
REVIEW

Diagnosis, investigation and management of hereditary spastic
paraplegias in the era of next-generation sequencing

Anke Hensiek • Stephen Kirker • Evan Reid

Received: 5 November 2014 / Accepted: 25 November 2014 / Published online: 6 December 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The hereditary spastic paraplegias (HSPs) are a

group of genetic conditions in which spastic paralysis of

the legs is the principal clinical feature. This is caused by a

relatively selective distal axonal degeneration involving the

longest axons of the corticospinal tracts. Consequently,

these conditions provide an opportunity to identify genes,

proteins and cellular pathways that are critical for axonal

health. In this review, we will provide a brief overview of

the classification, clinical features and genetics of HSP,

highlighting selected HSP subtypes (i.e. those associated

with thin corpus callosum or cerebellar ataxia) that are of

particular clinical interest. We will then discuss appropriate

investigation strategies for HSPs, suggesting how these

might evolve with the introduction of next-generation

sequencing technology. Finally, we will discuss the man-

agement of HSP, an area somewhat neglected by HSP

research.
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Introduction

The hereditary spastic paraplegias (HSPs) are a group of

genetic conditions in which spastic paralysis of the legs is

the principal clinical feature [1, 2]. In most subtypes of

HSP, this is caused by a relatively selective distal axonal

degeneration involving the longest axons of the cortico-

spinal tracts [3]. As a group, these conditions are moder-

ately rare, with prevalence estimates in different

geographical regions ranging from 0.1 to 9.6 per 105 [4].

However, as they are chronic and sometimes severe con-

ditions that frequently present in childhood and young

adult life, they represent a significant disease burden. In

addition, they are scientifically important, since they pro-

vide an opportunity to identify genes, proteins and cellular

pathways that are critical for axonal health.

In this review, we will provide a brief overview of the

classification, clinical features and genetics of HSP, high-

lighting selected HSP subtypes that are of particular clin-

ical interest. We will then discuss appropriate investigation

strategies for HSPs, suggesting how these might evolve

with the introduction of next-generation sequencing tech-

nology. Finally, we will discuss the management of HSP,

an area somewhat neglected by HSP research.

Overview of main HSP clinical categories

Traditionally, the hereditary spastic paraplegias are sub-

categorised into ‘‘pure’’ and ‘‘complex’’ (or ‘‘complicated’’)
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subtypes [3]. In northern European populations, pure forms

are the most frequent. The clinical features of pure HSP

have been thoroughly described in previous research arti-

cles and reviews, and diagnostic criteria have been pro-

posed [1, 5–9]. Briefly, the typical clinical picture is of a

slowly progressive, predominantly symmetrical, spastic

paraplegia. This is frequently accompanied by minor sen-

sory abnormalities (such as absent vibration sensation) and

neurological bladder involvement, but bowel involvement

is rare. If seen at all, arm involvement is minimal and does

not extend beyond hyper-reflexia and minor weakness (e.g.

difficulty unscrewing a tight bottle top); more significant

arm involvement should raise the possibility of alternative

diagnoses such as primary lateral sclerosis or amyotrophic

lateral sclerosis, while bulbar involvement is incompatible

with a diagnosis of pure HSP. Age at onset varies from

childhood to late adult life. Within many multiplex families

it is highly variable, although mutations in certain genes,

notably spastic paraplegia gene (SPG) 3A/atlastin1, are

predominantly associated with a childhood age at onset.

While pure HSPs present a relatively homogenous

clinical picture, complex HSPs are a disparate group of

distinct disorders (Table 1) [1–3]. As most complex HSPs

are inherited in an autosomal recessive pattern, they are the

commonest forms of HSP in populations where consan-

guinity is frequent; for example, in a Tunisian series of 38

families, approximately 70 % of families had autosomal

recessive complex HSP [10]. However, it is important to

recognise that these complex subtypes of HSP are found

worldwide, e.g. HSP with thin corpus callosum caused by

SPG11 or SPG15 mutations has been described in many

populations and is the most common type of complex HSP

that we see in our own clinical practice in Cambridge, UK.

Genetics of HSPs

The HSPs show a remarkable degree of genetic heteroge-

neity. The chromosomal location of more than 70 SPGs is

known, and presently more than 50 of the genes have been

fully identified (Table 1). Moreover, additional syndromes

such as Warburg Micro syndrome, previously considered

distinct, have recently been incorporated under the rubric

of HSP by reason of overlapping cellular pathology [11].

This new knowledge has led to an evolution of the clas-

sification of HSP, which, while still referring to phenotypic

information, is increasingly focussed on the gene involved.

In addition, gene identification has resulted in the distinc-

tion between pure and complex HSP becoming somewhat

blurred as it has become apparent that mutations in the

same gene may cause either a pure or complex phenotype.

An example of this is the rare identification of mutations in

SPG4/SPAST, SPG31/REEP1 or SPG3A/atlastin1, three

genes typically associated with pure HSP, in patients who

have spastic paraplegia accompanied by cerebellar ataxia

or peripheral neuropathy [12–14].

Pure HSP phenotype

In northern European populations, autosomal dominant

inheritance accounts for the majority of patients from

families with pure HSP [15]. Autosomal recessive inher-

itance accounts for most of the remainder, while clear-cut

X-linked inheritance is infrequent. Rarely, gonadal

mosaicism for a dominant gene has been described and

this can be mistaken for autosomal recessive inheritance

[16]. In addition, some patients present without a family

history. Potential genetic explanations for this are varied

and include singleton autosomal recessive cases, new

autosomal dominant mutations, or inherited autosomal

dominant mutations with non-penetrance in a parent. The

estimated relative frequency of mutations in selected

genes associated with pure HSP is given in Table 2. From

this table, it can be seen that testing for three genes,

SPG4/SPAST, SPG3A/Atlastin1 and SPG31/REEP1, will

identify the responsible mutation in approximately 50 %

of families with autosomal dominant pure HSP. For SPG4/

SPAST, this testing should include methodologies to pick

up whole exon deletions, as these are a common muta-

tional class in this subtype of HSP (they have also been

described in other forms including SPG3A/Atlastin1 and

SPG31/REEP1-HSP) [14, 17–19]. For families with an

autosomal recessive inheritance pattern, screening SPG5

(CYP7B1) will pick up the causative mutations in

approximately 5–10 % of cases. However, the yield from

testing each individual additional gene beyond these

commoner genes is low. Using traditional ‘‘one at a time’’

sequential gene testing to detect these rare mutations can

be very expensive and may not be justifiable for publically

funded health services. Next-generation sequencing

approaches are currently revolutionising this situation (see

below).

Complex HSP phenotypes

As mentioned above, the complex HSPs are a diverse set of

conditions, each with distinctive clinical features and each

caused by one or a small set of genes. Here, we will focus

on two of the more common presentations, HSP with thin

corpus callosum and HSP accompanied by cerebellar

ataxia.

HSP with thin corpus callosum

A thin corpus callosum on MRI scanning is a characteristic

feature of patients who have autosomal recessive SPG11
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Table 1 List of known or probable HSP genes

Gene Protein Inherited OMIM Comment P/C* Clinical features of complex forms

SPG1/
L1CAM

L1-cell adhesion molecule XL #303350 C 1. MASA syndrome, 2. X-linked
hydrocephalus, 3. X-linked
complicated HSP

SPG2/PLP1 Proteolipid protein 1 XL #312920 P/C 1. Pure HSP, 2. complex HSP, 3.
Pelizaeus–Merzbacher disease

SPG3A/
ATL1

Atlastin1 AD #182600 P

SPG4/SPAST Spastin AD #182601 P

SPG5A/
CYP7B1

25-hydroxycholesterol 7-alpha-
hydroxylase

AR #270800 P

SPG6/NIPA1 NIPA1 AD #600363 P

SPG7 Paraplegin AR #607259 P/C Cerebellar ataxia, optic atrophy,
deafness, amyotrophy

SPG8/
KIAA0196

Strumpellin AD #603563 P

SPG9 – AD %601162 C Cataracts, motor neuropathy, skeletal
abnormalities and gastro-
oesophageal reflux.

SPG10/
KIF5A

Kinesin heavy chain 5A AD #604187 P/C Peripheral neuropathy, amyotrophy,
mental retardation, parkinsonism

SPG11 Spatacsin AR #604360 C HSP with thin corpus callosum.
Peripheral neuropathy, intellectual
disability, cognitive decline,
amyotrophy, pseudobulbar
involvement, cerebellar
involvement, parkinsonism,
dystonia

SPG12/RTN2 Reticulon2 AD #604805 P

SPG13/
HSPD1

Heat shock 60 kDa protein 1 AD #605280 P

SPG14 – AR %605229 C Intellectual disability, motor
neuropathy

SPG15 Spastizin AR #270700 C HSP with thin corpus callosum.
Peripheral neuropathy, intellectual
disability, cognitive decline,
amyotrophy, pseudobulbar
involvement, cerebellar
involvement, parkinsonism,
dystonia, pigmentary maculopathy
(Kjellin syndrome).

SPG16 – XLR %300266 C Spastic quadraplegia, intellectual
disability, cerebellar ataxia, optic
atrophy, nystagmus, bowel and
bladder dysfunction.

SPG17/
BSCL2

Seipin AD #270685 C Silver syndrome; HSP with distal
amyotrophy. Overlaps with HMSN
V.

SPG18/
ERLIN2

ER lipid raft associated 2 AR #611225 C Epilepsy, intellectual disability,
pseudobulbar palsy, joint
contractures

SPG19 AD %607152 P

SPG20/
SPARTIN

Spartin AR #275900 C Troyer syndrome: dysarthria,
pseudobulbar palsy, intellectual
disability, amyotrophy, short stature
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Table 1 continued

Gene Protein Inherited OMIM Comment P/C* Clinical features of complex forms

SPG21/
MAST

Maspradin AR #248900 C Mast syndrome: progressive
dementia, cerebellar signs, extra-
pyramidal involvement, thin corpus
callosum.

SPG22 SLC16A2 XLR #300523 C Allan-Herndon-Dudley syndrome

SPG23 – AR %270750 C Disordered skin pigmentation,
peripheral neuropathy

SPG24 – AR %607584 P

SPG25 – AR %608220 C Disc herniation

SPG26/
B4GALNT1

Beta-1,4 N-
acetylgalactosaminyltransferase
1

AR #609195 C Intellectual disability, peripheral
neuropathy, dysarthria, cerebellar
signs, extrapyramidal involvement,
cortical atrophy

SPG27 – AR %609041 P

SPG28/
DDHD1

Phospholipase DDHD1 AR #609340 P/C Cerebellar eye signs, peripheral
neuropathy

SPG29/
KIF1A

Kinesin family member 1A AD %609727 Sensorineural hearing impairment,
neonatal hyperbilirubinemia, hiatus
hernia

SPG30 – AR #610357 C Cerebellar signs, peripheral
neuropathy

SPG31/
REEP1

Receptor expression-enhancing
protein 1

AD #610250 P

SPG32 – AR %611252 C Cognitive impairment, thin corpus
callosum, cortical atrophy,
cerebellar atrophy, pontine
dysraphia.

[SPG33/
ZFYVE27]

[Protrudin] [AD] #610244 Mutation may not
be pathogenic-
present in
control
populations

[P]

SPG34 – XLR %300750 P

SPG35/FA2H Fatty acid 2-hydroxylase AR #612319 C Dysarthria, intellectual decline,
leukodystrophy, dystonia, optic
atrophy, seizures, cerebellar signs,
thin corpus callosum. May cause
brain iron accumulation.

SPG36 – AD %613096 C Lower limb sensory changes

SPG37 – AD %611945 P

SPG38 – AD %612335 C Similar to Silver syndrome (see
SPG17)

SPG39/
PNPLA6

Neuropathy target esterase AR #612020 C Distal amyotrophy, cerebellar
atrophy. Allelic with Boucher–
Neuhauser syndrome
(spinocerebellar ataxia,
hypogonadotropic hypogonadism,
chorioretinal dystrophy)

SPG40 –

SPG41 – AD %613364 Single family
with lod score
\3

SPG42/
SLC33A1

Acetyl-coenzyme A transporter 1 AD #612539 P

SPG43/
C19orf12

C19orf12 AR #615043 P/C Upper limb involvement, distal
amyotrophy. May also be associated
with brain iron accumulation

1604 J Neurol (2015) 262:1601–1612

123



Table 1 continued

Gene Protein Inherited OMIM Comment P/C* Clinical features of complex forms

SPG44/GJC2 Gap junction gamma-2 protein AR #613206 C Cerebellar signs, seizures, cognitive
impairment, scoliosis,
leukodystrophy, thin corpus
callosum.

SPG45/
NT5C2

Cytosolic purine 5’-nucleotidase AR #613162 C Optic atrophy, thin corpus callosum,
intellectual disability

SPG46/GBA2 Non-lysosomal
glucosylceramidase

AR #614409 C Cerebellar signs, intellectual
impairment, cerebral atrophy,
cerebellar atrophy, thin corpus
callosum, pseudobulbar
involvement, cataracts.

SPG47/
AP4B1

AP-4 complex subunit beta-1 AR #614066 C Neonatal hypotonia, severe
intellectual impairment, dysmorphic
features, thin corpus callosum.

SPG48/
AP5Z1

AP-5 complex subunit zeta-1 AR #613647 C Urinary incontinence

SPG49/
TECPR2

Tectonin beta-propeller repeat-
containing protein 2

AR #615031 C Intellectual impairment, dysmorphic
features, cerebral atrophy,
cerebellar atrophy, thin corpus
callosum

SPG50/
AP4M1

AP-4 complex subunit mu-1 AR #612936 C Neonatal hypotonia, severe
intellectual impairment,
pseudobulbar signs, microcephaly,
cerebellar atrophy

SPG51/
AP4E1

AP-4 complex subunit epsilon-1 AR #613744 C Neonatal hypotonia, severe
intellectual impairment,dysmorphic
features, seizures, cortical atrophy,
cerebellar atrophy, microcephaly

SPG52/
AP4S1

AP-4 complex subunit sigma-1 AR #614067 C Neonatal hypotonia, severe
intellectual impairment,
microcephaly, dysmorphic features,
short stature

SPG53/
VPS37A

Vacuolar protein sorting-
associated protein 37A

AR #614898 C Intellectual disability

SPG54/
DDHD2

Phospholipase DDHD2 AR #615033 C Intellectual disability, dysarthria,
dysphagia, optic hypoplasia, thin
corpus callosum and white matter
changes, short stature

SPG55/
C12ORF65

C12orf65 AR #615035 C Peripheral neuropathy, optic atrophy,
intellectual disability

SPG56/
CYP2U1

Cytochrome P450 2U1 AR #615030 P/C Upper limb involvement, peripheral
neuropathy, intellectual
impairment, thin corpus callosum

SPG57/TFG Protein TFG AR #615658 C Optic atrophy, peripheral neuropathy

SPG58/
SPAX2/
KIF1C

Kinesin-like protein KIF1C AR #611302 C Cerebellar ataxia

SPG59/USP8 Ubiquitin carboxyl-terminal
hydrolase 8

AR *603158 VUS P

SPG60/
WDR48

WD repeat-containing protein 48 AR *612167 VUS C Nystagmus, peripheral neuropathy,
intellectual disability

SPG61/
ARL6IP1

ADP-ribosylation factor-like
protein 6-interacting protein 1

AR #615685 C Peripheral neuropathy

SPG62 –

SPG63/
AMPD2

AMP deaminase 2 AR #615686 P/C White matter changes in corpus
callosum
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and SPG15 mutations. These patients have a variable

combination of clinical features which, as well as thin

corpus callosum, includes typically childhood or teenage

onset spastic paraplegia, learning difficulties with pro-

gressive cognitive decline, cerebellar signs, ocular

involvement, peripheral motor axonopathy and extrapyra-

midal features including parkinsonism. SPG11/15 muta-

tions are associated with relatively severe gait involvement

and patients often eventually require a wheelchair. It is

important to note that a thin corpus callosum is not a

universal finding in SPG11/15 HSP (e.g. in large series, it

was found in 90 % of SPG11 cases and 60 % of SPG15

patients), and that learning difficulties may be present

before the spastic gait develops [20–22].

Cell biological studies on the SPG11 and SPG15 pro-

teins have revealed why mutations in these genes lead to a

similar clinical phenotype. Both SPG11 and SPG15 pro-

teins interact with a 4-protein complex termed AP5

(adapter protein 5), which localises to small intracellular

membrane-bound vesicles called endosomes [23, 24].

Although AP5’s function is not fully understood, it prob-

ably acts to sort membrane cargoes away from the endo-

somal compartment [23, 24]. Intriguingly, recessive

mutations in a component of the core AP5 complex

Table 1 continued

Gene Protein Inherited OMIM Comment P/C* Clinical features of complex forms

SPG64/
ENTPD1

Ectonucleoside triphosphate
diphosphohydrolase 1

AR #615683 C Dysarthria, intellectual disability,
microcephaly, delayed puberty

SPG65 Duplicate of SPG45

SPG66/ARSI Arylsulfatase I AR *610009 VUS C Thin corpus callosum, cerebellar
hypoplasia, colpocephaly,
peripheral neuropathy

SPG67/
PGAP1

GPI inositol-deacylase AR *611655 VUS C Intellectual disability, tremor, absent
corpus callosum, defective
myelination

SPG68/
FLRT1

leucine-rich repeat
transmembrane protein FLRT1

AR *604806 VUS C Optic atrophy, peripheral neuropathy

SPG69/
WARBM2/
RAB3GAP2

Rab3 GTPase-activating protein
non-catalytic subunit

AR *609275 C Warburg micro syndrome, Martsolf
syndrome

SPG70/
MARS

Methionine-tRNA ligase,
cytoplasmic

AR *156560 VUS P/C Mild intellectual disability

SPG71/ZFR Zinc finger RNA-binding protein AR *615635 VUS C Thin corpus callosum

SPG72/
REEP2

Receptor expression-enhancing
protein 2

AR/AD #615625 P

Spastic
ataxias

SPAX1/
VAMP1

Vesicle-associated membrane
protein 1

AD #108600 SPAX

SPAX2/
SPG58/
KIF1C

Kinesin-like protein KIF1C AR #611302 SPAX

SPAX3/
MARS2

Methionine-tRNA ligase,
mitochondrial

AR #611390 SPAX

SPAX4/
MTPAP

Poly(A) RNA polymerase,
mitochondrial

AR #613672 SPAX

SPAX5/
AFG3L2

AFG3-like protein 2 AR #614487 SPAX

SPAX6/
SACS

Sacsin AR #270550 SPAX Spastic ataxia of Charlevoix-
Saguenay

EXOSC3/
PCH1B

Exosome complex component
RRP40

AR *606489 Allelic with
pontocerebellar
hypoplasia

Note that sometimes the distinction between pure and complex HSP may be somewhat arbitrary. See OMIM entries (http://www.ncbi.nlm.nih.

gov/omim/) for the appropriate primary literature

AD autosomal dominant, AR autosomal recessive, C complex, HMSN hereditary motor and sensory neuropathy, P pure, SPAX spastic ataxia,

VUS variant of uncertain significance
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(SPG48/AP5Z1) also cause a very similar clinical pheno-

type to SPG11/15 mutations, with cognitive defects, thin

corpus callosum and spastic paraplegia [25]. Thus, HSP

with thin corpus callosum is an excellent example of the

principle that diseases with similar phenotypes are often

caused by mutations in functionally related genes. At least

four other subtypes of recessive HSP may also present with

thin corpus callosum, SPG21/Maspardin, SPG35/FA2H

and SPG46/GBA2 and SPG54/DDHD2 ([25] and see

Table 1); it remains to be seen whether any of the encoded

proteins are functionally related to the AP5 complex.

HSP with cerebellar ataxia

Patients who present with a mixed cerebellar ataxia and

spastic paraplegia phenotype represent a particular diag-

nostic challenge, as the differential diagnosis is very broad.

It can be helpful to first make a decision as to whether

spastic paraplegia or cerebellar ataxia is the dominant

feature. There are consensus diagnostic pathways for

patients with predominant cerebellar ataxia and we will not

review these further here [26]. In patients where spastic

paraplegia is the predominant feature, it is useful to sub-

divide into pure and complex subtypes, analogous to the

subdivision of HSP.

‘‘Complex’’ spastic ataxia in which the cerebellar ataxia

is a (sometimes variable) feature of a more complex syn-

dromal picture. Such conditions include HSP with thin

corpus callosum (SPG11/15 mutations), SPG35/FA2H-

associated HSP, Troyer syndrome (SPG20) and Mast

syndrome (SPG21), SPG26/B4GALNT1, SPG30/KIF1A,

SPG39/PNPLA6 and SPG46/GBA2. This group also con-

tains a variety of rare metabolic conditions (reviewed in

[27, 28]), including cerebrotendinous xanthomatosis, triple

H syndrome, cerebral folate deficiency, metachromatic

leukodystrophy, Type III 3-methylglutaconic aciduria, as

well as other conditions such as Alexander disease and

vanishing white matter disease. Rare patients with Chedi-

ak–Higashi syndrome (caused by mutations in the lyso-

somal trafficking regulator LYST gene) may also present

with spastic paraplegia, cerebellar ataxia and peripheral

neuropathy, without the hypopigmentary or immune defi-

ciency typically associated with this condition [29].

‘‘Pure’’ spastic ataxia There are many patients in whom

spastic paraplegia with cerebellar involvement is the

exclusive clinical presentation. This can occur in three

main scenarios:

(a) As an unusual presentation of mutations in genes

that are classically associated with ‘‘pure’’ hereditary

spastic paraplegia, including autosomal dominant

SPG4/spastin and SPG31/REEP1 and autosomal

recessive SPG5/CYP7B1 [12, 14, 30].

(b) As a presentation of genes that are classically associ-

ated with cerebellar ataxia. This would especially

include Friedreich ataxia and SCA3, in which pyrami-

dal signs may be the presenting feature [31, 32].

(c) As a presentation of mutations in genes that typically

cause a spastic paraplegia/cerebellar ataxia overlap

syndrome. These genes are often classified under the

spastic ataxia (SPAX) nomenclature. Well-recogni-

sed examples include the autosomal recessive spastic

Table 2 Reported frequencies of mutations in selected pure HSP genes

Gene Reported frequency in familial cases Frequency in sporadic

cases

Frequency in unselected cases

SPG4/SPAST 31–47 % of AD-pure HSP [49–54] 7–18 % [51, 52, 55–57] 17–26 % [51, 56, 58]

SPG3A/

ATLASTIN1

8–39 % of AD-pure HSP (studies often comprised

families with early onset and screened SPG4 negative)

[51, 59–61]

Unknown 7 % (after exclusion of SPG4

mutations) [13]

SPG31/REEP1 2–8 % of AD-pure HSP (screened families typically

SPG4 and/or SPG3 negative) [62–64]

2 % [65] 3–7 % [63, 65]

SPG10/KIF5A 3–5 % (series included families with complicated HSP,

typically SPG4 and SPG3 negative). A rare cause of

pure HSP [66–68]

None detected Unknown

SPG8/KIAA0196 5–8 % of SPG3A and SPG4-negative AD HSP families

[69, 70]

Unknown Unknown

SPG12/RTN2 Rare [71] Rare Rare

SPG6/NIPA1 \1 % of AD-pure HSP [72, 73] Unknown Rare [72]

SPG13/HSPD1 Rare Unknown Unknown

SPG42/SLC33A1 Unknown (single family only) Unknown Unknown

SPG5A/CYP7B1 7 % of AR-pure HSP 1 reported AD family [30] 3 % [30] Unknown

SPG7 Rare cause of AR-pure HSP 7–12 % [34, 74] \5 % of unselected AR families

[75, 76]
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ataxia of Charlevoix-Saguenay (ARSACS; SPAX6)

and SPG7/paraplegin [33, 34]. They also include

VAMP1 (SPAX1), KIF1C gene (SPAX2/SPG58),

MARS2 (SPAX3), MTPAP (SPAX4) and AFG3L2

(SPAX5/SCA28) (Table 1) [32, 35].

Investigation of a patient with suspected HSP

The traditional approach to investigating a patient with

possible HSP is to define the phenotype and inheritance

pattern, exclude alternative causes, then attempt to make a

definitive molecular genetic diagnosis, where possible

using clinical and family history information to focus

genetic investigations appropriately.

Definition of phenotype, inheritance and exclusion

of other causes

As specific investigations of a patient with suspected HSP

depend on their clinical features and inheritance pattern,

careful clinical phenotyping of index cases and potentially

affected family members is crucial. A detailed medical

history should include developmental milestones and a

three generational family tree. Affected individuals and

ideally, apparently unaffected family members should

undergo a clinical neurological examination, to document

specific neurological features and identify asymptomatic

family members who may have subtle abnormal signs on

examination. This is particularly important for apparently

sporadic cases or isolated sibships, where positive exami-

nation findings in an asymptomatic parent will point

towards the probability of autosomal dominant inheritance.

Even in individuals who have typical clinical features of

HSP and a positive family history of spastic paraparesis, it is

important to consider alternative causes and importantly

exclude other treatable familial conditions. In his regard,

MR imaging of the brain and spinal cord is crucial and

should be undertaken in all sporadic cases and at least one

family member of familial presentations. Imaging will not

only identify many structural, inflammatory or metabolic

abnormalities but is also useful to guide investigations into

specific genetic causes (for example, by highlighting atro-

phy patterns). Note that imaging does have an appreciable

false negative rate, for example, it can be normal in certain

metabolic or inflammatory conditions, including adreno-

leukodystrophy or primary progressive multiple sclerosis.

A baseline metabolic blood screen in the index case

could include Vitamins B12 and E, creatine kinase, very

long chain fatty acids, white cell enzymes, anti-nuclear

antibody and copper levels. However, individuals with

more complex clinical features or an unclear family history

may require further baseline tests. For example, in pre-

sumed sporadic pure HSP, a set of more extensive inves-

tigations is appropriate, as an inherited basis for the disease

has not been proven. This includes CSF examination

(including oligoclonal bands, HTLV serology), Syphilis

and HIV serology as well as vasculitis screen [36–38]. An

oral short trial of Levodopa will identify those individuals

with dopa-responsive dystonia and neurophysiology can be

useful if there is an associated neuropathy or suspicion of

amyotrophic lateral sclerosis [39]. Table 3 summarises a

list of conditions to be considered in the differential diag-

nosis and investigation of sporadic pure HSP.

For those individuals in whom the above baseline

investigations are unremarkable and/or where the family

history and clinical features point towards a specific

genetic diagnosis, it is then appropriate to test for the

suspected mutation.

Genetic investigations

There is considerable clinical utility for HSP families in

detecting their causative mutation. It gives diagnostic

Table 3 Conditions and investigations to be considered in the dif-

ferential diagnosis of pure HSP

Structural and vascular

Arterio-venous dural fistula [77] MRI/angiogram

Spinal or parasagittal tumour MRI

Spondylosis MRI

Inflammatory

Multiple Sclerosis MRI, CSF

Vasculitic Myelopathy [36] Autoimmune profile

Stiff person syndrome [78] Neurophysiology, antibody

testing

Sarcoidosis [79] MRI, CSF, chest X-ray

Metabolic (acquired and hereditary)

Vitamin deficiency (B12, E) Vitamin levels

Nitrous oxide toxicity [80] History, B12 level

Adrenoleucodystrophy and other

leucodystrophies [81, 82]

White cell enzymes,

VLCFA, MRI

Copper deficiency myelopathy [83] Copper levels

Degenerative

Primary lateral sclerosis Neurophysiology and

evolution of clinical

picture

Infectious

Tropical spastic paraparesis [37] HTLV—1 serology, CSF

HIV myelopathy [38] HIV serology, CSF

Syphilis Syphilis serology, CSF

Other

Radiation myelopathy [84] History, imaging

Spinocerebellar ataxias and other

genetic conditions (see text and

[39])

Genetic testing. Trial of

l-dopa
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certainty, prevents further unnecessary investigations and

opens the possibility of predictive and prenatal testing.

However, until very recently, in many healthcare systems,

economic factors necessitated that genetic investigations

were restricted to analysis of HSP genes in which there was

the highest chance of detecting a mutation, as the expense

of analysing rarely-causative genes was not justified by the

low mutation detection rate per additional gene analysed.

However, this has changed with the introduction of next-

generation sequencing, which allows cost-effective ana-

lysis of many genes together, using approaches including

(1) sequencing of large panels of genes, (2) sequencing of

all coding exons in the genome, or (3) sequencing of entire

genomes. At present, a common approach uses next-gen-

eration sequencing to screen exons of panels of genes

causally associated with specific conditions or groups of

conditions. These new approaches hold the prospect of

substantially increasing the mutational pick-up rate for

HSP patients. Once fully integrated into molecular diag-

nostic services, it is possible to envisage that genetic test-

ing could be introduced at an early stage in patient work-

up, perhaps avoiding the need for other costly or painful

investigations if a definitive molecular genetic diagnosis is

made.

Although these developments are undeniably positive,

there are pitfalls and caveats associated with next-genera-

tion sequencing approaches. Sequence variation is very

common in the genome (for example, many millions of

single nucleotide variants have been identified) [40], with

the vast majority of these sequence changes having a

neutral effect with no clinical consequence. In addition,

many of these sequence changes are individually rare.

Thus, next-generation approaches typically detect numer-

ous rare sequence variants; the more genes that are ana-

lysed, the larger this problem becomes. A major problem

lies in deciding which, if any, of the detected sequence

changes are pathogenic. In most cases, this can be resolved

using bioinformatics and other approaches (e.g. identifying

previously reported and validated mutations, excluding

known rare population polymorphisms, determining the

likely effect on the amino acid sequence of the encoded

protein and how deleterious this effect is likely to be,

excluding mutations that do not co-segregate with disease)

[41]. However, inevitably in some cases, a single conclu-

sively pathogenic mutation cannot be identified and one or

more candidate pathogenic mutations remain. This is a

particular issue with mutations of the missense class (in

which only a single amino acid of the encoded protein is

altered), since it can be difficult to predict whether the

resulting effect on the protein will have functional conse-

quences. Such sequence changes are often reported as

variants of uncertain significance. Defining approaches to

determining which of these mutations are pathogenic will

be a major future challenge, as will be determining ethical

approaches to whether and how the uncertainty associated

with such sequence changes is reported back to patients.

In addition, exon-sequencing approaches do not detect

all mutational classes. A particular problem arises in

detecting large-scale deletions or duplications involving

whole exons, or in detecting promoter or deep intronic

mutations. This is an issue for at least some HSP genes, e.g.

whole exon deletions are a common cause of SPG4/SPAST

HSP (see above). We anticipate that in the relatively near

future this issue will be resolved by whole-genome

sequencing, which has the capacity to identify large dele-

tions/duplications, as well as promoter and deep intronic

mutations. In a research setting, genome sequencing may

also allow identification of causative mutations in genes

that have not previously been associated with the disease

under consideration. In the meantime, additional testing for

deletions/duplications should be considered in selected

genes for appropriate patients, prioritised based on clinical

features, in whom mutations have not been identified in

exon-sequencing panels.

High-throughput sequencing approaches also may

present ethical issues if so-called ‘‘incidental findings’’

(clinically relevant changes in genes unrelated to the con-

dition being tested) are detected. These are particularly

important when whole-exome or whole-genome approa-

ches are taken, where, given sufficient numbers of tested

subjects, it is inevitable that other potentially clinically

significant abnormalities, e.g. mutations in cancer predis-

posing genes or detection of carrier status for autosomal

recessive disease, will be detected. Whether and how such

findings are reported back to patients requires careful

consideration of their clinical validity and utility, and the

ethical issues surrounding this are currently a topic of much

debate [42].

Finally, while next-generation sequencing approaches

have the potential to increase rates of molecular genetic

diagnosis in HSP, they do not remove the need for careful

phenotyping––this is still important, as it can help to focus

bioinformatics analysis onto the most relevant genes.

Careful phenotyping may also better define the clinical

spectrum associated with pathogenic mutations in particu-

lar genes.

Rehabilitation and therapy for HSP patients

People with HSP complain of muscle stiffness, pain, spasms

and cramps, tripping over their toes due to weakness of

ankle dorsiflexion and hip flexion, loss of balance, effortful

walking and progressively more flexed standing posture.

Eventually, walking becomes impossible for some patients

due to a combination of (a) spasticity, (b) weakness,
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particularly of ankle dorsiflexion, leading to (c) loss of

range of movement at ankle, knee and hip, making it

impossible to stand straight, and (d) loss of motor control

leading to delayed postural reflexes and loss of balance.

A home exercise programme supervised by a physio-

therapist, concentrating on stretches to maintain range of

movement and reduce spasticity, accompanied by balance

exercises in patients with more advanced disease, is the

cornerstone of management. This is usually supported by a

trial of oral muscle relaxants such as Baclofen, Tizanidine,

or Gabapentin/Pregabalin. Problematic spasticity in spe-

cific groups of muscles, most commonly in the ankle

plantarflexors and hip adductors, may be treated by Botu-

linum toxin without the risk of sedation associated with

oral muscle relaxants [43]. The role of Botulinum toxin is

to support and facilitate stretching and splinting, rather

than to replace it. Functional electrical stimulation (FES) is

popular among patients and physiotherapists and is as

effective as simple off the shelf ankle foot orthoses (AFOs)

in the early stages before calf shortening has developed:

after that, FES is less useful as it cannot provide support or

compensation during stance phase [44–46].

Intrathecal Baclofen, delivered by an implanted pump, is

the most effective method of reducing very high tone in the

lower limbs, and can bring immediate relief of pain and

improvement in sitting posture, along with a reduction in

effort transferring from wheelchair to bed or car [47].

Effective control of muscle tone often improves quality of

sleep for the patient and their partner, and permits

stretching and splinting with the aim of preventing further

deterioration of flexion contractors. The question of when

to start intrathecal baclofen in this condition has not been

addressed by published trials. While most often performed

much later in the disease, a case can be made for

implanting a pump relatively early to prevent the devel-

opment of contractures, with a view to maintaining upright

gait and retaining the option of supporting weak knee ex-

tensors and ankle dorsiflexors with orthoses [48].

Once ankle contractures have developed, and people can

no longer stand with knees and hips straight while their heels

are on the ground, heel wedging needs to be incorporated into

shoes or AFOs to compensate. The lighter ‘‘off the shelf’’

AFOs, or FES of the peroneal nerve, are no longer appro-

priate in this situation as these only prevent passive plan-

tarflexion during the swing phase of gait and are not designed

to stabilise the foot and ankle during the stance phase of gait.

The necessary custom moulded AFOs with compensatory

heel wedging will often not fit in patients’ usual shoes; if

larger trainers are impractical, expensive bespoke footwear

may be required. Custom AFOs may also be designed to

compensate for weak knee extensors using the ground

reaction force to hold the lower leg in a more vertical posi-

tion, but this is only possible if the knee still extends fully.

Conclusion

The last decade has seen astonishing progress in the

identification of HSP genes. Coupled to the introduction of

high-throughput sequencing approaches, we are quickly

moving towards the ideal situation where every HSP

patient will have a defined molecular diagnosis if they

choose to have it. This will give important immediate

benefits to HSP families, including diagnostic certainty,

prevention of unnecessary additional investigations and

accurate risk prediction for clinically unaffected family

members. In the future, as HSP therapies emerge, it may

also be a pre-requisite for the personalised selection of

appropriate treatment. In the meantime, it is important that

supportive therapy, which can make a real difference to

patients’ lives, is not neglected.
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