15], the initial
and final slices were discarded and the 3D MRI scans were downsized to 96 X 96 x 96. Consequently, randomly selected slices were
used to train the 2D CNN model.

In [16,17,12,18], the authors used entropy calculation for each image slice, sorted them in descending order of entropy value,
and maintained the top fixed number of slices (8, 16, and 32). In [11], the percentile position of an image slice was used, including
a fixed number of instances (32).

ROl extraction is a critical image processing task. For instance, in [19], an MRI scan was divided into square blocks with dimensions
of 32 x 32 pixels. Consequently, only the blocks that included the hippocampus were extracted as ROIs. Other studies, such as
[20-22], extracted ROI-based patches from different brain regions, including the hippocampus, amygdala, and insula, to create an
ensemble classifier. In [23], a classification framework used ROIs and landmarks to avoid large attribute vectors. Thereafter, they
were classified based on their distance to a 3D atlas with gray matter, white matter, and cerebrospinal fluid attributes. In [24], a
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Table 1
Summary of participant demographics and global clinical dementia rating (CDR)
scores of all the study datasets.

Dataset Class  Subjects  Age Gender Total
F/M Subjects
ADNI [45] CN 70 78.63+£582  34/36 140
AD 70 78.63£6.50  31/39
AIBL [46] CN 70 7456 £581  37/33 140
AD 70 7487+7.57  43/27
OASIS [47] CN 70 69.89 +9.38 39/31 140
AD 70 7636 +9.15  34/36
Merged CN 210 74.36 £8.01 110/100 420
AD 210 76.62 +7.93 108/102

method using Explainable Al with Grad-Cam and a 3D CNN automatically detected patient-specific ROIs rather than fixed ROIs for
all patients.

In most previous studies, MR image preprocessing involved (a) skull stripping, segmentation, and nonlinear registration using
FreeSurfer [25,26]; (b) brain extraction and tissue segmentation using FSL [27,28]; and (c) realignment, spatial normalization, and
smoothing using SPM [29,30]. In [31], noise was removed using a curvelet transform with an adaptive threshold. This was followed
by hybrid histogram equalization and segmentation using a multiscale pooling residual autoencoder to facilitate feature extraction.

Skull stripping eliminates non-brain tissues from MR images, which is a crucial step in the automated evaluation of neurodegener-
ative diseases [32]. Medical image registration, which involves linear and nonlinear registration, calculates the coordinate transforms
between images to align them with a predefined coordinate system, such as an anatomical atlas (MNI152 Template) [33].

Deep Learning methods such as CNNs have been used to solve AD classification problems. Recent studies have utilized CNN
architectures such as DenseNet [34,28,30,25], InceptionV3 [35,30], InceptionV4 [36], MobileNetV2 [35], ResNet [30,37,29,38],
Xception [30], and certain custom CNN [25,17,26,35] for AD diagnosis. Moreover, the studies cited in [39-42] demonstrated that
the prediction outcomes of deep neural networks (DNNs) were significantly superior to those of conventional machine learning
approaches.

Various approaches have been proposed that utilize CNNs to analyze MRI images for AD diagnosis. These include the use of
2D slices from 3D MRI volumes [29,17,38], ROI-based CNNs that focus on specific informative brain regions [19-22], 3D patches
extracted from MR images [26,28], and 3D subject-level CNNs that simultaneously analyze entire MRI images [27,26].

Ensembles of deep CNN models that combined multiple weak learners to form a single strong learner were used by [12,43].
Ensemble deep learning (EDL) improves the accuracy and robustness compared to individual CNNs [44].

Several previous studies on instance selection for Alzheimer’s disease diagnosis using MRI have been plagued significant limita-
tions. Many methods cannot determine the ROI accurately, often selecting dispersed, nonsequential slices from irrelevant regions that
are not associated with AD. Entropy-based selection cannot leverage the context from adjacent slices and is unsuitable for CNN 3D
models owing to the loss of 3D information. Further, ROI-based selection often employs a single atlas and cannot capture the most
informative ROI content for precise 2D slice cropping. In addition, these methods often include excessive non-informative slices,
which increases the computational cost and noise, whereas including too few slices may exclude vital information for AD diagnosis.

3. Datasets

In this study, we used T1-weighted structural MRI (3D-MRI) from three prominent datasets for AD research: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [45], Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) [46], and
Open Access Series of Imaging Studies (OASIS) [47]. The subjects in these datasets were characterized using the Clinical Dementia
Rating (CDR) scale, where 0 indicates cognitively normal (CN) and values 1-3 indicate different stages of Alzheimer’s disease (AD)
[48]. Table 1 lists the demographic information for these datasets.

3.1. Merged dataset

To mitigate the challenge of performance reduction in prediction models across diverse demographic groups, we encompassed
various study populations across different age groups (young and older people) by consolidating ADNI, AIBL, and OASIS datasets.
This yielded a merged dataset of 420 instances. Each dataset contributed 70 volumes per class (3 datasets X 70 samples X 2 classes).

4. Proposed methodology

This methodology aimed to identify the most informative images by analyzing the pixels belonging to the hippocampus, which
represents the ROL As illustrated in Fig. 1, our methodology began by preprocessing the images to remove non-informative content
and align them appropriately. Next, our instance selection method identified slices containing the defined ROI and determined the
centroid position (x, y) based on this mode. Finally, the instance selection method was validated using 2D CNN, 3D CNN, and Hybrid
ensemble models.
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Fig. 1. Proposed methodology.
4.1. Data preparation

This phase selected one volume per subject and split the dataset into training, validation, and testing datasets. The selected raw
MRI volumes were subjected to skull stripping and registration preprocessing to create two new datasets.

4.1.1. Volume dataset building

Volumes per subject were sorted by visit date, with only the last visit included in the dataset to ensure one volume per subject.
The datasets were then randomly split to ensure reproducible tests and prevent data leakage, with each MRI volume per subject
exclusively included in one distribution (training, validation, or testing). The subject distribution was balanced using undersampling.
This ensured the same number of subjects per class (k), where k was less than or equal to the number of samples from the minority
class, thus addressing class imbalance issues.

4.1.2. Image preprocessing
The Image preprocessing step produced the following three datasets:

+ Raw dataset: This included the raw MRI volumes selected in the previous “Volume Dataset Building” step, sourced directly from
ADNI, AIBL, or OASIS repositories without preprocessing. The raw dataset varied in volume size.

« Skull-stripped dataset: Raw MRI volumes were subjected to skull stripping as part of the preprocessing step. This yielded a new
preprocessed dataset wherein skull-stripped MRI scans were standardized to dimensions of 256 X 256 X 256.

« Registered dataset: Following skull stripping, volumes were registered to the MNI152 T1 template, creating a new preprocessed
dataset standardized to 182 x 218 x 182 with a spatial resolution of 1 mm.

4.2. Proposed instance selection method centered on hippocampus content using multi-atlas

This phase orchestrated the creation of diverse datasets by amalgamating preprocessing methods, planes, and hemispheres. It
employed multiple atlases to select instances based on ROI boundary positions, retaining only slices featuring the hippocampus. The
resulting instance dataset files included metadata such as the MRI filename, slice number, ROI centroid position, and class.

Considering the hippocampus’s association with cognitive decline, this study centered its analysis on this region, leveraging atlases
aligned with the MNI152 standard template. Images querying these atlases were registered in the MNI152 space to ensure consistency.
Multiple annotations were harmonized to reconcile voxel disparities in hippocampal representations across atlases.
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Fig. 2. Steps of the proposed instance selection method centered on hippocampus content using multi-atlas: (a) Atlas merge process, (b) Left and right hemisphere
binary masks for each plane, (c) Atlas hemisphere separation, (d) MNI152 template and merged atlas boundaries, (e) Merged atlas trimmed, (f) ROI boundaries.

A slice instance selection method grounded in ROI standardized the image space, expressing the initial and final slice numbers as
percentiles. This process ensured a clear and understandable standardization of our data.

The instance selection proposal based on the fusion of ROI (Hippocampus) annotations from multiple atlases, Multi-Atlas ROI,
involves the following two steps.

4.2.1. Slice selection
The selection of the slice instances based on the ROI involved selecting appropriate atlases, merging them, and detecting the atlas
boundaries to determine the range of slices wherein the ROI (hippocampus) was present.

1. Atlas selection: The following atlases, transformed into MNI152 space and containing hippocampus annotations, were used
in this study [49]. 1) JHU DTI-based white-matter atlases from Johns Hopkins University. 2) Jiilich histological atlas from the
Research Center Jiilich. Talairach atlas (Daemon Labels) from UTHSCSA, Texas. 4) Harvard-Oxford cortical and subcortical
atlases from the Harvard Center for Morphometric Analysis.

2. Merged atlas: The (n) selected atlases (A) containing the ROI were merged into a single mean values map (M € R?W*x?), as
shown in Fig. 2a.

The merged atlas (M) was binarized, converting to a “1” any voxel having a numerical value greater than zero, as shown in the
Equation (1):

Vi{i,jkeN,0<i<h0<j<w0<k<d},

1, ifM;, >0, (€9)]
Mijk = ' ’/k.
0, otherwise,

where (h) is the slice image height, (w) is the slice image width, and (d) is the number of slices of the (M) volume.

The left and right hemisphere structures were merged separately for each orthogonal plane, resulting in 6 merged atlases. Fig. 2b
shows the binarized masks (L) and (R) created to ensure that a merged atlas only included the pixels of the left or right
hemisphere, using the Equation (2):

Vi{i,jkeN,0<i<h0<j<w0<k<d},

1, ifi< %
L= (2)

0, otherwise,
Rijk =1- Lijk’
where (L) and (R) are the binarized masks for the left and right hemispheres, respectively, (/) is the slice image height, (w) is
the slice image width, and (d) is the number of slices of the (M) merged atlas volume.
The merged atlas volume (M) for a specific plane and hemisphere was multiplied by the corresponding binary mask (L or R),
as shown in Fig. 2c.
3. Get volume boundaries: The volume (M '“"¢) was traversed by each plane in ascending order to obtain the initial slice numbers

(x1,¥y.and z;). The same was done in descending order to obtain the final slice numbers (x,, y,,and z,) for sagittal, coronal,
and axial planes respectively. The results are shown in Fig. 2d.
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Table 2
Summary of Hippocampus percentile slice position
per plane and hemisphere.

Percentiles by hemisphere

Left Right

Plane X X, X X,
Sagittal ~ 19.01 4859  50.70  87.32

Coronal  7.26 69.83 8.94 79.33
Axial 5.00 75.00 15.13 49.34

The slice number (i) of the image (M) with a mean greater than zero was included in the boundaries list, (A) for initial slices
and (Q) for finals, using Equation (3).

A, =iV{ieN,0<i<d}, and
Q.1 =i,V{ieN,d>i>0},

£ Z}ilZZ:lMﬁk 0 3)
wxh ’

with x; = A; and x, =Q,,

where (d) is the number of slice images for a particular plane. Further, (n) and (m) are the number of elements in the A and Q
lists, respectively, and (x;) and (x,) are the initial and final slice numbers, respectively.

4. MNI152 template and merged atlas trimming: The whole-brain MNI152 template was trimmed to correct and standardize
the brain area by removing black pixel outliers. As the merged atlas and the MNI152 template volumes shared a common space,
with the same shape (182 x 218 x 182) and resolution (1 mm), the merged atlas was trimmed to match the MNI152 template
boundaries, as shown in Fig. 2e.

5. Percentile ROI boundaries: Equation (3) was used to obtain the merged atlas volume boundaries, as shown in Fig. 2f.

The merged atlas ROI boundaries are expressed in percentile (p), using the Equation (4):

p:(%)XIOO, @

where (x) is the slice number and (w) is the total number of slices per plane. Table 2 presents the percentile ROI boundaries per
plane and hemisphere.

6. Slice subsets: An MR image has several slices. The slice subsets were built using the slice positions of the ROI, expressed in
percentiles, as presented in Table 2.

The initial « and final w slice numbers were obtained using the equation given by a = @(f) and w = @(y); where, ¢(z) =
n % (z/100). Here, n is the total number of slices, and (f,y) are the initial and final slice positions, respectively, for a specific
plane and hemisphere, expressed as percentiles.

The subset (.5) includes the slice instances from H, to H ,, using the Equation (5):

H,=iV{ieN,0<i<d},
)
S = {H(t’Ha+l’H(t+2""’Hw—l’Hw}'
where (H) is the list, (d) is the total of slice numbers for a specific plane and hemisphere, and (.S) is the slice numbers containing
the ROL The initial and final slice positions where the ROI is present are assigned to («) and (w).

4.2.2. ROI position localization

The ROI position includes the slice number and centroid position (x, y). The centroid position was used to crop the 2D slice
images and extract the most informative content from the ROI. The process involved generating a list of slice numbers containing the
hippocampus region, creating lists of pixel positions for x and y, removing any outlier values from the position lists, obtaining the
centroid position (%, y) based on the mode, and converting the centroids into percentiles to consider varying volumes.

1. Slice selection: Equation (5) was used to obtain the list of slice numbers (.§) where the ROI (Hippocampus) is present.
2. Pixel position list: A list of x (X) and y (Y) position values is created for each 2D slice included in (.S). Here, only the pixels
with a value of “1” were added, as shown in the Equation (6):

V{i,j,keN,ieS,0<j<h0<k<w},

(6)
{(Xn+l :j»Ym_H Zk) ifMijk =1
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where (i) is the slice number included in the ROI slice list (S), (k) is the slice image height, (w) is the slice image width, (X) and
(Y) lists store the x and y positions of the pixels included in the ROI, respectively, and (n) and (m) are the number of elements
in the (X)) and (Y) lists, respectively.

. Outliers removing: The outlier values from the x and y pixel position lists (X,Y) were removed using a percentile-based

threshold, excluding the pixel positions with values less than the 25th and greater than the 75th percentile, using the Equation
™:

V{i,j,keN,i€S,0<j<h0<k<w),

as=f(X;,25), 075 = f (X;,75),

ws = £ (X;,25) 055 = £ (Y,,75), @
X, ={X,—(j}.Vjli<asVj>ars}

Y, ={X,; - {k}.Vk|k<w,5Vk>awss}

where i is the slice number included in ROI slice list S, & is the slice image height, w is the slice image width, the function
f (x,n) obtains the # percentile from y list, « and w values store the percentile threshold position for x and y lists, respectively,
and the X and Y lists include the non-outlier values of x and y, respectively.

. Mode-based centroid: The ROI center position (®;,A;), was calculated for each slice (i) included in the ROI slice list .S, using a

mode-based approach. The function (f (y)) obtained the mode from the X and Y list of pixel positions, as shown in the Equation

(8):

vi{ieNiesS},
(I)izf(Xi), (8)
Ai=f(Yi)

where the f (y) function gets the mode of the y list. (®;,A;) represent the x and y mode values for each slice in the ROI slice
list (.S), respectively, as shown in the Equation (9).
The (®;,A;) mode values were adjusted using the Algorithm 1.

®, =g (P, X,;,5,1), o
Ar=g (A, Y,,5,4)

where the function g (d)[, X,.0, A) adjusts the mode-based centroid values (¥, y) by including most of the ROI area in the resulting
square image. The desired ROI square size (6) in this study was 48 pixels for the coronal and axial planes and 96 pixels for the
sagittal plane. The A value corresponded to the slice image width or height in pixels.

Algorithm 1 Adjusted mode.

Input: ¢ // the mode of the x or y values

16:

X // list of x or y positions
6 // desired ROI square size in pixels
A // the image width or height in pixels

1 k < max(X) — min(X) // the ROI width or height
1y < 6/2 // the half of the desired ROI square size
: if k <6 then

¢ < min(X) + int(x /2) // if the ROI size is less than the square size
else

a <« min(X) — (¢ — y) // the left or top difference

p < max(X) — (¢ + ) // the right or bottom difference

y < int((a + f)/2) // the x or y difference

¢ < ¢+ 1y // adjust the center position

: end if
: if (¢ —y) <0 then

¢ <y // if the left or top position is less than 0

: end if
: if (p+y) > A then

¢ < A—y // if the right or bottom position is greater than the image width or height
end if

Output: ¢ // the adjusted mode

Fig. 3 shows an example of the adjustment of the mode for an ROI atlas slice. The left image 3a presents the original ROI center
position. The right image 3b shows the movement of the x and y positions to the left and top to view most of the ROL.

5. ROI position: Owing to the different sizes of the dataset volumes, ROI center positions were expressed in percentiles relative to

each other. The ROI center position (X, Y;), was calculated for each slice (i) included in the ROI slice list .S, using the Equation
(10):
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Fig. 3. ROI centroid positions: (a) Original centroid and (b) Adjusted centroid.

v{ieN,ieS},
X = ®; 100
i=\w ) (10)

A[
Yi = 7 X 100,

where (i) is the slice number included in the ROI slice list (.5'), () is the slice image height, (w) is the slice image width. (X)
and (Y;) are the lists of ROI center positions expressed in percentiles.

4.3. Instance selection validation
This phase included a) data generation, b) model building, and c) hybrid ensemble integration.

4.3.1. Data generation:

Data generation began by reading the instance dataset metadata, including the volume filename, slice number, ROI centroid, and
class. Data were then loaded batch-by-batch to manage the memory constraints. Depending on the image size and desired CNN input
type, the images were either resized to obtain the entire 2D image or cropped to extract the hippocampus, which was the ROI used
in this study.

4.3.2. Model building:

This step involved the construction of multiple CNN classification models using diverse CNN input types and architectures. The
building process integrated various datasets with different pre-processing types, planes, and hemispheres. In addition, it encompassed
hyperparameter optimization and the evaluation of model performance, as detailed below.

1. Convolutional Neural Network (CNN): 2D convolutional filters analyzed each slice independently, thereby missing contextual
information from adjacent slices. This independent analysis may result in 2D CNNs losing essential 3D spatial data. In contrast,
3D CNNs extract features from consecutive 2D feature maps at three scales. Consequently, they capture feature dimensions and
spatial information [50].

The 2D CNNs DenseNet (121) [51], EfficientNetV2 (M) [52], Inception ResNet V2 [53], and ResNet [54] were employed to
increase the number of instances and facilitate the use of pre-trained models with transfer learning from ImageNet. This study
proposed a custom 3D CNN model called Custom3D adapted from [55].

2. Hyperparameter optimization: The effectiveness of the machine learning algorithms is reliant on the identification of the optimal
hyperparameters. Hyperband, an advanced technique, optimizes random search by allocating predefined resources to randomly
sampled configurations and implementing early stopping [56]. This study employed it to select the optimal hyperparameters for
training the AD classification models.

3. Model performance evaluation: The receiver operating characteristic curve (ROC Curve) illustrates the trade-off between the true
positive rate (TPR) and false positive rate (FPR) at different classification thresholds. TPR (sensitivity) indicates the proportion
of actual positives correctly identified by the model. Whereas, FPR shows the proportion of actual negatives incorrectly classified
as positives. The overall performance of the binary classification model was quantified using the area under the curve (AUC)
metric, which represents the area under its ROC curve and the accuracy metric’s average and standard deviation.

We proposed the evaluation of the performance of the model at the subject-patient level. This is because, in 2D CNN types,
multiple images of a subject’s 3D volume were used in the training process. The classifications obtained from a subject’s slice
level were combined using majority voting.

4.3.3. Hybrid ensemble integration:

The versatility of the proposed instance selection method and the quality of the generated datasets were tested using a hybrid
ensemble model. Top-performing and diverse base classifiers trained on various datasets and models were selected to assess their
performance and improve AD classification. A weighted ensemble was then formed by proportionally weighing each member’s con-
tribution to the predictions based on their confidence or performance, following the methodology outlined in [57].

As shown in Fig. 4a, our weighted ensemble assigned weights to models based on their accuracy. The process is outlined as
follows. 1) A set containing the accuracy of each model was created. A = {A LA LA Am}, where (m) denotes the number

m—1>

8



J.A. Castro-Silva, M.N. Moreno-Garcia, L. Guachi-Guachi et al. Heliyon 10 (2024) e37552

Ensemble... H—H [P0 ]
{ Ensemblemn H—H P Mo=1 - M

[}
[ Ensemblen }%{L}-‘— {CN: Mo, AD: My}

|
1A M,I Wi =Ails h— I/ Ensemble Models\ .Pred|ct|on @ Model Weights
! | [N N—
[T |—:—H T I o Ensembles W P S Database
1 | @ Model Weights ¥
AL H W =A.ls ‘I = otabase Ensemble; H—H P2
|
]

M1=P1:Wi+...+ Pm* Wm

| A.nl_n.lwmm/s

1
1

1

1

| Weighted Ensemble
: Model

|

|

|

(a) Save Weights (Training). (b) Load Weights (Inference).

Fig. 4. Save and Load Weights.

of model members. 2) The sum of the accuracies was calculated s = Z‘m= , A;. 3) The weights of each model were calculated W =

{Wl Wy, oW, I,Wm}, where W, = %, 4) Finally, the model weight database (W) was saved onto the disk.

During the inference, as depicted in Fig. 4b, the hybrid ensemble model predictions were weighted by combining the predictions
of the model members multiplied by their respective weights. The steps are outlined as follows. 1) A set of predictions (P) were
created from (m) model members (CN=0, AD=1). P={P,P,,....,P,_,.P,}, 2) The weighted sum of predictions for each class was
calculated M, = 7" | (P; x W;) My = 100 — M, and 3) The predicted label (y) was determined. y = L if M, >. Mo.

0, otherwise.
This approach ensured that the final prediction leveraged the strengths of the most accurate models. This enhanced the robustness
and accuracy of AD classification.

4.4. Implementation details

All the evaluated models were trained sequentially on 10 workstations equipped with an Intel Core i9 9900K processor, 32 GB
RAM, and an 11 GB NVIDIA RTX 2080Ti GPU. Our instance selection methodology was implemented using Python software.

5. Experimental setup
5.1. Instance selection

This experiment compared the performance of the proposed methodology with that of state-of-the-art instance-selection methods.
A single-base classifier (DenseNet121) was trained to evaluate the impact of the instance selection methods on the model performance.
The 2D slice image datasets were created using the same volume.

1. Entropy fixed number: The entropy-based instance selection method [16,17,12,18] involved calculating the image entropy of
each slice, sorting them in descending order based on their entropy values, and retaining the top 32 image slices.

2. Percentile fixed number: The instance selection method based on slice percentile position [11] selected 32 instances from various
positions in a percentile distribution of the entire volume. The percentile positions per anatomical plane used were sagittal =65,
coronal = 35, and axial = 35.

3. Multiple atlas ROI-based instance selection (our proposal): The ROI (hippocampus) annotations from multiple atlases were fused.
The 2D image slices belonging to the merged ROI were included in the dataset. The number of slice instances was variable and
dependent on the anatomical plane.

5.2. Datasets

This experiment assessed the influence of the proposed methodology on various datasets trained using a single-base classifier
(DenseNet121), thereby introducing diversity to the homogeneous ensemble. Three distinct MRI datasets were generated from identi-
cal volumes using skull-stripped, skull-stripped registered image pre-processing techniques, and raw data. Multiple perspectives from
these datasets were acquired by amalgamating the brain hemispheres (left, right, and left+right) and anatomical planes (sagittal,
coronal, and axial).

5.3. CNN input type

The proposed instance selection method was tested using 2D and 3D network inputs by employing the entire image or a cropped
ROL. Using DenseNet121 [51], 2D CNNs processed the image slices extracted from the 3D MRI volume, and their predictions were
fused to yield a subject-level classification. Considering the 3D nature of MRI, Custom3D CNNs were used to analyze all subject slices
collectively. The 2D and 3D CNNs were trained on the same dataset, thereby enriching the heterogeneous ensemble with diversity.
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Table 3
Summary of parameters of the Transfer Learning 2D CNN Model.

2D CNN Transfer learning Model

Layer Type Parameters

pre-trained_model pre-trained_model = {’'DenseNet121’,
‘ResNet50V2’, ‘InceptionResNetV2’, ... },
weights =’imagenet’, input_shape =(160,160,3),
include_top =False, trainable = True

GlobalAveragePooling2D
Dropout 0.75

Dense n_classes, activation =’softmax’

5.4. CNN model

This experiment evaluated the impact of the proposed instance selection method on state-of-the-art model architectures, such as
DenseNet (121) [51], EfficientNetV2 (M) [52] Inception ResNet V2 [53] ResNet [54], These models used the same training data.

5.5. Hybrid ensemble

The overall effect of the proposed instance selection methodology was assessed using a hybrid ensemble model. This classifier
selected the most diverse and highest-accuracy models from the homogeneous and heterogeneous ensemble methods (Experiments II-
IV). Each member of the hybrid set comprised ensembles, each comprising three individual models. Classification within each hybrid
ensemble was determined by majority voting, aggregating the predictions from the three individual models. A weighted ensemble
approach was employed for the final classification, with each set member contributing to a proportionally weighted prediction based
on its performance.

5.6. Performance comparison

This experiment compared the performance of the proposed Multi-Atlas ROI-based instance selection methodology with that of the
state-of-the-art methods. The related studies analyzed in this experiment used diverse datasets (ADNI, AIBL, and OASIS), CNN input
types (2D and 3D), model architectures (ResNet, VGG, customs, and ensembles), preprocessing methods (skull stripping, registration,
segmentation), and instance selection techniques (cropping, entropy, ROI extraction).

5.7. Implementation details

The subject dataset was divided into training (70%), validation (15%), and testing (15%) sets. All experiments were repeated
three times. Random seeds were set for the NumPy, TensorFlow, Random, and OS libraries to obtain reproducible results. The Python
libraries NiBabel, TorchIO, PIL, and NumPy preprocessed the images without saving the results on the disk. The FreeSurfer tools
were used for skull stripping and MRI registration using the MNI152 template. The Keras library was used to construct classification
models.

5.8. Transfer learning

Transfer learning was used to customize a model pretrained on ImageNet, and all layers were used as feature extraction components
of a new model. The pretrained CNN was loaded without the classifier part of the model by specifying the top argument included in
False and the preferred shape of the images in our new dataset as 160 x 160 X 3. The CNN model was defined via the addition of a
new average pooling layer following the last pooling layer. A new classifier model with a dense, fully connected layer and an output
layer that predicts the probability of the two classes was added, as presented in Table 3. The weights of the pre-trained and new
models were all trained together on the new dataset.

5.9. Hyperparameters tuning

Hyperband hyperparameter optimization was used to determine the optimal hyperparameters for training the models. The
DenseNet121 model and the merged dataset (ADNI+AIBL+OASIS) were utilized to tune the hyperparameters. Table 4 defines the
hyperparameters search spaces.

Table 5 presents the five best results of Hyperband hyperparameters tuning.

DenseNet121 [51] was selected to explore the influence of the proposed methodology on the overall performance of CNN-based
classification models. This CNN model was selected because of its successful contribution to the computer vision field of image
classification, object detection and localization, scene understanding, and other related tasks [58,59].

Table 6 outlines the relevant information regarding the hyperparameter values chosen for training the proposed methodology and
all the selected CNNs to classify AD cases from MRI, except for the 3D custom CNN that used a dropout of 0.15.
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Table 4
Hyperparameters search space.

Hyperparameters  Values

Optimizer name {Adam, SGD, RMSprop, Adadelta,
Adagrad, Adamax, Ftrl}

Learning rate {0.01, 0.001, 0.0001, 1e-05, 1e-06}
Dropout {0.20, 0.25, 0.30, ... 0.70, 0.75, 0.80}
Batch size {8, 16, 32}

Epochs {10, 15, 20}

Table 5
Hyperparameter values for Trial Summary Hyperband.

Optimizer  Learning Rate Dropout Batch Size Epochs Score

Adam le—-05 0.75 8 15 95.03
SGD 0.001 0.40 16 15 94.91
Adam le—05 0.70 32 15 94.25
Adam le—-05 0.20 32 15 94.02
RMSprop 0.0001 0.55 8 15 94.02
Table 6
Hyperparameter values for DenseNet121 [51] on merged dataset.

Hyperparameter Value Description

Dataset Merged 70 Subjects each dataset (ADNI+AIBL+OASIS).

Image Size 160 x 160 Image size in pixels.

Number of channels 3 Number of channels (3=RGB, 1= Gray scale).

Transfer learning ImageNet Dataset name.

Learning rate LRS LearningRateSchedule exponential decay.

Decay steps 100000 Drops the learning rate by a factor.

Decay rate 0.9 The rate at which the learning rate is decayed.

Optimizer Name Adam The optimizer name.

Initial Learning Rate le—05 The initial learning rate.

Dropout 0.75 The rate in which the learning rate is decayed.

Batch Size 8 The number of instances per batch.

Epochs 20 The number of epochs.

5.10. Data analysis

All experiments were reported at the subject level by fusing all the classifications obtained from a subject at the slice level by
majority voting.

One-way ANOVA test used to assess significant differences between the means of three or more groups. The t-test was used to
check if two samples had identical averages. The significance level was set at 0.05% or 5%.

In this study, the following null and alternative hypotheses were tested.

« H (null hypothesis): y; = py = p3 --- = p;, (It implies that the mean accuracy of all models is equal).
+ H, (alternative hypothesis): It states that at least one model accuracy mean will differ from the rest.

6. Results and discussion

Our proposed methodology was tested in six experiments to achieve the following objectives (1) Compare our Multi-Atlas ROI-
Based Instance Selection technique with state-of-the-art methods. (2) Evaluate the versatility of our method to generate diverse
datasets using the same base classifier. (3) Examine the ability of the proposed technique to generate 2D and 3D datasets from full-
size or cropping images. (4) Evaluate the quality of the datasets generated by our method using state-of-the-art pre-trained CNN
models. (5) Examine the multi-view datasets produced by the proposed method using a hybrid ensemble model. (6) Compare the
performance of the proposed method with that of related state-of-the-art methods.

The experimental results corresponded to the mean and standard deviation of the model accuracy.

6.1. Experiment I (instance selection)
The results presented in Fig. 5 demonstrate that the proposed multi-atlas ROI-based instance selection technique outperformed
both the entropy [16,17,12,18] and percentile [11] methods in terms of accuracy. These significant differences allowed us to reject

the null hypothesis of equality, with a p-value of 0.005.
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Fig. 6. Performance evaluation.

Substantial differences were observed in the following aspects.

a) Instance selection method: In terms of mean accuracy across all planes, our proposed method exhibited significant differences
of 1.47% and 1.05% compared to the entropy and percentile methods, respectively, with p-values of 0.003 and 0.006, respectively.

b) Anatomical planes: Significant differences were observed in the coronal plane between the groups. Our proposed method
revealed a difference of 2.78% and 3.32% compared with the entropy and percentile methods, respectively, with p-values of 0.024
and 0.013, respectively.

The ROC curves and AUC values of the model, shown in Fig. 6a, evaluated the performance of the CNN models using datasets
from our proposed method. High AUC values in the sagittal (0.991), coronal (0.987), and axial (0.980) planes indicated excellent
model performance and a strong capability to differentiate between CN and AD classes. In addition, the Accuracy and Loss curves for
the CNN model (using the sagittal plane as an example), shown in Fig. 6b, identified a convergence point between the 15th and 20th
epochs. This indicated that the model effectively learned the underlying patterns in the data and that further training was unlikely
to yield significant improvements.

The performance of the prediction models was heavily influenced by the quality and quantity of the dataset, and the selection
of informative slices improved the results [17]. In this experiment, the proposed instance selection method, based on a multi-atlas
region of interest, was compared with state-of-the-art methods using the same subject-volume datasets.

The entropy technique [16,17,12,18] was outperformed by our proposed regarding accuracy rate. In our method, 3D information
was preserved, and the context was leveraged by selecting only adjacent slice instances related to the ROI. The number of instances
selected was variable and dependent on the plane, hemisphere, and ROI. By contrast, entropy techniques selected a fixed number of
slices, calculated the image entropy of each slice, sorted them in descending order based on their entropy values, and retained the top
(n) image slices. However, this approach may be unsuitable for 3D CNNs because of the loss of 3D information and the inclusion of
dispersed slices from extreme regions not associated with AD. In [17], datasets were created by retaining the top 8, 16, and 32 image
slices per subject using an entropy-based sorting algorithm. In [12,18], the authors selected the 32 most informative slices from each
projection of 3D MRI data. In this study, 32 slice images were used.
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Table 7
Summary of model accuracy from different experiments. As the table highlights, the most diverse and highest-accuracy perfor-
mance results are included in the hybrid ensemble.

Model Accuracy by Plane

CNN Input Type CNN Model Preprocess Hemisphere Sagittal % Coronal % Axial %

Experiment II - Datasets

2D Full Image DenseNet121 Raw Left+Right 9389+0.79 91.67+136  90.00+1.36
Skull Stripped  Left+Right 91.11+0.79  9333+136 91.67+1.36

Registered Left 89.44+0.79  90.56+0.79  91.67 +0.00

Right 9333+2.72 9222+0.79 93.33+136

Left+Right 92778+0.79  93.89+0.79  92.22+0.79

Experiment III - CNN input types

2D Full Image DenseNet121 Registered Left+Right 92.78 +0.96 93.88 +0.96 92.22 +0.96
2D ROI DenseNet121 Registered Left 91.11+2.08  91.67+236  91.67+0.00
Right 9222+0.79  90.56+£0.79  87.78 £0.79
3D Full Image Custom3D Registered Left+Right 89.44+0.78  91.67+236  9222+0.79
3D ROI Custom3D Registered Left 88.89+2.08  78.89+192  86.11+0.79
Right 9333+136 76.67+348  89.44+2.83

Experiment IV - CNN models

2D Full Image DenseNet121 Registered Left+Right 92.78+0.96  93.88+0.96  92.22+0.96
ResNet50V2 93.89+1.57 9222+0.79 91.11+0.79
InceptionResNetV2 94.44 +0.79 90.0+1.36 91.67 +0.00
EfficientNetV2M 9333+1.36  91.11+£0.79  89.44+0.79

The instance selection method based on the slice percentile position [11] was also outperformed by our proposed method. This
method selected a fixed number (n) of instances from various positions in the percentile distribution of the entire volume. The
experimental percentile positions per anatomical plane were as follows: sagittal =65, coronal =35, and axial = 35. In contrast, only
slices belonging to the ROI were selected using the proposed method. In the aforementioned studies [60], images measuring 182 x
218 x 182 pixels were produced using skull stripping and volume registration. Here, 96 representative MRI slices from the 43rd to
139th were selected from the axial plane. In [61], all raw images were resized and normalized and 96 slices from the middle of the
axial plane were selected.

The aforementioned selection methods, which are based on a fixed number of instances, have certain limitations. The performance
of the model was significantly dependent on the number of slices per volume [11]. The addition of more image slices with less
informative content can result in redundant or less representative information, increase the computational cost (time) of training,
introduce noise, and deteriorate the model performance. However, the selection of a fixed number of slice images can exclude AD-
related or more informative instances. A low number of slices per volume, for example, (1, 8), does not ensure the representativeness
of the 170-256 slice instances that comprise an MRI volume.

This approach enhanced the model performance by reducing computational costs (time) and preventing excessive noise. This
method guaranteed the representativeness of MRI and ensured the inclusion of AD-related information. These findings suggest that
the proposed instance selection method is crucial in diagnosing AD and normal cognition.

6.2. Experiment II (datasets)

The results in Table 7 (Experiment II - Datasets) indicate significant differences between the models. The null hypothesis that the
models were equal was rejected with a p-value of 0.012.

Substantial differences were observed in the following aspects.

a) Preprocessing: The mean accuracy of the sagittal plane varied significantly across datasets with different preprocessing methods.
Specifically, the raw dataset’s combined left and right hemispheres differed by 2.78% compared with the skull-stripped dataset and
by 4.45% compared to the registered dataset’s left hemisphere, with p-values of 0.024 and 0.005, respectively.

b) Hemispheres: In the registered dataset, a significant difference of 2.40% was observed between the mean accuracies of all
planes in the left (90.56%) and right (92.96%) hemispheres (p = 0.007).

c) Anatomical planes: Significant differences were observed between the sagittal and axial planes. A notable difference of 3.89%
was obtained between the raw dataset’s combined left and right hemispheres in the sagittal plane. Conversely, a 2.23% difference
was explicitly observed in the left hemisphere of the registered datasets. These disparities corresponded to p-values of 0.025 and
0.016, respectively. In addition, a 3.34% difference was evident between the left and the combined left and right hemispheres in the
sagittal plane. In comparison, a 3.33% difference was observed in the coronal plane within the registered datasets with a p-value of
0.013.
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Homogeneous ensembles encounter the challenge of generating diversity despite using the same learning algorithm [62]. This
study experimentally evaluated the ability of the proposed approach to produce various MRI datasets when trained with a single-base
classifier.

The mean accuracy varied significantly among the datasets subjected to different preprocessing methods (skull-stripped and
registered) and those that were not preprocessed (raw). Similar results were obtained by [63].

Our study revealed significant differences between the left and right hemispheres. Similarly, in [20], notable disparities were
observed in the accuracies of the left and right hemispheres across three ROIs: the amygdala, hippocampus, and insula. Specifically,
the Hippocampus showed a difference of 9.93

The studies in [64,65] reported differences in the model accuracy across anatomical planes. Similarly, our proposed method
demonstrated significant differences in model accuracy when the same base classifier was trained using datasets from the sagittal,
coronal, and axial planes.

Our proposed method generated diverse datasets using different preprocessing methods, anatomical planes, and hemispheres.
These datasets exhibited significant variations in model accuracy and offered multiple approaches for constructing a hybrid ensemble
model.

6.3. Experiment III (CNN input types)

Table 7 (Experiment III - CNN input types) reveals significant differences between 2D and 3D CNNs. Differences were observed
when considering the entire image and ROI and when combining hemispheres and planes. The null hypothesis was rejected with a
p-value of 0.000. A significant difference of 17.22% was observed between the highest model accuracy in the right hemisphere of the
3D ROI and the lowest accuracy in the combined left and right hemispheres of the 2D full image, with a p-value of 0.001.

Substantial differences were observed in the following aspects.

a) CNN input type: The mean accuracy of all planes was significantly different by 1.85% between the 2D (92.96%) and 3D (91.11%)
full-image models, with a p-value of 0.029. In the combined left and right hemispheres, there was a significant difference of 4.13%
between the 2D (91.54%) and 3D (87.41%) full-image models and 5.27% between the 2D (90.83%) and 3D (85.56%) ROI models,
with p-values of 0.001 and 0.002, respectively.

b) Anatomical planes: Significant differences were observed between the planes for the various model configurations. In the right
hemisphere of 2D ROI models, the differences between sagittal and axial planes were 4.44%, and between the coronal and axial
planes were 2.78%, with p-values of 0.005 and 0.024, respectively.

c) Hemispheres: In 3D ROI models of the left hemisphere, the differences between sagittal and coronal planes were 10.0%, and
between the coronal and axial planes were 7.22%, with p-values of 0.024 and 0.006, respectively. In the right hemisphere of 3D ROI
models, the differences between sagittal and coronal planes were 16.66%, and between the coronal and axial planes were 12.77%,
with p-values of 0.002 and 0.011, respectively. Finally, in the combined left and right hemispheres of 3D full-image models, a 2.78%
difference existed between sagittal and axial planes, with a p-value of 0.024.

In this study, we experimentally evaluated the impact of 2D and 3D CNNs on the construction of heterogeneous ensembles of
various classifiers. Subject-level 3D CNNs analyzed all slices of a subject simultaneously, leveraging the 3D nature of MRI scans.
Conversely, slice-level 2D CNNs processed individual 2D slices extracted from a 3D MRI volume and fuse the resulting classifications
to achieve a subject-level classification [66].

In [67,68], the 2D CNN models outperformed 3D approaches in classifying AD while reducing training times. Similarly, our study
revealed significant differences in the performance between 2D and 3D models for both complete images and ROIs. In addition,
significant differences were observed between the planes across the various model configurations.

The size of the dataset significantly influenced the performance of the 2D and 3D CNNs in AD classification. A small dataset
may hinder the performance of 3D models because more data may be required to tune the model end-to-end [67] effectively. The
improvement in 2D CNNs’ performance and the reduction in training time were primarily owing to a reduction in model complexity,
fewer trainable parameters, and the application of transfer learning. The notable differences observed in the anatomical planes were
likely because the sagittal plane captures essential information.

In practice, combining the outputs of individual classifiers results in more precise predictions. However, these improvements
required diverse ensemble members [62]. Our proposed datasets, including full-size and cropped images focusing on the hippocampus
ROI, demonstrated significant variations in model accuracy between 2D and 3D CNNs. These differences offer diverse options for
constructing the hybrid ensemble models.

6.4. Experiment IV (CNN models)

From Table 7 (Experiment IV - CNN models), a significant difference was observed between the CNN model architectures, thereby
rejecting the null hypothesis with a p-value of 0.000. A significant difference of 5.0% was observed between the highest model
accuracy in the combined left and right hemispheres of the skull-stripped registered dataset with a p-value of 0.003. The Inception-
ResNetV2 model achieved the highest accuracy (94.4%) in the sagittal plane. Conversely, the EfficientNetV2M model yielded the
lowest accuracy (89.44%) in the axial plane.

Substantial differences were observed in the following aspects.

a) CNN models: Regarding the CNN model differences, the mean accuracy of all planes for the EfficientNetV2m model (89.44%)
showed a significant difference of 2.78% with DenseNet121 (92.22%), and 2.23% with InceptionResNetV2 (91.67%), with p-values
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Table 8
Summary of accuracy from different model members of the hybrid ensemble.

Ensemble model members accuracy

Ensemble Ensemble Ensemble

Model Preprocess Plane Hemisphere CNN Type CNN Model Accuracy % Weight %
Homogeneous

Ensemble 1 Raw Sagittal Left+Right 2D Full Image  DenseNet121 95.00 11.33
Ensemble 2 Skull Stripped Coronal Left+Right 93.33 11.13
Ensemble 3 Registered Axial Right 93.33 11.13
Heterogeneous

Ensemble 4  Registered Coronal  Left 2D ROI DenseNet121 91.67 10.93
Ensemble 5 Axial Left+Right 3D Full Image  Custom3D 91.67 10.93
Ensemble 6 Axial Right 3D ROI Custom3D 93.33 11.13
Ensemble 7 Axial Left+Right 2D Full Image  ResNet50V2 91.67 10.93
Ensemble 8 Sagittal Left+Right InceptionResNetV2  95.00 11.33
Ensemble 9 Coronal Left+Right EfficientNetV2M 93.33 11.13
Hybrid

Weighted

Ensemble 95.00

of 0.024 and 0.016, respectively. Concerning the coronal plane, significant differences of 3.89% and 2.78% were observed when
comparing the DenseNet121 model with InceptionResNetV2 and EfficientNetV2m, with p-values of 0.025 and 0.024, respectively.
Similarly, the axial plane showed significant differences when comparing EfficientNetV2m with DenseNet121 of 2.78% and 2.23%
with InceptionResNetV2, with p-values of 0.024 and 0.016, respectively.

b) Anatomical planes: Significant differences were found in the anatomical planes when comparing the means of all CNN models.
The sagittal plane (93.61%) revealed a difference of 1.80% in the coronal plane (91.81%) and 2.5% in the axial plane (91.11%) with
p-values of 0.012 and 0.000, respectively. The InceptionResNetV2 model accuracy in the sagittal plane showed significant differences
of 4.44% in the coronal plane and 2.76% in the axial plane, with p-values of 0.016 and 0.007, respectively. In addition, a significant
difference of 3.89% was observed between the EfficientNetV2m sagittal and axial planes, with a p-value of 0.025.

In this experiment, we evaluated the quality of the datasets generated by the proposed method using state-of-the-art 2D CNN
classification models and architectures, all of which were built using the same dataset (merged). This approach enables a thorough
comparison of deep learning algorithms and enriches the diversity of hybrid ensembles.

In [69], the authors observed significant differences in the performance of various 2D CNN architectures such as InceptionV3,
ResNet with 50 and 101 layers, and DenseNet with 169 layers for AD classification. DenseNet169 exhibited the best results for
AD classification. Similarly, in [70], DenseNet169 outperformed the ResNet50 architecture. Our proposed method also identified
significant variations in the mean accuracy across different 2D CNN architectures, both overall and within specific anatomical planes.

The accuracy of 2D CNN architectures for AD classification is influenced by model complexity, architectural design, number of
trainable parameters, and network depth. These factors affect the learning efficiency and generalization ability of the models. The
effectiveness of a model depends on its structure and implementation.

Heterogeneous ensemble methods utilize a variety of base classifiers, each trained on the same dataset, to capitalize on their
distinct strengths and counterbalance their weaknesses. The significant differences between the 2D CNN architectures in this study
contributed to the diversity of the ensemble model and enhanced its robustness, thereby improving its overall performance and
reliability.

6.5. Experiment V (hybrid ensemble)

Table 8 presents that combining homogeneous and heterogeneous ensemble methods produces significantly higher accuracy
(95.00%) than a single-learning classification model, providing variety to the hybrid ensemble classifier.

The optimal composition of the ensemble is problem-dependent, and determining the number of classifiers of each type that
must be used has yet to be addressed [62]. Because weak classifiers must be combined adequately to fully exploit the ensemble, this
experiment evaluated the impact of multiple-view datasets trained on different base classifiers.

The models from the previous experiments (II-IV) with the highest accuracy performance and variety were used to create a hybrid
ensemble. This included different base classifiers trained on diverse datasets, as shown in Table 8.

Hybrid ensemble members are sets of three classifiers that combine the predictions from majority voting. Each member’s contri-
bution was weighted proportionally to its performance to obtain the final classification and create a weighted ensemble.

6.6. Experiment VI (performance comparison)

Table 9 compares the proposed method with state-of-the-art related works regarding CN and AD classification performance.
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Table 9
Performance comparison of the proposed method with other related works for the classification tasks (AD vs. NC).

Instance Selection

Study - Dataset MRIs Preprocess Technique CNN Input Type Model Accuracy
[14] - ADNI 212 Skull Stripping Cropping 3D ResNet50 82.93
HA-ResUNet 92.68
[71] - ADNI 405 (Skull Stripping, 3D CNN Ensemble 89.46
Registration) 3D DenseNet
[12] - ADNI 315 (Skull Stripping, Entropy(32) 2D Ensemble 85.27
Registration) VGG 16
[21] - ADNI 200 (Skull Stripping, ROI 3D Custom 89.00
- OASIS 196 Registration) 3DCNN+EL+GA 76.00
[18] - ADNI 1 510 Normalization Entropy (32) 2D Ensemble 93.15
VGG-16
GoogLeNet
AlexNet
[22] - ADNI 563 (Skull Stripping, ROI 3D ResNet 92.61
Bias Correction, ROI Trans-ResNet 93.85
- AIBL 567 Segmentation, ROI ResNet 92.60
Registration) ROI Trans-ResNet 93.17
Proposed - Merged 420 (Skull Stripping, ROI 2D Full Image ResNet50V2 93.89
(ADNI + Registration) Multi-Atlas InceptionResNetV2 94.44
AIBL + InceptionResNetV2 93.33
OASIS) DenseNet121 93.88
2D ROI 92.22
3D Full Image Custom3D 9222
3D ROI 93.33
2D-3D Hybrid Ensemble 95.00

The experimental results indicated that the proposed Multi-Atlas ROI-based instance selection method using a hybrid ensemble
(95.00%) and single-base classifiers such as DenseNet121 (93.88%), ResNet50V2 (93.89%), and InceptionResNetV2 (94.44%) slightly
outperformed the entropy-based and ROI-extraction methods (93.15% and 93.85%, respectively).

Compared with the best related work reported in [22], our proposed method offered several advantages.

(a) Reduced preprocessing tasks: We used fewer preprocessing techniques. Specifically, our dataset was preprocessed with skull
stripping and registration, while the comparison method uses segmentation and bias correction.

(b) More versatile: Our method could produce multiple view datasets with 2D or 3D full images or ROIs compared with a single
view.

(c) Enhanced robustness and generalization: Our method demonstrated greater robustness and generalization capacity. We tested
our proposal using a merged dataset from multiple centers (ADNI, AIBL, and OASIS) in contrast to the single-center dataset
(ADNI) used in the comparison.

(d) Improved performance: Our proposal slightly outperformed the best-reported results. The accuracy of our hybrid ensemble
(95.00%) and single base classifiers, such as DenseNet121 (93.88%), ResNet50V2 (93.89%), and InceptionResNetV2 (94.44%),
was slightly higher than the 93.85% achieved using a mixed model with Transformers and CNNs.

This behavior can be attributed to the careful assembly of the subject and slice distribution sets, the optimal selection of the most
significant slice instances, and the most informative content from the ROL.

7. Limitations

The proposed method relied on a template with ROI annotations to identify the (x, y) centroids of an ROI and its slices. This
dependence on preexisting annotated templates limits the accuracy and applicability of the method, which is contingent on the
availability and quality of these annotations.

AD affects critical brain regions such as the entorhinal cortex, fornix, and hippocampus, thereby affecting cognitive functions
[2-4]. Although our methodology is adaptable to multiple ROIs, it is currently limited to extracting informative instances from only
the hippocampus.

In addition, the relatively small dataset size poses a limitation, particularly affecting the performance of 3D models. Thus, 3D
CNNs require significant amounts of data to prevent overfitting and to effectively learn comprehensive 3D features.
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8. Conclusions and future work

This study proposed a novel methodology for identifying and selecting the most informative 2D slices by merging hippocampus
ROI annotations from multiple atlases (an instance selection method centered on hippocampus content using Multi-Atlas). Further,
an innovative approach for extracting ROI content by calculating the adjusted centroid (x, y) and capturing the most informative
image content has been developed.

A multisource domain adaptation method was proposed to address domain shift and improve model robustness. It merged three
diverse population datasets (ADNI, AIBL, and OASIS) into a single domain, creating a multicenter dataset with registered MRI skull-
stripped images. The participants were characterized using the clinical dementia rating (CDR) scale for integrated data comparison.

The impact of the proposed methodology on the overall performance of CNN-based classification models was explored experi-
mentally. Our instance selection method could select instances for 2D and 3D datasets from an ROI or an entire image. The dataset
generated using our proposed method achieved state-of-the-art performance when trained using a combination of homogeneous and
heterogeneous ensemble methods.

The model performance varied according to the dataset (preprocessing technique, hemisphere, and plane) and model (CNN input
type and model architecture). The use of 2D slices increased the number of instances and enabled existing 2D CNNs to train models
through transfer learning or from scratch.

In future work, it would be interesting to explore the use of custom CNNs and model ensembles that utilize multiple ROIs and
segmentation techniques to improve the performance and reliability of classification models. Moreover, increasing the size of the
dataset is crucial for enhancing performance and accuracy, generalizing new data more effectively, and accessing a more diverse and
representative sample. This approach aids in the identification of a broader range of patterns and features associated with Alzheimer’s
disease.
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