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ABSTRACT: Lipoprotein profiling of human blood by 1H nuclear
magnetic resonance (NMR) spectroscopy is a rapid and promising
approach to monitor health and disease states in medicine and
nutrition. However, lack of standardization of measurement
protocols has prevented the use of NMR-based lipoprotein profiling
in metastudies. In this study, a standardized NMR measurement
protocol was applied in a ring test performed across three different
laboratories in Europe on plasma and serum samples from 28
individuals. Data was evaluated in terms of (i) spectral differences,
(ii) differences in LPD predictions obtained using an existing
prediction model, and (iii) agreement of predictions with cholesterol
concentrations in high- and low-density lipoproteins (HDL and
LDL) particles measured by standardized clinical assays. ANOVA-
simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4−0.6
ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to
laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality
control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be
exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this
protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing
NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as
ultracentrifugation or high-performance liquid chromatography (HPLC).

In the postgenomic era, metabolomics plays a key role in life
sciences as the real-time downstream manifestation of the

genomic potential of an organism. The numbers of biological
studies that involve metabolomics are increasing. Despite being
an informative and promising approach, metabolomics is still
considered to be a nonstandardized method of analysis. Indeed,
methodologies and protocols used in metabolomics of a single
organism differ between laboratories and projects, which in turn
leads to data incompatibility and a lack of knowledge due to
lack of standardization. It is therefore crucial to introduce
optimized and standardized metabolomics protocols in order to
map the metabolomes of organisms in a reproducible way.
Since high-resolution NMR spectroscopy was first applied to
human blood,1 it has become one of the most widely used

analytical platforms in metabolomics for studying human blood
plasma and serum of large cohorts.2 Many studies have
identified human disease biomarkers3 and dietary effects on
human health using NMR-based metabolomics on blood and
urine.4 Recent developments on standardization and optimiza-
tion of NMR-based metabolomics protocols for human
biofluids further enhanced the throughput and reproducibility
of the methods.5,6 NMR spectroscopy allows simultaneous
detection of a wide range (50−70) of structurally diverse
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metabolites from human plasma or serum.4,7−10 Despite the
fact that mass spectrometry (MS)-based methods are more
sensitive, with several hundreds of detectable metabolites
within a single run, NMR spectroscopy outperforms the MS-
based methods in terms of its high reproducibility, speed, and
ability to quantify metabolites in an absolute manner without
cumbersome calibration procedures.3 Hence, NMR spectros-
copy has established itself as a reliable tool for quantification of
the human blood plasma and serum metabolome in a high-
throughput manner.2 The latter fact indeed places NMR as a
method of choice for large international cohorts involving
thousands of measurements over several years.2

NMR has one more overlooked advantage, namely, that it is
nondestructive and allows for measurement of a sample as is.
This makes NMR a unique platform for investigating
lipoproteins since it can assess size and density of these
supramolecular aggregates in their intact form. This is a
considerable advantage over other omics platforms which
typically only consider the molecular composition of biofluids.
Lipoprotein particles are supramolecular triglyceride and
cholesterol transport vehicles in blood and can be divided
into four main groups on the basis of their density and size:
very low density lipoproteins (VLDL), intermediate-density
lipoproteins (IDL), low-density lipoproteins (LDL), and high-
density lipoproteins (HDL). The lipoprotein particles can be
further separated into subgroups and large chylomicrons.11

Their determination provides valuable information, as they
constitute key biomarkers and risk factors of cardiovascular
diseases and portray the complex link between obesity and
disease.12,13 Unfortunately, detailed determination of lip-
oprotein particle distributions (LPDs) relies on time-consum-
ing, complex, and inefficient separation-based methodologies
such as ultracentrifugation (UC)14 or high-performance liquid
chromatography (HPLC).15 Density gradient ultracentrifuga-
tion can separate lipoprotein classes within 2−5 days with
coefficients of variation (CVs) ranging from 3% to 9% (+4% in
the HDL class),12 or within an hour with between-run CV
ranging from 1.34% to 5.89% with the Vertical Auto Profiling
method,16 while HPLC methods can do it in 30 min with CV
ranging from 0.3% to 4.5%.17 NMR measurement (1D
NOESY) reduces run time to 16 min (4 min for acquisition
and 12 min for sample exchange, including temperature
equilibration, autotuning, and matching) with CV 0−10% in
low molecular weight metabolites.18

Therefore, determination of LPD from NMR spectra is
desirable. Previous studies have successfully achieved this by
extracting relevant information from the complex methylene
(CH2) and methyl (CH3) signals in the 1.4−0.6 ppm region of
the NMR spectra.2,9,19 So far most large-scale studies on
variation of LPDs were carried out at a single NMR center. In
order to allow for distributed analysis at multiple NMR
laboratories, good interlaboratory reproducibility is a prereq-
uisite. Previous studies have addressed this issue on low
molecular weight metabolites and large biomolecules,6,18,20,21

but to the best of our knowledge, there is no study that focuses
on interlaboratory variation and reproducibility in such large
entities (supramolecular complexes) as lipoprotein particles.
The present study focuses on the implementation of a

protocol and methodology that represents the latest techno-
logical development in NMR spectroscopy for a large-scale,
interlaboratory, quantitative, reproducible, and high-throughput
phenotyping of human blood plasma and serum with the aim to
reliably predict lipoprotein particle distributions using NMR

measurements from different laboratories. This NMR metab-
olomics protocol largely relies on controlled sample prepara-
tion, sample handling, data acquisition, and data processing
using standardization of parameters. The protocol includes
several control levels, including measurement temperature
control within 0.1 K and spectral correction using ERETIC
(Electronic REference To access In vivo Concentrations) signal
equivalent to 10 mM proton. The standardized NMR protocol
was applied in a ring test performed across three different
laboratories in Europe for both plasma and serum samples
obtained from the same individuals at the same time (Figure S1
of the Supporting Information). The ring test study enabled
evaluation of the developed protocol for the quality and
reproducibility of the data from three different laboratories to
estimate several clinically important parameters of blood
samples, including total cholesterol content in HDL and
LDL. The NMR spectra from the three laboratories was
investigated and scrutinized in terms of (1) spectral differences,
(2) differences in the LPD predictions obtained using an
existing prediction model,9 and (3) agreement of these
predictions with experimentally obtained standard clinical
parameters.

■ MATERIALS AND METHODS
Experimental Design. Fasting plasma and serum samples

of 30 adults were investigated at three different laboratories:
University of Copenhagen (Frederiksberg, Denmark, labeled
KU), Bruker BioSpin (Rheinstetten, Germany, labeled BR),
and Unilever (Vlaardingen, Netherlands, labeled UL). After an
overnight fasting (>10 h), blood samples were drawn and blood
plasma and serum were separated. Aliquot fractions of blood
plasma and serum were kept in the freezer (−80 °C) until
shipped to the three laboratories in dry ice for 1D 1H NMR
analysis. Clinical measurements were taken for each participant.

Participants. Apparently healthy participants of both
genders were selected based on the following inclusion criteria:
>20 years old, body mass index (kg/m2) between 18.5 and 40.
Pregnant or lactating women (up to 6 weeks prior to study
start), as well as subjects diagnosed with any form of
cardiovascular disease or diabetes, reporting chronic gastro-
intestinal disorders, receiving antibiotic treatment within 3
months of starting the study, or using pre- or probiotic
supplements within 1 month of starting the study, were not
considered suitable candidates. All subjects were recruited in
Copenhagen, via press announcements and online recruitment
homepages. Elderly participants were also recruited via specific
journals and social media platforms. All participants provided a
written consent to participate in the study. The study was
conducted at the Department of Nutrition, Exercise and Sports
at the University of Copenhagen, Denmark, and was approved
by the Research Ethics Committees of the Capital Region of
Denmark in accordance with the Helsinki declaration (H-
15008313) and the Danish Data Protection Agency (2013-54-
0522).

NMR Sample Preparations. Plasma and serum samples
were stored in cryovials at −80 °C until measurement day.
Prior to preparation, they were thawed at room temperature for
approximately half an hour. Respective aliquots of 350 μL were
carefully mixed with equal amounts of phosphate buffer
solution22 in cryovials, and then transferred to 5 mm SampleJet
tubes (Bruker BioSpin).

NMR Data Acquisition and Preprocessing. Samples
were measured using 600 MHz NMR spectrometers from
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Bruker BioSpin equipped with an automated sample changer
SampleJet (Bruker BioSpin) with sample cooling and
preheating station, a 5 mm inverse probe with z-gradient and
automated tuning and matching and cooling unit BCU-05 or
BCU-I (Bruker BioSpin). The exact spectrometer and probes
used in the ring test are listed in Table S1 of the Supporting
Information. TopSpin 3.5 PL2 (Bruker BioSpin) was used for
acquisition and processing. Automation of the overall measure-
ment procedure was controlled by ICON NMR (Bruker
BioSpin).
For NMR experiments the standard operational procedures

(SOP) described in Dona et al. were applied.6 Before
measurement, each sample was kept for 5 min inside the
NMR probe head in order to achieve temperature equilibration
at 310 K with deviation <0.1 K. Then, automated tuning and
matching, automated locking, automated shimming using
TOPSHIM, automated optimization of the lock phase, and
automated determination of the 90° hard pulse was applied to
optimize the NMR experimental conditions. After this
procedure, a one-dimensional 1H NMR spectrum was acquired
using a standard one-dimensional 1H NMR pulse sequence
with suppression of the water peak (Bruker pulse program
library noesygppr1d), i.e., RD−P(90°)−4 μs−P(90°)−tm−
P(90°) acquisition of the free induction decay (FID). The
relaxation delay (RD) and mixing time tm, were set to 4 s and
10 ms, respectively. Low-power continuous wave irradiation
(CW) for saturation of the water resonance at rf field strengths
of 25 Hz was applied during RD and tm for presaturation. Prior
to the first and the last pulse, a z-gradient was applied. After
application of 4 dummy scans, 32 free induction decays (FIDs)
were collected into 98 304 (96k) data points using a spectral
width of 30 ppm (18 028.846 Hz). The receiver gain was kept
constant (RG = 90.5) for all samples. FIDs were multiplied
with an exponential function corresponding to a line broad-
ening of 0.3 Hz prior to Fourier transformation and fully
automated phasing and baseline correction via the Bruker
standard automation program APK0.NOE. Quantitative
calibration of the spectra was ensured using the PULCON
principle.23

Raw NMR spectra were scaled to the ERETIC signal24 at 15
ppm, equivalent to 10 mM protons, and then aligned to the
alanine doublet in the region of 1.494−1.507 ppm using
icoshift25 with an offset modification (icoshift ver. 3.0; Matlab
source code is freely available for download at www.models.life.
ku.dk/algorithms), using command: [xCS,ints,ind,target] =
icoshift( ’average ’ ,data, ’1.507−1.494 ’ , ’b ’ ,[2 1 0 20 1
1],ppm_scale).
Standard Clinical Parameters. Analyses of plasma and

serum total cholesterol, HDL-C, LDL-C, and total triglycerides
were done using the automated, enzymatic, colorimetric assay
on the ABX Pentra 400 chemistry analyzer (ABX Pentra,
Horiba ABX, Montpellier, France). The CV% for these analyses
was between 1.2% and 3.1%.
Sample Selection. One of the 30 subjects included in the

ring test study was excluded from the analysis due to lack of the
ERETIC signal, and another subject was excluded because no
plasma standard clinical measurements were made. This
resulted in plasma and serum NMR spectra and clinical
measurements for 28 individuals. Thus, a total of 168 1D 1H
NMR spectra were included in this study (28 subjects × 2
sample types × 3 laboratories).
Partial Least Squares Model Transfer for LPD

Estimation. The model used in this study to determine

lipoprotein distributions is the one presented in Mihaleva et al.9

This partial least squares (PLS) model, which was calibrated on
HPLC data,15 predicts cholesterol and triglyceride concen-
trations in 3 main lipoprotein particle classes (HDL, VLDL,
LDL) and 13 subclasses (VLDL03, VLDL04, VLDL05,
VLDL06, VLDL07, LDL08, LDL09, LDL10, LDL11, HDL15,
HDL16, HDL17, HDL18) from serum NMR spectra.
In order to successfully apply this PLS model, the scaled and

aligned ring test data were further processed (model transfer).
To remove chemical shift differences between the ring test
NMR data and the mean 1D 1H NMR spectrum of the model
data,9 the ring test data was further aligned to the alanine
doublet of the model data using the mean spectrum as a target
with icoshift25 as described earlier. From these realigned
spectra, only the 1.4−0.6 ppm region was considered for the
data analysis, as this region contains the methylene and methyl
bands that allow for the prediction of cholesterol and
triglycerides concentrations with the PLS model from Mihaleva
et al.9 Given that for this region we had 3492 data points and
the model comprises 1746 data points, we used a binning size
of 2. The data was then rescaled to the mean of the data used to
build the model of Mihaleva et al.9 in order to get intensities of
similar magnitude; for this normalization, a scaling factor was
determined (Figure S2 of the Supporting Information).
Because the PLS model used in this study was built on
serum data, we calculated the scaling factor c using the serum
ring test NMR spectra (eq 1)

=
∑ ∑

∑ ∑
= =

= =
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a
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n i

n
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ij

m i
m

j
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ij

1
1 1

1
1 1 (1)

where matrix A contains the training set intensities of Mihaleva
et al.,9 matrix B contains the ring test serum spectral data, n is
the number of samples of the Mihaleva et al.9 training set (n =
190), m is the number of samples in the serum data set (m =
84), and p is the number of data points considered (p = 1746).
Plasma and serum data were then multiplied by this scaling

factor (Figure S2 of the Supporting Information). Cholesterol
predictions were obtained on the region 1.04−0.6 ppm (971
chemical shifts) of the spectra, corresponding to the methyl
signal. Total triglyceride predictions were obtained using the
region 1.4−0.6 ppm of the spectra (1746 chemical shifts),
corresponding to the methyl and methylene signals.9

Data Analysis. The results are structured according to three
different levels (Figure 1). Level 1 describes differences
between laboratories (BR/KU/UL) and between sample

Figure 1. Schematic of the different levels of the data analysis.
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types (plasma/serum) in the NMR spectra. Level 2 describes
the differences between laboratories on their ability to predict
LPDs from the PLS model presented in Mihaleva et al.9 At level
3, the performance of the PLS model is evaluated by comparing
the lipid predictions with measured standard lipid parameters.
Level 1, Spectral Differences: Between-Sample Type and

between-Laboratory Comparisons. Since the ultimate target
of this paper is to assess the reproducibility of NMR data
acquisition for LPD determination across laboratories, only the
relevant part of the spectra that includes the methylene and
methyl signals is included in the calculations: 1.4−0.6 ppm.
Principal component analysis (PCA) and ANOVA-simulta-
neous component analysis (ASCA)26 were performed with a
view to understanding the variation in the data. Unlike PCA,
where the three different sources of variation (subject, sample
type, laboratory) cannot be distinguished, ASCA allows for the
partitioning of the variance in the data into different factors.
This way, the contribution of the different sources of variation
can be properly assessed. Additionally, a dissimilarity measure
between data obtained at the different laboratories and between
data obtained from the different sample types (plasma and
serum) was calculated as indicated in eq 2:

= −
+

≤ ≤r r
A B

A B
SS( )

SS( ) SS( )
0 1

(2)

where SS indicates sum of squares and A and B are the spectral
subsets to be compared (subsets from different laboratories for
the between-laboratory comparison and subsets from the two
different sample types for the between-sample type compar-
ison). A dissimilarity value of r = 0 indicates maximum
similarity and r = 1 maximum dissimilarity. For derivation, see
eq S1 of the Supporting Information.
Level 2, Lipoprotein Particle Distribution Prediction:

Between-Laboratory Comparisons. Lipoprotein particle dis-
tributions were predicted from the NMR data using the PLS
model presented in Mihaleva et al.9 Because this model was
built on HPLC data, cholesterol and triglyceride predictions of
3 main classes (HDL, VLDL, LDL) and 13 subclasses
(VLDL03, VLDL04, VLDL05, VLDL06, VLDL07, LDL08,

LDL09, LDL10, LDL11, HDL15, HDL16, HDL17, HDL18)
were obtained for the ring test subjects.
In order to determine the contribution of the three factors

(subject, sample type, and laboratory) to the total variation in
the cholesterol and total triglyceride predictions, a linear model
was fitted on the predictions of all subclasses and ANOVA was
performed. For the determination of between-laboratory
variation per sample type (plasma/serum) absolute root-
mean-square error (RMSE) was calculated on the prediction
of all (sub)classes (eq 3, where y1 and y2 are the predictions of
two different laboratories).

∑= −
=n

y yRMSE
1

( )
i

n

1
1 2

2
i i

(3)

Level 3, Model Performance on the Prediction of Standard
Lipid Parameters. HDL class is the most suitable one to assess
the model performance on the ring test data, given that it is
very well-defined, allowing cholesterol measurements for this
class to be compared across different techniques (i.e., standard
clinical measurements and HPLC measurements). At this level,
the model performance was assessed per laboratory, for both
plasma and serum samples, using the RMSE and Pearson
correlation coefficient of predicted and measured values of
HDL-C and additionally also of LDL-C (eq 3, where y1 and y2
are the predicted and clinical parameters, respectively).

■ RESULTS AND DISCUSSION
Characterization of the Ring Test Population. The

subjects participating in the ring test were classified according
to their lipid levels as described by the National Cholesterol
Education Program (NCEP) Adult Treatment Panel III
guidelines (2002) based on serum values (Figure 2, Table S2
of the Supporting Information).27 Even though the lipid panels
of plasma and serum samples from the same subjects are very
similar (with a correlation of 0.9874, 0.9973, 0.9919, and
0.9960 for total cholesterol, HDL-C, LDL-C, and total
triglycerides, respectively), small lipid measurement differences
lead in some cases to different classification (Table S2 of the
Supporting Information). The majority of the subjects sampled
for the ring test had average or close to average lipid values

Figure 2. Total cholesterol, HDL-C, LDL-C, and total triglyceride (TG) concentration distributions of the (a) serum and (b) plasma samples from
28 subjects. The dotted lines indicate the different levels in the serum lipid classification of the National Cholesterol Education Program (NCEP)
Adult Treatment Panel III (for more details see Table S2 of the Supporting Information).
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(Figure 2, Table S2 of the Supporting Information). Since most
of the ring test samples fall within the ranges of the cohort in
which the model from Mihaleva et al.9 was built,28 we
determined that the model was applicable to the ring test
cohort (Table 1).
Structure of the Data Analysis. The results are structured

according to the different levels specified in Figure 1. At level 1,
differences between laboratory (BR/KU/UL) and between
sample type (plasma/serum) in the spectra are analyzed. At
level 2, an existing PLS model to predict lipoprotein subclass
from serum NMR spectra9 is used to obtain lipid predictions
from all spectra; differences between laboratories in the
predictions are studied. At level 3, the performance of the
PLS model on the ring test population is evaluated by
comparing the PLS predictions with the classical lipid panel
measurements.
Level 1: Spectral Differences. In this study, the sources of

variation present in the NMR data (1.4−0.6 ppm, 1746 data

points) are (i) the subjects, (ii) the type of sample (plasma and
serum), and (iii) the laboratory (BR, KU, UL). PCA of all
spectra (Figure S3 of the Supporting Information) and PCA of
the plasma and serum spectra separately (Figure S4 of the
Supporting Information) indicate that between-subject varia-
tion dominates over between-sample type (plasma/serum)
variation, which in turn dominates over the between-laboratory
variation. Figure 3 points out how small the latter is and gives
an idea of the level of reproducibility of NMR measurements
across laboratories.
Given the multifactorial nature of the data, PCA fails to

provide a good interpretation of the variation in the data. In
order to improve this, ASCA was applied, as this type of
analysis allows for a good separation of all sources of variation
on the mean-centered spectral data (Figure S5 of the
Supporting Information).
The ASCA analysis determined that the between-subject

variation represents 97.99% of the overall explained variation in

Table 1. Description of the Classical Lipid Panel (mmol/L) of the 28 Ring Test Plasma and Serum Samples and of 189
Mihaleva Training Samples (Ref 28)a

lipid cohort min max mean median SD

total cholesterol ring test (plasma) 3.29 6.79 4.66 4.60 0.69
ring test (serum) 3.32 6.94 4.78 4.70 0.71
Mihaleva (training) 3.10 8.10 6.26 6.30 0.87

HDL-C ring test (plasma) 0.74 3.04 1.52 1.48 0.50
ring test (serum) 0.77 3.12 1.57 1.52 0.52
Mihaleva (training) 0.80 3.00 1.64 1.60 0.39

LDL-C ring test (plasma) 1.67 3.85 2.65 2.78 0.54
ring test (serum) 1.79 3.93 2.80 2.89 0.56
Mihaleva (training) 1.30 5.90 3.78 3.80 0.83

total triglycerides ring test (plasma) 0.47 2.48 1.13 1.03 0.50
ring test (serum) 0.47 2.59 1.11 1.05 0.52
Mihaleva (training) 0.47 2.04 1.08 1.00 0.38

aClinical data for one of the original 190 Mihaleva training samples was not available.

Figure 3. Serum spectra of two representative subjects obtained in three different laboratories (BR, KU, UL). NMR data of the same subject are very
similar between laboratories, resulting in three same-colored (blue, orange) overlapping lines. Also shown are the differences between NMR spectra
across laboratories for the two individuals (yellow, purple, and green lines).

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b01329
Anal. Chem. 2017, 89, 8004−8012

8008

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01329/suppl_file/ac7b01329_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01329/suppl_file/ac7b01329_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01329/suppl_file/ac7b01329_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01329/suppl_file/ac7b01329_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.7b01329


the data (Figure 4, parts a and b). The between-sample type
and between-laboratory variations of the spectra were already
visible in the PCA score plots (Figures S3 and S4 of the
Supporting Information), but a much clearer sample grouping
is revealed in the score plots of the factor subject from the
ASCA analysis (Figure 4a). The between-sample type variation
represents 1.62% of the overall explained spectral variation
(Figure 4, parts c and d), while the between-laboratory
variation represents 0.39% of the total explained variation
(Figure 4, parts e and f). Tables 2 and 3 also confirm that
between-sample type variation is larger than between-
laboratory variation, as the dissimilarity values in the between-sample type comparison are larger than those found

in the between-lab comparison.
A PCA performed on the matrix corresponding to the factor

laboratory results in a PC1 (explaining 81% of the variation)
that revolves mostly around the deviation of the UL spectra.
Inspection of the corresponding PC1 loadings shows that this
deviation could be related to slightly lower intensities of the UL
measurements. PC2 of the between-laboratory variation, which
explains 19% of the between-laboratory variation, clearly
separates the spectra obtained at the KU from those obtained
at BR, with the UL spectra placed in between. Inspection of the
corresponding PC2 loadings show that this variation is related
to a shift (or peak shape) in the lactate doublet at 1.33 ppm and
presumably a small shift in the broad methylene and methyl
signals. Overall, it is observed that the BR and KU spectra are
more similar to each other and that the UL spectra exhibits

Figure 4. (a) Scores plot and (b) loadings plot of the factor subject; (c) scores plot with the residuals of all samples projected and (d) loadings plot of
the factor sample type; (e) scores plot with the residuals of all samples projected and (f) loadings plot of the factor laboratory of the ASCA analysis on
the NMR spectral data.

Table 2. Dissimilarity between the Spectra from the Three
Laboratories (BR, KU, UL), for Both the Plasma and Serum
Subsetsa

plasma BR KU UL serum BR KU UL

BR 0 0.015 0.030 BR 0 0.016 0.032
KU 0.015 0 0.025 KU 0.016 0 0.026
UL 0.030 0.025 0 UL 0.032 0.026 0

aAll dissimilarity values are smaller than 0.056, which corresponds to
the dissimilarity between the data sets here used and the same data set
shifted 0.001 ppm to the right (misalignment). All dissimilarity values
are also smaller than 0.0412, which corresponds to the dissimilarity
between the ring test data (A = X) and the same data with a 6%
addition (B = 1.06A).

Table 3. Dissimilarity between the Serum and the Plasma
Spectra for Each of the Three Laboratories (BR, KU, UL)a

BR KU UL

0.035 0.037 0.038
aAll dissimilarity values are smaller than 0.056, which corresponds to
the dissimilarity between the data sets here used and the same data set
shifted 0.001 ppm to the right (misalignment). All dissimilarity values
are also smaller than 0.0412, which corresponds to the dissimilarity
between the ring test data (A = X) and the same data with a 6%
addition (B = 1.06A).

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b01329
Anal. Chem. 2017, 89, 8004−8012

8009

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01329/suppl_file/ac7b01329_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.7b01329


deviation from these (Figure 4e, Tables 2 and 3). However, it
should be emphasized that this data analysis scrutinizes the
variation between laboratories, which only represents 0.39% of
the overall systematic variation and is already smaller than the
1% acceptable intralab spectroscopic variation suggested by
Dona et al.6 Several factors might be playing a role in the small
deviations of the UL spectra, including (i) the slightly different
NMR probe used at UL (Inverse Cryo TCI) and (ii) tiny
fluctuations in the air conditioning experienced at the UL lab,
which can lead to unstable room temperature and thus to small
peak broadening in some spectra.
The between-sample type and between-laboratory variations

are mostly due to the lactate doublet in the 1.345−1.32 ppm
region (Figure 4, parts d and f). If the lactate doublet is
removed, the percentage of the variation explained by sample
type drops to 0.53%, while the percentage of the variation
explained by the laboratory is not largely reduced (0.32%) and
subject explains 99.15% of the variation. These results seem to
indicate that sample type variation is largely related to minor
pH differences.
All in all, both the between-sample type variation and the

between-lab variation in the ring test NMR spectra were
determined to be low. The fact that between-lab variation is so
small indicates that the NMR acquisition protocol here
described is suitable for cross-cohort studies by allowing direct
interindividual comparison of NMR data obtained in different
laboratories.
Level 2: Lipoprotein Particle Distribution Prediction. In the

previous section (level 1) it was shown that the spectra from
the three different laboratories are very similar. In this section,
the effect of the small spectral differences in the NMR data
obtained at the three different laboratories on the prediction of

cholesterol and triglyceride (TG) concentrations of lipoprotein
subclasses will be investigated. In order to do so, the model
derived from Mihaleva et al.,9 built on an apparently healthy,
hypercholesterolemic human population, is here applied to
estimate cholesterol and triglyceride content for a total of 16
lipoprotein particle classes from the NMR data. Subsequently,
these predictions are analyzed in terms of between-laboratory
differences.
The lipid content of the samples of 28 subjects was predicted

from the serum and plasma NMR spectra of the three
laboratories separately. In Figure 5, the between-laboratory
differences in cholesterol and triglycerides (TG) serum
predictions in the VLDL06 subclass are depicted: BR versus
KU, BR versus UL, and UL versus KU. This subclass
(VLDL06) is representative of the general trend in all
subclasses (Figure S6 of the Supporting Information). RMSE
of the predictions obtained using data from the three different
laboratories was calculated to compare the predicted
cholesterol and TG concentrations (Figure 5). The RMSE of
the comparisons UL−BR and UL−KU of cholesterol
predictions is slightly larger than the RMSE of the comparison
BR−KU. For the TG predictions, all lab comparisons result in
similar RMSE. The majority of data points lie between the lines
that indicate a ±5% deviation. Some data points fall outside of
the lines; however, it should be noted that the majority of these
points correspond to very low cholesterol and triglyceride
concentration predictions. Thus, the relative deviation might be
larger than 5%, but the absolute deviation (calculated as
RMSE) remains very small. Despite the fact that the model
derived from Mihaleva et al.9 is built on serum data, it is
observed that the cholesterol and TG predictions from plasma

Figure 5. Between-lab differences in serum cholesterol and triglycerides predictions for the VLDL06 subclass obtained using the Mihaleva-derived
PLS model. BR vs KU, BR vs UL, and UL vs KU (a and b) cholesterol and (c and d) triglycerides serum predictions. (a and c) On the x axis, the
value of the prediction of the first laboratory; on the y axis, the value of the prediction of the second laboratory. (b and d) Zoom-in of the differences
between laboratories: on the x axis, the value of the prediction of the first laboratory; on the y axis, the difference between the prediction of the
second laboratory and the prediction of the first one. The black line is drawn where predictions are equal; the red dashed lines indicate a deviation of
5%.
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NMR data of all three laboratories differ in a similar way
(Figure S7 of the Supporting Information).
A linear model was fit separately on the cholesterol and

triglycerides predictions for all subclasses. Using this model,
subject explains 99.16%, sample type 0.73%, and laboratory
0.11% of the total variation of the cholesterol predictions
explained by these three factors. In the case of the triglyceride
predictions, subject explains 99.44% of the variation, sample
type 0.48%, and laboratory 0.08% of the variation. According to
these values, both the sample type and the laboratory variation
in the predictions are reduced when compared to the original
NMR spectral differences given by the ASCA analysis (97.99%
for subject, 1.62% for sample type, 0.39% for laboratory). The
reduction in the sample type and lab variation in LPD
predictions is most likely due to the fact that the regions of the
spectra that contribute the most to the NMR variation do not
have a determinant weight (in terms of regression coefficients)
on the PLS predictions.
Summarizing, the already low NMR between-lab variation

translates into even lower between-lab differences in lipid
profile predictions. Thus, implementation of this NMR
protocol would enable LPD phenotyping of large cohorts
across different laboratories.
Level 3: Model Performance on the Prediction of Standard

Lipid Parameters. In previous sections, it was shown that
differences in spectra from different laboratories and different
sample types (plasma/serum) are very small (level 1),
translating into even smaller differences in the prediction of
lipoprotein distribution (level 2). In this section (level 3), the
performance of the PLS model on this cohort is evaluated by
comparing its predictions to the experimental measurements
(classical lipid panel). Figure 6 shows the comparison of the
HDL-C serum predictions to the serum HDL-C clinical
measurements. The results show that the predictions made
on NMR data from different laboratories for the same subject
are very similar, even when the predicted values differ from the
measured values. The RMSE values, again very close to each
other between laboratories, are slightly larger than the one
reported for the Mihaleva test set HDL-C prediction (0.0679).9

The Pearson correlation coefficients are slightly smaller than
the Pearson correlation coefficient reported for the HDL-C
class in the Mihaleva test set (0.99).9 In spite of the fact that

this PLS model was built with HPLC data as response data and
on a different cohort, these results show that the model allows
for a good prediction of HDL-C clinical measurements on the
population sampled in this study. The residuals of the fit of PLS
predictions and HDL-C clinical values were further investigated
(Figure S8 of the Supporting Information). This analysis
corroborated the good fit of the model for average values and
the presence of larger errors for the subjects with more
deviating HDL-C values. The latter were not contained within
the range of the clinical HDL-C values of the training set in the
Mihaleva model (Table 1) and thus had to be extrapolated by
the model. Despite the fact that the model derived from
Mihaleva et al.9 is built on serum data, it is observed that the
model also performs well on plasma data (Figure S9 of the
Supporting Information). Results for the LDL-C class are
shown in Figure S10 of the Supporting Information. For this
class, the predictions do not correlate with the clinical
measurements as well as for the HDL-C class, which might
be a combination of an initial lower performance of the model
on the LDL class, differences in response data (clinical vs
HPLC) and differences in distributions across cohorts (Table
1). However, the predictions of the three different laboratories
are still very close.

■ CONCLUSIONS
The present study evaluated the reproducibility of a stand-
ardized protocol and methodology for the acquisition of NMR
data on blood plasma and serum samples at different
laboratories prior to the estimation of clinically relevant lipid
parameters of blood.
Analysis of this ring test NMR data showed that the variation

between plasma and serum and the interlaboratory variation are
small when the measurement conditions are met. In fact, the
interlaboratory variation in the NMR spectral data was found to
be smaller than the maximum acceptable intralaboratory
variation on the quality control samples.6 In order to determine
the effect of the small spectral differences upon lipoprotein
predictions, an existing model9 for the prediction of lipoprotein
parameters was applied to the recorded spectra. The
predictions from this model proved to be very similar (even
more than in the original NMR spectra) between laboratories
in both serum and plasma samples. The latter fact confirmed

Figure 6. HDL-C predictions of the PLS model on serum spectra from the three laboratories. The black line is drawn where prediction and
measurement are equal; the red dashed lines indicate plus or minus 5%.
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that the reproducibility between different laboratories is good
enough for the lipoprotein profile predictions to be
exchangeable.
The fact that both the population sampled in the Mihaleva et

al.9 study and the population studied in the present ring test
were apparently healthy may be the reason why it was possible
to successfully apply this existing lipoprotein model to our data
after a model transfer. A future challenge will be to build a
model for LPD prediction that covers populations comprising a
wide range of phenotypes, i.e., lipoprotein particle distributions.
With the successful implementation of this standardized

protocol for obtaining reproducible data between different
laboratories, a step is taken toward bringing NMR measure-
ment of lipoprotein distributions into biomarker development
and diagnostics. By using an NMR-based approach to predict
LPDs, research and diagnostics can benefit from the added
value of lipid profile in multiple lipoprotein particle subclasses
while reducing the need for less efficient methods such as
ultracentrifugation or HPLC. Implementation of this protocol
for reproducible acquisition of NMR data will potentially allow
LPD phenotyping of large cohorts across different laboratories
in future metastudies.
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