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Computational modelling of physical and biochemical processes has emerged

as a means of evaluating medical devices, offering new insights that explain

current performance, inform future designs and even enable personalized

use. Yet resource limitations force one to compromise with reduced order

computational models and idealized assumptions that yield either qualitative

descriptions or approximate, quantitative solutions to problems of interest.

Considering endovascular drug delivery as an exemplary scenario, we used

a supervised machine learning framework to process data generated from

low fidelity coarse meshes and predict high fidelity solutions on refined

mesh configurations. We considered two models simulating drug delivery

to the arterial wall: (i) two-dimensional drug-coated balloons and (ii) three-

dimensional drug-eluting stents. Simulations were performed on compu-

tational mesh configurations of increasing density. Supervised learners

based on Gaussian process modelling were constructed from combinations

of coarse mesh setting solutions of drug concentrations and nearest neigh-

bourhood distance information as inputs, and higher fidelity mesh solutions

as outputs. These learners were then used as computationally inexpensive sur-

rogates to extend predictions using low fidelity information to higher levels of

mesh refinement. The cross-validated, supervised learner-based predictions

improved fidelity as compared with computational simulations performed

at coarse level meshes—a result consistent across all outputs and compu-

tational models considered. Supervised learning on coarse mesh solutions

can augment traditional physics-based modelling of complex physiologic

phenomena. By obtaining efficient solutions at a fraction of the computational

cost, this framework has the potential to transform how modelling approaches

can be applied in the evaluation of medical technologies and their real-time

administration in an increasingly personalized fashion.
1. Introduction
Emerging applications in clinical medicine and medical device design are just

beginning to embrace the potential of computational modelling [1,2]. In the

face of increasing interest by medical device companies, regulatory agencies

[3] and clinicians [4,5], it is critical that we find approaches that yield accurate

information quickly—whether it is in the optimization of device design over a

wide parameter space [6–9], to better understand device and implant perform-

ance in patient-specific environments [10–16], or even to perform virtual

feasibility studies for procedural planning (i.e. implantation of stents, endovas-

cular grafts, heart valves, bioprosthetics, etc.) [17–20]. Particularly in clinical

applications, speed and efficiency are paramount as results must be provided
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Figure 1. Schematics of the two computational models used for the studies. (a) A two-dimensional model of an expanded drug-coated balloon is shown that
transfers drug to the tissue-lumen (or mural) surface. R ¼ 3 mm indicates the lumen radius and W ¼ 0.5 mm is the arterial wall thickness. (b) A three-
dimensional model of a single cell, delta-winged stent deployed in an arterial vessel is shown with drug releasing from the stent surface. Here, the lumen diameter
was defined as D ¼ 3.6 mm, arterial wall thickness as T ¼ 0.35 mm, domain length as L ¼ 11.36 mm. The upstream section length relative to the stent position
was defined as 3 mm and the downstream section length as 6 mm. (Online version in colour.)
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cost-effectively and often in urgent settings (i.e. within min-

utes). Historically, efficiency and practicality have trumped

accuracy due to resource limitations associated with compu-

tational hardware and software as well as access to relevant

information. The last decades have witnessed a remarkable

explosion of medical knowledge (both multi-scale and

multi-physics) as well as growth in our ability to access and

store data in real-time, patient-specific formats [21]. Yet pro-

cessing this knowledge has outstripped the exponential

growth in high-performance computing and even the most

promising, clinically relevant applications to date remain fun-

damentally limited by computational delays [22]. To fully

leverage the possibilities promised by simulation, it is critical

that we find methods that better handle information without

loss of efficiency or accuracy.

Cardiovascular applications are among the most impor-

tant and widely studied cases of medical simulation.

Devices such as drug-eluting stents [23,24] and balloon cath-

eters [25–28] are used millions of times each year to help

manage coronary heart disease, the leading cause of global

mortality [29]. In this disease, blockages build up in the

blood vessels supplying the heart and must be reopened to

prevent untoward cardiovascular events. Both disease pro-

gression as well as the success and failure of such devices

depend on local physical and biochemical processes coupled

within complex physiological environments. While local

delivery of drugs helps modulate device response, the

drugs themselves are highly toxic (often chemotherapeutics)

characterized by a narrow therapeutic window—delivery of

too little compromises effectiveness; delivery of too much

compromises safety [30,31]. Designing and achieving optimal

device performance requires that we understand the conflu-

ence of fluid flow, drug transport and tissue reactivity

coupled within relevant, often patient-specific environments.

We sought to determine whether supervised machine

learning can be leveraged to estimate higher fidelity data

from lower fidelity computational datasets, considering

two computational mesh-based simulations of distinct

computational complexities. The first is a two-dimensional

time-dependent model of drug release, transport and reversi-

ble tissue binding from a drug-coated balloon (figure 1a); the
second a steady-state simulation of blood flow coupled with

species transport and reversible tissue binding in a three-

dimensional model of a drug-eluting stent deployed in an

arterial vessel (figure 1b). Using Gaussian process modelling

(GPM) [32], we constructed supervised learners that used

lower resolution mesh results to predict solutions of higher

mesh density. Computational simulations were performed

on a low fidelity, mesh configuration (baseline) comprised

of variably sized elements that captured underlying physics

with reasonable accuracy as well as on mesh configura-

tions of increasing density (Refinements 1, 2 and 3). Nearest

neighbour information of a reference mesh node for a low

fidelity configuration (baseline) along with low fidelity sol-

utions at these nearest neighbours and at the reference

mesh node defined the input feature vector for the super-

vised learner. With the true solution of the reference mesh

node at the intermediate mesh setting (Refinement 1) serving

as scalar output, GPM was used to construct computationally

inexpensive surrogates to predict higher fidelity solutions

(Refinement 2); these predictions were cross-validated using

the true solutions obtained from the highest mesh density

(Refinement 3). Our results demonstrate the potential of

applying supervised machine learning techniques to approxi-

mate physics-based solutions both cost-effectively and

accurately, providing a paradigm for emerging applications

in medicine.
2. Material and methods
2.1. Model of drug-coated balloon therapy
Drug-coated balloons have recently emerged as viable thera-

peutic options for treating obstructive arterial disease [25–28].

With this technology, short-term transfer of therapeutic drugs

to the arterial wall can be achieved without the requirement of

permanent indwelling delivery systems. Transient arterial

tissue distribution from an expanded drug-coated balloon was

modelled as a two-dimensional, time-dependent continuum

transport problem. The computational domain constituted an

arterial cross-section with radius (R ¼ 3 mm) and wall thickness

(W ¼ 0.5 mm) (figure 1a). Free drug was allowed to diffuse with



Table 1. Mesh configurations of increasing density for (a) two-dimensional
time-dependent model simulating drug-coated balloon therapy and (b) three-
dimensional steady-state model of drug-eluting stent therapy. Mesh
refinement was performed by bisecting the longest edge of each element. The
increase in computational time (rounded to the tenths place) of the true
solution scales with mesh density. Simulations were performed on a dual-core
Intel Xeon X5687 @ 3.6 GHz processor with an installed memory of 72 GB.

mesh
setting

cell
count

degrees of
freedom

simulation
time (hours)

(a)

baseline 5302 5890 0.8

Refinement 1 11 326 12 500 2.5

Refinement 2 23 861 25 042 3.8

Refinement 3 49 829 52 178 5.8

(b)

baseline 83 397 211 981 0.3

Refinement 1 333 445 848 238 2.6

Refinement 2 1 077 508 2 709 490 65.7
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a constant diffusivity (Dw) and reversibly bind to tissue sites

according to the reaction–diffusion equation

@C
@t
¼ Dwr2C� kaC(BM � B)þ kdB, (2:1)

where C and B denote the local concentrations of free and bound

drug in the arterial wall, respectively. Dw ¼ 1.712 � 10211 m2 s21

is the apparent net diffusivity, BM ¼ 0.356 mmol l21 is the net

tissue binding capacity [33], and ka and kd are the association

and dissociation rate constants, respectively, for the model

drug (zotarolimus). ka and kd were computed as ka ¼ DwDa/

BMW2 and kd ¼ kakd, where Da ¼ 50 000 is the Damköhler

number and kd ¼ 0.0326 mmol l21 is the equilibrium dissociation

constant [33]. Equation (2.1) was solved subject to zero initial

free and bound drug concentrations within the tissue, a perfect

sink condition at the adventitial surface and a flux boundary

condition at the mural surface defined as

Jb(t) ¼
k1A1e�k1t

ZMW
t � t0

0 t . t0,

8<
: (2:2)

where Jb(t) is the flux approximating the releasable portion of

zotarolimus from the balloon during inflation, t0 ¼ 30 s is the bal-

loon inflation time, A1 ¼ 23.95 kg m23 and k1 ¼ 0.009208 s21 are

empirical constants estimated from bench-top release kinetics

experiments [33], and ZMW ¼ 966.21 g mol21 is the molecular

weight of zotarolimus. A zero concentration condition was

applied on the perivascular side of the arterial wall for the free

drug. For the bound drug, both the lumen-tissue (or mural)

and the perivascular aspects of the arterial wall were assigned

a zero flux boundary condition. Time-dependent simulations

(COMSOL 4.3a, Comsol Inc.) were performed on the compu-

tational domain that was meshed using the Delaunay

triangulation scheme. Three model configurations were then con-

structed by sequentially refining the entire domain using longest

edge refinement technique, where the longest edge of each mesh

element is bisected at each of the three levels, defined as Refine-

ments 1, 2 and 3 (true solution), respectively (table 1a). The Direct

(SPOOLES) method was used to solve the system of equations

with a nested dissection pre-ordering algorithm and a backward

differentiation formula method was used for time stepping with

relative and scaled absolute tolerances assigned at 1 � 1029 and

1 � 1026, respectively. Simulations were performed until the

minimum damping and tolerance factors reached 1 � 1029 and

1 � 1026, respectively. Arterial tissue distributions of free and

bound drug for three model configurations of increasing

mesh density were extracted at 1 h from balloon inflation for

supervised learning.
2.2. Model of stent-based drug therapy
Unlike drug-coated balloons, the metallic drug-eluting stents

remain permanently implanted at the lesion site but can provide

sustained release of therapeutic drugs. Owing to their remark-

able clinical success, they are considered as the primary choice

for treating coronary artery disease [23,24]. A three-dimensional

computational model of a drug-eluting stent deployed in a non-

bifurcating arterial vessel was constructed (SolidWorks, Dassault

Systèmes) [34,35]. The diameter of the arterial vessel was defined

as D ¼ 3.6 mm, arterial wall thickness as T ¼ 0.35 mm and vessel

length as L ¼ 11.36 mm. A fully apposed single cell, delta-wing

shaped slotted tube design was used for the stent with diameter

3.5 mm, and the intrinsic strut shape modelled as a square with

dimensions 1024 � 1024 m2. The effects of pulsatile flow were

approximated using a steady-state flow equivalent within this

artery–stent combination, as this approximation was used to

produce a physiologically realistic assessment of the impact of

flow on arterial drug distribution [36]. In the arterial lumen,
the continuity and momentum equations

r � vf ¼ 0 (2:3)

and

rf(vf � rvf) ¼ �rPþ mfr2vf , (2:4)

respectively were solved where vf, rf ¼ 1060 kg m23, P and

mf ¼ 3.5 � 1023 Pa . s are, respectively, the velocity, density,

pressure and the viscosity of flowing blood. The arterial wall was

assumed to be a porous medium where the continuity equation

r � vt ¼ 0 (2:5)

was solved, where vt is the interstitial fluid velocity. The momen-

tum equation

rt

e
(vt � r)

vt

e

� �
¼ �rPþ mt

e
r2vt �

mt

eK

� �
vt (2:6)

was assumed to follow Darcy’s Law, where K ¼ 1.43 �
10218 m2 is Darcy’s wall permeability, e ¼ 0.43 is wall porosity,

rt ¼ 1000 kg m23 is fluid density and mt ¼ 8.9 � 1024 Pa . s fluid

viscosity within the arterial wall [37]. A constant velocity pro-

file was prescribed at the luminal inlet. At the outlet, a zero

pressure boundary condition was set. No-slip boundary con-

ditions were imposed on the strut-blood and mural interfaces.

The inlet condition fixed at a constant Reynolds number

< ¼ kvflD=((mf=rf)) � 282 was based on mean blood flow and

diameter measurements obtained from the human left anterior

descending coronary artery [37].

Drug transport in the lumen was modelled as an advection–

diffusion process defined as

vf � rCf ¼ Dfr2Cf , (2:7)

where Cf denotes lumen drug concentration and Df ¼ 3.89 �
10211m2 s21 is the model drug (paclitaxel) diffusivity in the

lumen [37,38]. Drug transport in the arterial wall follows an

advection–diffusion–reaction model as follows:

vt � rCt ¼ Dtr2Ct � kaCt(BM � B)þ kdB, (2:8)

where Dt ¼ 3.65 � 10212 m2 s is paclitaxel diffusivity in the arter-

ial wall [37]. Ct and B denote the local concentrations of free and

bound drug in the arterial wall, respectively, BM ¼ 1.3 mM is the

net tissue binding capacity [33], and ka and kd are the association

and dissociation rate constants, respectively. Flux continuities for
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Figure 2. Schematic representing a finite number of nearest neighbours (denoted in green) that were extracted for a specific node (denoted in red) on the com-
putational domains for the model simulating drug-coated balloon therapy (a) and the one simulating drug-eluting stent therapy (b). Computational mesh nodes
were denoted in blue.
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drug transport were maintained at the mural interface. ka and kd

were computed as ka ¼ DtDa/BMT2 and kd ¼ kaKd, where

Da ¼ 2700 is the Damköhler number and kd ¼ 0.136 mM is

the equilibrium dissociation constant for paclitaxel [33].

A finite-element solver (COMSOL 4.3a, Comsol Inc.) was used

to perform the coupled flow and drug transport simulations. The

three-dimensional computational domain was discretized using

tetrahedral control volumes with a linear shape function into an

initial mesh (baseline). The mesh density was highest near the

strut and the mural surface and then decreased towards the centre-

line of the lumen. Sequential mesh refinement using the longest

edge bisection method was then performed to create cases with

refined mesh densities (table 1b). An open boundary condition

for drug concentration was applied at the inlet and the outlet of

the arterial lumen. An impermeable boundary condition was

established at the perivascular aspects of the model vessel. Stent

drug release was simulated using a Dirichlet boundary condition

of unit concentration. For the bound drug, the intramural and

the perivascular aspects of the arterial wall, tissue inlet and

tissue outlet were all assigned a zero flux boundary condition.

Symmetry boundary conditions were exploited on the model geo-

metry as the stent location was far from the lumen centreline. The

physiologic rates of luminal blood flow coupled with transport of

low diffusive drugs generate high Peclet numbers within the com-

putational domain. An upwind Petrov–Galerkin streamline

diffusion formulation was therefore enforced with full residual to

stabilize the governing equations. Simulations were performed

for computational configurations of increasing mesh densities

and until there was a 1 � 1029 reduction in the mass transport

residuals for each case. The solutions and mesh information for

all cases were subsequently processed for supervised learning.

2.3. Supervised learning framework
Supervised learning is a branch of machine learning where func-

tions are inferred from labelled training data comprising a set of

variables called inputs and their corresponding outputs. The out-

puts can be qualitative/categorical or quantitative in nature, with
the corresponding learning problem denoted as ‘classification’ or

‘regression’, respectively [39,40]. In this paper, a construct for the

training data defined by an input vector x [ Rp trained with a

scalar output y(x) was used for supervised learning. Numerical

solutions on the mesh configurations of increasing density fol-

lowed by computation of the pairwise Euclidean distances for

each node’s nearest neighbours (figure 2a,b) within each compu-

tational mesh configuration were obtained [41]. During model

training, each node (xi) and the nearest neighbour (xj) have a

pairwise distance

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi � xj)(xi � xj)

0
q

, (2:9)

for the baseline mesh configuration. Note that j [ [1, 2, . . . , J],
where J denotes the number of nearest neighbours. These pair-

wise distances along with the corresponding output for the

baseline mesh configuration

y0
J ¼ [y0(x1), y0(x2), . . . , y0(xJ)], (2:10)

were included as part of the input feature space

xi ¼ {diJ , y0(xi), y0
J }, where diJ ¼ [di1,di2, . . . ,diJ] with y1(xi) as the

output of interest for training the supervised learner. A standard

cross-validation procedure (k-fold, k ¼ 5) was used to determine

the fidelity of the trained supervised model. This procedure was

repeated over s shuffles (s ¼ 10) to demonstrate consistency

within model training. Average values of the root mean square

error (RMSE) over the shuffles were computed to compare

model predictions with the true physics-based solution.

The prediction phase then involves determining by2(xi) using

the trained model and the test data xi ¼ {diJ , y1(xi), y1
J }, where

y1
J ¼ [y1(x1), y1(x2), . . . , y1(xJ)]. Using the same modelling

construct, two other neighbourhood distance metrics ‘mahalano-

bis’ [42] and ‘cityblock’ were explored and their respective RMSE

values evaluated (see the electronic supplementary material for

more details).



rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141073

5
2.4. Gaussian process modelling
A Bayesian approach to GPM was used to train the model

for a given set of l input vectors X ¼ [x1, x2, . . . , xl] [ Rq�l,

where q ¼ 2J þ 1, with the corresponding output values

y ¼ [y1, y2, . . . , yl] [ Rl assumed to be available. Using the

learned model, output y(x) can be predicted for a new point x

[43,44]. The Gaussian process model can be compactly written as

Y(x) ¼ bþ Z(x), (2:11)

where b is an unknown hyperparameter and Z(x) is a Gaussian

stochastic process with zero-mean and covariance

Cov(Z(x), Z(x0)) ¼ s2
zR(x, x0), (2:12)

where R(x,x0) is a correlation function that can be tuned to the

data and s2
z is the process variance. A commonly used choice

of correlation function is the stationary family which obeys the

product correlation rule [45].

R(x, x0) ¼
Yp

j¼1

exp (� ujjxj � x0 jj pj ), (2:13)

where uj � 0 and 0 , pj � 2 are the hyperparameters. We select

pj ¼ 2 such that the underlying function being modelled is

smooth and infinitely differentiable.

In the Bayesian approach to data modelling, two levels of

inferences are present. The first level is to infer the parameters

given the data and defined using the Bayes’ theorem as

P(uj, b, pjjX, y) ¼
P(X, yjuj, b, pj)P(uj, b, pj)

P(X, y)
, (2:14)

where P(uj,b,pjjX,y) is the posterior probability of the parameters,

P(X,yjuj,b,pj) is the likelihood, P(uj,b,pj) is the prior (assumed to

be Gaussian) information about the parameters and P(X,y) is a

normalizing constant called the evidence. Note that Gaussian

processes are straightforward ways of defining prior distribu-

tions for regression and classification problems [46]. Once the

hyperparameters are estimated, the second level of inferencing

uses these values to estimate y(x) for a new feature vector x.

Because of the prior, the observed outputs are realizations of a

Gaussian random field, and therefore, we see that the posterior

distribution (P(y(x)jX,y,uj,b,pj)) of y(x) is also Gaussian [47], i.e.

Y(x)jy � N (bY(x), s2
z C(x, x0)). The posterior mean and covariance

can be computed as

bY(x) ¼ bþ r(x)TR�1(y� 1bb) (2:15)

and

C(x, x0) ¼ s2
z (R(x, x0)� r(x)TR�1r(x0)), (2:16)

where R [ Rl�l is the correlation matrix computed using the

training points; the ijth element of this matrix is computed as

Rij ¼ R(xi,x j). r(x) ¼ [R(x, x1), R(x, x2), . . . , R(x, xl)] [ Rl is the

correlation between the new point x and the training points,

and 1 ¼ [1, 1, . . . , 1] [ Rl [43,47].

Maximum-likelihood estimation (MLE) was used to compute

the hyperparameters u ¼ fujg, j ¼ 1, 2, . . . , q, b, and s2
z defined in

equation (2.12). After dropping the constant terms that do not

depend on the hyperparameters, the log-likelihood function

becomes

L(u, b, s2
z ) ¼ � 1

2
l lns2

z þ ln jRj þ 1

s2
z

(y� 1b)TR�1(y� 1b)

� �
:

(2:17)

Given the maximum-likelihood estimate of u, the parameters

b and s2
z were estimated as

bb ¼ (1TR�11)�11TR�1y (2:18)
and

cs2
z ¼

1

l
(y� 1b)TR�1(y� 1b): (2:19)

The log-likelihood function can be rewritten using equations

(2.17)–(2.19) such that the elements of u are the only unknown

hyperparameters. These hyperparameters were estimated using

the DIRECT global optimization algorithm [48]. Refer to the

electronic supplementary material for more details.
3. Results
We used GPM to determine whether the data-driven model-

ling framework can reduce computational time while

maintaining accurate solutions to problems of interest. For

the case of drug-coated balloon therapy, two-dimensional

physics-based models simulating drug transport into the

arterial tissue followed by reversible binding predicted arter-

ial distribution patterns of free and bound drug for four mesh

configurations (table 1a). GPM-based predictions for free and

bound arterial drug concentrations qualitatively resembled

the true solutions obtained on the two-dimensional time-

dependent model with the highest mesh density (figure 3a
and electronic supplementary material, figure S1a). More

specifically, the supervised learner trained using information

at the baseline configuration and predicted using Refinement

1 settings generated results that were closer to the true sol-

ution (defined by Refinement 3) than the respective true

solution at Refinement 2 (figure 3b and electronic supplemen-

tary material, figure S1b). Note that for these cases, the

‘cityblock’ metric was used to compute 50 nearest neighbour

distances for the supervised learner-derived predictions of

arterial bound and free drug concentrations, respectively.

3.1. Distance metric selection and number of nearest
neighbours

The accuracy of models trained using supervised learning

demonstrated a strong dependence on the metric used for

measuring neighbourhood distances and the number of

neighbours used for approximating coarse mesh solutions.

In the case of the two-dimensional model, when free tissue

drug was considered as the output of interest, RMSE between

the true simulation at baseline and Refinement 3 (RMSE03)

was 1.1345 � 1024 while the RMSE between the true simu-

lation at Refinements 1 and 3 (RMSE13) was 1.1104 � 1024

(figure 4a). When bound drug was used as the output,

RMSE03 was 1.2 � 1023 while RMSE13 was 1.1 � 1023

(figure 4b). These values served as references to validate the

performance of the Gaussian process model. Regardless of

whether free or bound drug was used as the output, the ‘city-

block’ metric served as the best metric for distance

measurement as the corresponding RMSE values computed

across any number of nearest neighbours was consistently

lower than RMSE13. This result indicates that supervised lear-

ner-based predictions derived using coarser mesh solutions

can serve as more accurate representations of true physics

than their computational simulation counterparts, and per-

haps closer to the order of the true simulation obtained

using meshes with higher density. On the other hand,

when metrics such as ‘euclidean’ or ‘mahalanobis’ were

used to compute neighbourhood distances, RMSE values of

the model were not always lower than RMSE13. Note that
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Figure 3. Physics-based solutions for the two-dimensional model of drug-coated balloon delivery and model-based predictions at 1 h after balloon inflation.
(a) True solution for the bound drug was computed on the mesh setting with the highest density (Refinement 3 in table 1a). (b) Arterial tissue drug concentration
for bound drug for solutions based on four mesh configurations and the model-predicted solution were plotted as a function of cross-sectional depth.
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while the ‘euclidean’ metric is well known in the literature as

an ordinary distance between two points (see §2.3), ‘mahala-

nobis’ distance takes both the distance measurement and the

directionality into account, and ‘cityblock’ distance is simply

defined using the L1 norm. Overall, our findings point to the

importance of carefully choosing and validating the distance

metric for computing neighbourhood distances as well as

the number of nearest neighbours used to compute model

performance in order to obtain closer approximations of

true physics via the framework of supervised learning on

coarse mesh solutions. Using the same modelling construct,

several other neighbourhood distance metrics including ‘che-

byshev’ [49,50] and ‘minkowski’ and their variations can also

be explored.
3.2. Extension to memory-intensive simulations
Having validated the utility of combining the GPM frame-

work to learn from the two-dimensional physiologic

simulation data, we extended the framework to physics-
based models with increased physiologic and computational

complexities (figures 1b and 2b). Simulations were perfor-

med on the three-dimensional model of drug delivery from

a stent deployed in an arterial vessel and the effects of

steady luminal flow considered as a coupled phenomenon

with drug transport and reversible drug binding to arterial

tissue (table 1b). In contrast to the simulations for the two-

dimensional model of drug-coated balloon therapy, the true

simulation-based solutions of mural drug distribution for

the three-dimensional model of stent-based drug delivery

demonstrated an apparent qualitative difference in drug

distribution pattern as a function of computational mesh

density (figure 5). Also, validation of the supervised learner

for the three-dimensional model in the same way as the

two-dimensional model was not feasible as our compu-

tational resources precluded simulation of the Refinement 3

case (table 1b). Therefore, we computed the RMSE values

for the supervised learner relative to Refinements 1 and 2

cases, respectively. Models were generated with free and

bound drug as outputs using ‘mahalanobis’ metric for



0 0.2 0.4 0.6 0.8 1.0
free drug

0 0.2 1.20.4 0.6 0.8 1.0

bound drug

Figure 5. Free and bound arterial drug distribution patterns as predicted by the three-dimensional model of stent-based drug delivery demonstrate qualitative
refinement in solution with increased mesh density. The arrow points to the direction of increasing mesh density. Mural drug concentration is normalized to the
source and table 1b has more details on the three mesh configurations.
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Figure 6. Supervised learner-based predictions for the problem of stent-based drug delivery. Both (a) free mural and (b) bound tissue drug distribution were used
as the outputs of interest. Model accuracy as measured by RMSE is shown to vary with the number of nearest neighbours used to construct the supervised learner.
(Online version in colour.)
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nearest neighbour distance measurement and as a function of

the number of nearest neighbours (figure 6a,b). These trends

indicate that the model predictions were improved in com-

parison to that of the true simulation outputs for the

Refinement 1 case, but as a function of the number of nearest

neighbours and the distance metric.
4. Discussion
Computational modelling is being used increasingly in medi-

cal device applications, both in the pre-clinical and regulatory

domains as well as in emerging clinical applications directly

related to patient care. As our ability to characterize patient-

and device-specific features in real-time and with micro-

metre-level precision has improved, such models promise to

yield mechanistic and data-driven predictions that will
enable personalized care [21]. Yet the computational time

required to perform multi-scale high fidelity simulations

can be enormous, forcing adoption of high-end compu-

tational architecture or reduced fidelity approaches with

simplifying assumptions and recognized inaccuracies (e.g.

one-dimensional blood flow and lumped parameter models

[51], reduced basis methods [52,53], data-driven clinical risk

scores [54], etc.). As an alternative, we now demonstrate

that use of machine learning on low fidelity, coarse mesh sol-

utions can augment fidelity at a fraction of the computational

cost of traditional simulation.

The need to generate high fidelity insight from low fide-

lity information is not unique to medicine, but rather

characteristic of any sufficiently advanced field. Indeed,

GPM forms the basis for Kriging, an approach that has been

widely applied to problems of fidelity optimization in other

disciplines including geostatistics as well as aerospace and
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automobile engineering [43,45,55–57]. Our goal was to lever-

age this paradigm and demonstrate its utility within a

medical context, and in particular that of cardiovascular

devices, where the potential for simulation is widely appreci-

ated and accepted, yet its broad reaching impact remains

largely anticipated and bottlenecked by modelling inefficien-

cies. To this effect, by combining nearest neighbour

information from low fidelity meshes in a GPM framework,

we demonstrate the potential of fused machine learning/

physics-based simulation approaches.

4.1. Supervised learning for different physics-based
models

Using supervised learning, we examined endovascular drug

delivery in two contexts, each with unique modelling com-

plexities. In the balloon delivery model, time-dependent

simulations predicted intramural free drug diffusion soon

after delivery as well as reversible binding of drug and

tissue retention after 1 h from the onset of balloon inflation

(figure 3a). Extraction of data at such long time points natu-

rally extends simulation times. For stent-based delivery,

luminal flow transports mural drug from the deployment

site to downstream regions in a manner such that pattern of

drug imprinted on the mural surface tracks with stent design

(figure 5). Here, drugs with low diffusivity in a highly convec-

tive environment lead to extremely high Peclet numbers which

in turn can result in large instabilities in the numerical solver.

Moreover, stent implantation intervenes with the blood flow

milieu by introducing perturbations into the boundary layer,

causing drug-rich recirculating pools proximal and distal to

stent struts [34,36,37,58]. The former aspect can be resolved

using highly dense mesh configurations; the latter captured

reasonably well with boundary layer meshes. While the two-

dimensional model requires high-end computer processors

for fast computation due to the model’s time-dependent

nature, the three-dimensional model is memory intensive

and requires large RAM. Each complexity prolongs simulation

times, prompting us to explore alternative means by which to

obtain fast and accurate solutions to problems of interest.

4.2. Role of Gaussian processes
Our approach of combining physics-based computational

modelling with data-driven machine learning demonstrates

a method to efficiently model complex, multi-scale/multi-

physics physiological problems. We specifically selected

Gaussian processes because they offer a practical and prob-

abilistic approach to learning and model predictions of real-

world problems [32]. However, if this modelling framework

is used on an input feature space with several data points

and feature vectors, computational time for MLE (equation

(2.17)) becomes high. To circumvent part of this problem,

we computed the Cholesky decomposition of R. This factor-

ization technique produces an upper triangular matrix (A)

from the diagonal and the upper triangle of the matrix R,

satisfying the relation A0A ¼ R, which then allows for effi-

cient matrix inversion. This allowed the posterior mean to

be computed using a vector–vector product, i.e.bY(x) ¼ bþ r(x)Tw, where w ¼ R�1(y� 1bb). Nevertheless,

the combination of physics-based simulations generated on

the coarse mesh configurations followed by construction of

a supervised learner consumed significantly less time than
that was required for the highest mesh density simulation

(table 1a,b). Moreover, time consumed for predicting the

output on new nodes using the trained supervised learner

is almost negligible. This result highlights the power of har-

nessing GPM to efficiently approximate data generated

from computationally intensive physiologic simulations.

4.3. Mesh refinement and nearest neighbour
approaches

The concept of increasing mesh density in a successive

manner to obtain a solution with better accuracy is core to

physics-based computational modelling and mandatory for

validating any computational simulation. Yet increased

mesh density increases simulation time. Therefore, alternative

means by which to obtain fast, more accurate solutions using

coarse mesh solutions and without performing high density

mesh simulations seems very attractive. We demonstrated

that supervised machine learning using Gaussian process

modelling on nearest neighbours serves as an appropriate

framework to achieve this task.

Nearest neighbour approaches are widely used in the

pattern recognition field where one typically solves an optim-

ization problem to identify closest points in a dataset [39,40].

Foundational to such applications is the assumption that

some degree of similarity arises purely by virtue of proximity.

By assuming that a computational solution space is more

or less continuous and void of extreme transitions, we

hypothesized that a group comprising solutions of drug con-

centrations from a node’s nearest neighbours carries with it

useful information that can facilitate capture of underlying

physics more accurately and in the direction of refined mesh

solutions. In our study, we observed a strong dependence of

the supervised learner’s predictive accuracies as a function

of the number of nearest neighbours. Interestingly, a higher

number of neighbours was found to be optimal for the

two-dimensional model (figure 4a,b) as compared with the

three-dimensional setting (figure 6a,b), likely reflective of a

trade-off between added information content and excessive

smoothing. In order to implement this framework, one

must therefore appreciate the interdependence between the

distance metric, number of nearest neighbours and the

algorithm for supervised learning. While appropriate combi-

nations can augment efficiency of computationally intensive

simulations, inappropriate ones may have an opposite effect.

4.4. Study limitations and future directions
We used drug-coated balloon and drug-eluting stent therapies as

exemplary medical devices, where modelling solutions require

that multiple physics be coupled to gain relevant design and

performance insights. Since these device simulations are compu-

tationally expensive, we sought alternative means by which

to obtain fast and efficient solutions. While we made some

assumptions and approximations, such as idealized arterial

geometries, these did not detract from the overall scope of the

study. Going forward, we hope to apply these learning

approaches to examine the impact of pulsatile blood flow [36],

other drug, device and procedural settings [35,58–62], disease-

induced changes in the arterial wall [63], and patient-specific

geometries extracted using image reconstruction to obtain

physiologically realistic solutions. As we continue to develop

such applications, a number of other approaches can be readily
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considered. For example, while we present GPM as a useful

learning framework, other supervised learning techniques such

as artificial neural networks and support vector machines

could be implemented in a similar fashion, serving as effi-

cient approximations to standard physics-based simulations

[39,40,64,65]. Furthermore, several other methods related to fide-

lity optimization and applications to data mining exist within the

literature [66–69], and could be leveraged in conjunction with

the presented framework. Also, when standard linear dimen-

sionality reduction techniques such as principal component

analysis (PCA) and nonlinear dimensionality reduction tech-

niques such as kernel PCA are used to pre-condition the input

feature space prior to supervised learning [70], computational

time for model training can be further reduced. Pseudocodes

are provided in the electronic supplementary material to assist

those interested to implement our supervised learning schema

for specific applications.
 2:20141073
5. Conclusion
Emerging applications in medicine and medical device

design require that we find ways to provide high fidelity
insight efficiently. Fusion of machine learning with standard

physics-based computational models is perfectly suited to

meet this challenge. In the context of endovascular device-

based drug therapies, we demonstrate the potential of fidelity

augmentation, wherein high fidelity inferences were drawn

quickly from low fidelity information. Use of such a frame-

work may help computational tools overcome limiting

bottlenecks, allowing them to be realized in real-world medi-

cal applications characterized by inherent modelling

complexities with a time critical nature.
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