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Gastric cancer is one of the most common and clinically important diseases worldwide. The traditional
Laeuren classification divides gastric cancer into two histopathological subtypes: diffuse and intestinal.
Recent cancer genomics research has led to the development of a new classification based on molecular
characteristics. The newly defined genomically stable (GS) subtype shares many cases with the

histopathologically diffuse type. In this study, we performed genetic profiling of recurrently and signifi-
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cantly mutated genes in diffuse type and GS subtype tumors. We observed significantly different genetic
characteristics, although the two subtypes overlapped in many cases. In addition, based on the profiles of
the significantly mutated genes, we identified molecular functions and mutational signatures character-
istic of each subtype. These results will advance the clinical application of the diffuse type and GS subtype
gastric cancer in precision medicine for treating gastric cancer.

© 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

Gastric cancer (GC) is the third leading cause of death world-
wide, with hundreds of thousands of people lost each year [1,2].
The incidence of GC is highest in East Asia and lowest in North
America [2,3]. GC is a heterogeneous disease with phenotypic
diversity that is traditionally divided into two groups, intestinal
and diffuse types, according to the Lauren classification [4]. This
traditional classification has not shown clear clinical utility to date.
The poorly differentiated diffuse type is infiltrated with abundant
stroma, progresses faster than the intestinal type, and is associated
with a poor prognosis [5,6]. Recently, next- generation sequencing
technology has revealed an extensive repertoire of potentially can-
cer driver genes; thus the landscape of mutations in GC has also
been disclosed [7-10]. The Cancer Genome Atlas (TCGA) project
classified GC into four molecular subtypes; Epstein-Barr virus-
positive (EBV), microsatellite instability (MSI), genomically stable
(GS), and chromosomal instability (CIN) subtypes [7,11]. These
recent studies focused on molecular classification by hypothesiz-
ing that tumor classification based on molecular data is more clin-
ically influential than traditional histopathological classification in
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terms of selecting treatment methods and predicting patient prog-
nosis. This molecular classification has improved our understand-
ing of the molecular profile and heterogeneity in GC. However,
these classifications are not designed to optimize patient selection
for targeted therapies and their clinical utilities are also unknown
in many cases.

The GS subtype is difficult to clearly characterize based on the
pattern of gene mutations because the mutations are sporadic
and present in low numbers. However, many cases of GS are clas-
sified as the diffuse type according to the Lauren classification, and
most of cases are shared between the diffuse type and GS subtype
[7,11]. The TCGA gastric cancer study also showed that 73% of dif-
fuse type cases can be classified as the GS subtype, suggesting that
the genetic features of GS are associated with the diffuse pheno-
type [7]. Mutations in genes such as CDH1 and RHOA have been
found to be particularly prominent in the diffuse type, and their
relevance to the mechanism of carcinogenesis has been studied
[12-14]. However, it is difficult to discuss the diffuse type in terms
of other specific gene mutations, as many cases overlap with the
GS subtype and show few characteristic gene mutations.

Here, we statistically investigated the characteristics of gene
mutations in these two subtypes of GC, diffuse and GS. We identi-
fied significantly mutated and possible driver genes in each type.
We observed five significantly mutated genes common to both
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subtypes and significantly mutated genes specific to each subtype.
Despite overlap in the characteristics of the subtypes, the charac-
teristics of the pattern of gene mutations were quite different in
each subtype. In addition, each subtype was characterized based
on functional features and mutation signature analysis associated
with the gene mutation patterns. The patterns and characteristics
of the gene mutations identified in this study are useful for devel-
oping clinical treatments for each type of GC.

2. Materials & methods
2.1. Mutation data

Gene mutation data of TCGA-STAD stomach adenocarcinoma
were downloaded from the cBioPortal for Cancer Genomics
(https://www.cbioportal.org). Of these mutation data, cases with
classification results identified in TCGA GC study [7] were
extracted (n = 295). According to the clinical information download
from cBioPortal, these cases were classified into the Epstein-Bar
virus-positive (n = 26), MSI (n = 64), GS (n = 58), and chromosomal
instability (n = 147) subtypes by TCGA classification as well as dif-
fuse (n = 69), intestinal (n = 196), mixed (n = 19) and unknown
(n=11) types according to the Lauren classification. Of these, sam-
ples with somatic mutation data were extracted (n = 289). All
obtained cases were divided into diffuse (n = 67) and non-diffuse
(n=192) subtypes and GS (n = 55) and non-GS (n = 234) subtypes.
Cases with mixed and unknown types were classified according to
the Lauren classification. Cases labeled as “non-diffuse” did not
include the mixed and unknown types in subsequent analysis.

2.2. Significantly mutated genes

We identified mutated genes as those with non-synonymous
mutation frequencies greater than that of the background. For this
calculation, we estimated the expected number of protein-altering
mutations in each gene, which is affected by the gene length and
background mutation rate. First, the number of non-synonymous
mutation sites (nonsynonymous SNV or short Indel) was counted
for each gene. Second, the background mutation rate was calcu-
lated as the frequency by dividing the total number of observed
mutations in all genes by the total gene length, which was then
used to determine whether the observed mutation count in a gene
was higher than the expected number. The expected number of
mutations in each gene was estimated as the total number of
observed mutations in all genes and the background mutation rate.
Finally, genes with more observed mutations than the expected
number were statistically tested by right-tailed Poisson tests
[15,16], which were conducted using rateratio.test in R package
(https://www.r-project.org). P-values were adjusted for multiple
testing using the Storey method [17] with R. Significantly mutated
genes showing 10-fold P-value differences between the diffuse and
non-diffuse type, and the GS and non-GS subtypes were extracted.

2.3. Molecular interaction network analysis

The molecular interaction and association network data defined
in the STRING database [18] were used. The interaction network
data of genes with 10-fold P-value differences for the diffuse-
type and GS subtype were obtained. The edge number between
the diffuse type and GS subtype was 81, whereas the specific edge
numbers in these two types were 93 and 69, respectively. Statisti-
cal test (paired t-test) for the fraction of in-edges linked within
each type and inter-edges linked these two different types was cal-
culated. The diffuse and GS genes with 10-fold P-value differences
had significantly greater frequencies of in-edges than inter-edges
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(P-value: 2.48 x 10~ and 0.0016, respectively). Finally, interaction
networks were constructed using Gephi graph network visualizing
software [19].

2.4. Gene set enrichment analysis

Significantly mutated genes with the top 50P-value differences
were subjected to g:Profiler analysis [20]. g:Profiler analysis was
performed to obtain detailed information on biological functions
and pathways that significantly enriched significantly mutated
genes with differences in P-values in the diffuse type and GS sub-
type. g:Profiler analysis can provide several types of results based
on representative databases such as Gene Ontology [21], KEGG
[22], Reactome [23], and WikiPathway [24].

2.5. Mutational signature analysis

Mutational signatures of the diffuse and non-diffuse types and
GS and non-GS subtypes were analyzed as follows: each single-
nucleotide variant was classified in a matrix of the 96 possible sub-
stitutions based on the sequence context comprising the nucleo-
tides 5 and 3’ to the position of the mutation. Mutational
signatures were extracted by non-negative matrix factorization
analysis with the SomaticSignatures R package [25] and plotted
with the ggplots R package (http://ggplot2.org/). The mutational
signature classifications defined by the COSMIC database [26] were
used in this analysis.

3. Results
3.1. Overview of GC used in this study

In the TCGA GC data, 67 and 55 cases were the diffuse type and
GS subtype, respectively, among the 289 total cases (Fig. 1A).
Thirty-nine cases were defined as having both diffuse type and
GS subtype characteristics, accounting for 58% of diffuse type and
71% of GS subtype. Survival plots for these subtypes showed a
slightly worse trend in prognosis for the diffuse versus non-
diffuse type (P = 0.30), whereas there was no difference for GS
compared to the non-GS subtype (P = 0.90) (Fig. 1B). Among the
four molecular subtypes defined in the TCGA GC study, the distri-
bution of the diffuse type was the most prevalent for the GS sub-
type, as described above, and 10-20% of the other three
molecular subtypes were classified as the diffuse type (Fig. 1C
and D). In construct, 57% of cases classified as the diffuse type
according to the Lauren classification were of the GS subtype and
only a few percent of the GS subtype cases were found among
the non-diffuse type (Fig. 1E and F). Detailed percentages in Fig. 1-
C-F are summarized in Supplementary Table 1.

3.2. Significantly mutated genes in GC

We statistically evaluated whether the frequency of mutations
in a specific gene was significantly more higher than in other back-
ground genes. We identified genes with significant mutation fre-
quencies in the diffuse and non-diffuse types and the GS and
non-GS subtypes (Supplementary Table 2). Fig. 2A and B show
the distribution of negative log P-values between diffuse vs. non-
diffuse and GS vs. non-GS, respectively. We identified 81 genes in
the diffuse type (P < 0.01, Q < 0.25), and 68 genes in the GS subtype
(P < 0.01, Q < 0.25) as significantly mutated. In both subtypes,
CDH1 and RHOA showed extremely low P-values compared with
the non-diffuse type and non-GS subtype, whereas TP53 showed
significant P-values in all four categories, including non-diffuse
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Fig. 1. Overview of the diffuse type and GS subtype used in this study. (A) The number of sequenced cases in the diffuse type and GS subtype. (B) Survival plots for the diffuse
type and GS subtype. Overall survival time was obtained from TCGA. (C-F) Distribution of cases in the diffuse type and GS subtype based on the Lauren classification and

TCGA molecular classification.

and non-GS. Thus, TP53 is thought to be associated with GC overall
rather than with the diffuse type and GS subtype.

Next, we extracted genes with differential P-values, for which
the frequency of mutations was sufficiently large for the diffuse
type and GS subtype compared to their respective non-diffuse
and non-GS counterparts. Genes showing P-values with a differ-
ence of at least 10-fold were extracted. Of these significantly
mutated genes in the diffuse type and GS subtype, those with
greater P-values in the counterpart subtype were extracted and
the negative logarithm of the difference in P-values was calculated.
As a result, 51 and 35 genes remained in the diffuse type and GS
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subtype, respectively (Supplementary Fig. 1). Five genes, CDH1,
RHOA, HIST1H1C, TGFBR2 and CTNNA1, were significantly mutated
in both subtypes (Fig. 3A). Furthermore, when genes showing a
100-fold difference were extracted, only CDH1 and RHOA remained
as common genes. Two genes, CDH1 and RHOA, exhibited extre-
mely low P-values in the diffuse type and GS subtype compared
to their counterparts and thus may be strongly associated with
the two subtypes. CDH1 showed P-values of 2.74e-26 and 0.3696
in diffuse and non-diffuse types, respectively, and 3.17e-25 and
0.2588 in GS and non-GS subtypes, respectively. RHOA also exhib-
ited extremely low P-values of 5.42e-17 and 2.22e-12 in the diffuse
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Fig. 2. Distribution of P-values of significantly mutated gene detection. (A) P-values in the diffuse against non-diffuse type and (B) P-values in the GS against non-GS subtype.

All the P-values were transformed to negative log10 P-value.

type and GS subtype, respectively; these values were much lower
than those of 0.0416 and 3.03e-05 observed in their non-diffuse
and non-GS counterparts. The mutated genes associated with these
subtypes and distribution of each case are shown in Supplemental
Fig. 2 as an oncoprint. In addition, molecular interaction and asso-
ciation network analysis was performed for genes showing P-value
differences. The results showed that the diffuse type and GS sub-
type were clearly distinguished (Fig. 3B). A diffuse and GS-
specific network was connected for the common genes, particu-
larly for the CDH1, RHOA, TGFBR2, and CTNNA1 genes.

3.3. Enrichment analysis of significantly mutated genes in diffuse-type
and GS subtypes

Enrichment analysis of the molecular functional distribution
was performed for genes showing differences in P-values of 10-
fold (Supplementary Table 3). WikiPathway clearly distinguished
the molecular functions/pathways of the diffuse type and GS sub-
type (Fig. 4). The results showed that “pathways regulating hippo
signaling,”, “epithelial to mesenchymal transition in colorectal
cancer”, “MAPK signaling pathway”, “Wnt signaling pathway and
pluripotency”, “ESC pluripotency pathways”, “Hippo-Merlin sig-
naling dysregulation”, “neural crest cell migration during develop-
ment”, “neural crest cell migration in cancer” and others were
significantly enriched in the diffuse type, whereas “chromosomal
and microsatellite instability in colorectal cancer”, “pathogenic
Escherichia coli infection”, “H19 action Rb-E2F1 signaling and
CDK-beta-catenin activity”, “hepatitis B infection”, “ciliary land-
scape” and others were enriched in the GS subtype. Thus, the dif-
fuse type was likely to have mutations in functional pathways
related to cell migration and pluripotency. In contrast, more fre-
quent mutated genes in the GS subtype functions in cell cycle-
related signaling pathways and bacterial infection. For comparison
with the results of the top P-value differences described above, the
top 100 genes with significant P-values in GS and diffuse types

examined by enrichment analysis. The enriched functional cate-
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gories between the GS subtype and diffuse type were quite similar
(Supplementary Table 4).

3.4. Mutational signature analysis to explore causal factors

We performed mutational signature analysis to identify the
cause of gene mutation (Fig. 5, Supplementary Fig. 3). This
method is used to investigate the molecular mechanisms of car-
cinogens, such as ultraviolet light and smoking, and molecular
functions such as homologous recombination and mismatch-
repair types, by using the patterns of three bases including DNA
substitution and the flanking bases. Mutational signature analysis
identified signatures 1, 6, 15, and 17 as common to all the diffuse
type and GS subtype, and as well as their counterparts. In con-
trast, only signature 21 was identified outside of the GS subtype,
as a feature could not be observed in the GS subtype. Signature 28
was identified only in the GS subtype and was distinguished from
the other subtypes in this regard. Signature 10 was detected as a
signature related to hypermutation in the GS subtype and non-
diffuse types.

4. Discussion

The subtypes of diffuse and GS are distinguished based on
histopathological classification and molecular classification
according to gene mutations, although most cases share various
features (Supplementary Table 4). However, the results of statisti-
cal analysis of the frequency of gene mutations were specific to
each type, and divided into groups of differentially mutated genes,
except for five common genes. Furthermore, using stringent crite-
ria (100-fold difference in P-values relative to the counterparts),
two highly mutated genes, CDH1 and RHOA, were detected in both
subtypes, which is supported by many previous genomic studies of
GC [12-14]. Significant and highly mutated genes, which are com-
mon among these subtypes, may characterize each subtype of can-
cer. Thus, based on clinical characteristics, the diffuse type is
poorly differentiated, and the genes involved in poor differentia-
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legend, the reader is referred to the web version of this article.)

tion and increased malignancy are more frequently mutated and
associated with molecular functions and pathways that promote
cancer metastasis. In contrast, the GS subtype is associated with
mutations in genes involved in cell proliferation, which may cause
differentiated cancers. Consistent with this hypothesis, enrichment
analysis indicated that the diffuse type is strongly associated with
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functions such as pluripotency and cell migration, which are sug-
gested to be associated with a poorly differentiated cancer. In addi-
tion, the GS subtype was shown to be enriched in the functions of
bacterial infection and cell cycle, suggesting an association with
cell proliferation as a differentiated form of cancer. This observa-
tion is also consistent with the above hypothesis. Therefore, the
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results of enrichment analyses of molecular functions and path-
ways may explain these diffuse and GS types of cancer.

The results of the mutational signature analysis revealed differ-
ent signatures for the diffuse type and GS subtype. Signature 10,
which showed POLE mutation type hypermutation, was more
prominent in the GS subtype mutational signatures. This is because
one donor with the GS subtype had a POLE mutation. Although the
donor with the POLE mutation exhibited a hypermutation type [26]
and was classified as the hypermutation (MSI status is high) sub-
type in the four molecular classification systems defined in TCGA
GC study [7], this patient was not classified as a hypermutation
but rather as GS because of the stable MSI status. This patient
showed a large number of mutations (>200 tumor mutation bur-
den) and may be classified as the hypermutation subtype. How-
ever, in this study, the original classification result defined in the
TCGA GC study was used, and signature 10 was observed in the
GS subtype.

Furthermore, signature 21 in the diffuse type and signature 28
in GS were remarkably different between the diffuse type and GS
subtype. Signature 21 has also been observed in the non-diffuse
type and non-GS subtypes, whereas signature 28 has been
observed only in the GS subtype and can be used to characterize
this subtype. Signatures 21 and 28 are defined by the COSMIC data-
base as commonly found in GC, but the associated etiology is
unknown [26]. Although the causal factors are unknown, the two
different signatures 21 and 28 are likely extremely important fac-
tors in the etiology for distinguishing the histopathology between
the two subtypes.

The diffuse type was characterized by genes that may also be
involved in molecular function and prognosis, whereas the GS sub-
type is characterized by a mutational signature that indicates the
cause of the cancer. Our findings and the information on the pattern
of genetic mutations obtained in this study are useful for future clin-
ical studies of treatments for these two subtypes of diseases.
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5. Conclusions

Although the diffuse type of poor prognosis and GS subtype of
sporadic gene mutations have many histopathologically and genet-
ically common features and cases in GC, we found a clear difference
in mutation profiles between these two GC subtypes. In addition, we
observed clear differences in their associated molecular functions
and possible causal mutational signatures. Clinical applications
based on these statistically supported genetic mutation profiles
are needed to apply these results in medicine to treat GC.
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