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As the major conduit of oxygen and nutrients to cells 
and tissues, blood vessels are the body’s ultimate 
lifeline (Figure 1). From conception, embryos must 

perform all the necessary functions of life before they have 
developed the organs to do so. The raw materials and waste 
products of metabolism are initially exchanged through 
simple diffusion, but as the embryo grows larger and more 
complicated, this is no longer suffi cient. Consequently, the 
cardiovascular system is the fi rst functional organ to form in 
the developing embryo. 

New blood vessels are, in general, formed by two different 
processes. During vasculogenesis, new vessels arise from 
endothelial precursors (angioblasts) in the previously 
avascular early embryo. During angiogenesis, existing 
vessels undergo remodelling, and new vessels sprout from 
pre-existing ones. This latter process occurs both during 
development and in postnatal life. Although vasculogenesis 
and angiogenesis occur in different contexts, they are similar 
processes in molecular terms. During angiogenesis, mature 
endothelial cells must revert to an earlier, more plastic 
state in order to participate in the formation of new vessels. 
Therefore, many of the signals that initiate angiogenic 
remodelling, for example, vascular endothelial growth factor 
(VEGF), are also associated with vasculogenesis. 

Deregulation of angiogenesis can contribute to the 
pathogenesis of a wide range of diseases, including cancer. 
Because tumours induce and depend on the growth of new 
blood vessels, factors that promote tumour angiogenesis are 
important targets for anticancer therapy. Given the molecular 
overlap between angiogenesis and vasculogenesis, a fuller 
understanding of vascular development in the early embryo 
is likely to provide valuable insight into potential therapeutic 
targets for treating vascular disease. 

Blood and the vessels that transport it around the body 
emerge almost simultaneously, and in many cases, it is widely 
believed, from a common precursor. In this way, these two 
cell types, whose fates are so closely entwined, are specifi ed 
at the same time and in the same place. This concept was 
fi rst proposed by Florence Sabin early in the last century [1]. 
Studying the initial formation of blood and endothelial cells 
in the chick blastoderm, she observed how the two lineages 
arose from the same mesodermal tissue in the blood islands 
(an extraembryonic tissue surrounding the embryo on the 
surface of the yolk). The hypothesis was further advanced by 
P. D. F. Murray, who fi rst coined the term “haemangioblast” 
(Figure 2) to describe the putative common precursor of 
the two lineages [2]. Ultrastructural studies of the mouse 
extraembryonic yolk sac revealed a similar close association 
between haematopoietic and endothelial development, 

and the concept of the haemangioblast was extended to 
mammalian development [3]. Since these early beginnings, 
many lines of evidence have accumulated to support the 
existence of the haemangioblast. Early haematopoietic 
and endothelial cells express many of the same genes, 
several of which are essential for the development of both 
lineages (reviewed in [4]). Similarly, a specifi c, although 
as yet uncharacterised, mutation in zebrafi sh, known as 
cloche, produces embryos with profound defects in both 
haematopoietic and endothelial lineages [5]. 

The most direct evidence for the existence of the 
haemangioblast comes from studies using a model system 
based on the in vitro differentiation of pluripotent mouse 
embryonic stem cells. In appropriate culture conditions, 
these cells spontaneously differentiate, forming colonies of 
cells, known as embryoid bodies, comprising a wide mix of 
cell types. The distribution and timing of the appearance of 
specifi c cell types, including haematopoietic and endothelial 
cells, in these colonies essentially recapitulates that of the 
developing embryo. Using this system, individual cells derived 
from embryoid bodies cultured in the presence of VEGF 
were identifi ed that produced colonies of haematopoietic 
and endothelial cells [6]. These cells are termed blast-
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Figure 1. The Fine Detail of the Developing Vasculature of an 
approximately four-day-old Zebrafi sh Embryo Is Revealed Using 
Confocal Microangiography
The accessibility and optical clarity of zebrafi sh embryos lend a 
particular advantage to the study of vascular development. Fluorescent 
microspheres can be injected into the blood stream, penetrating the 
entire patent vascular system, allowing imaging of the vasculature using 
confocal microscopy. 
(Photo: B. Weinstein)
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colony forming cells, and represent a transient population 
that develops prior to the emergence of identifi able 
haematopoietic cells during embryoid body differentiation. 
For these reasons, the blast-colony forming cell is thought of 
as the in vitro equivalent of the haemangioblast. 

Recently, comparable progenitor cells have been isolated 
from early mouse embryos, which form bilineage colonies 
under similar culture conditions [7]. These cells are the 
closest yet to a genuine in vivo haemangioblast, but their 
haematopoietic and endothelial potential has only been 
demonstrated in vitro. We cannot be sure that these cells 
would perform the same way if left in the embryonic 
environment. Thus, although there is considerable evidence 
for the haemangioblast’s existence, defi nitive proof ultimately 
awaits an in vivo lineage labelling experiment showing that a 
single precursor cell can give rise to both haematopoietic and 
endothelial progeny. 

Making a Choice—Determining Endothelial Cell Fate

Once formed, the putative haemangioblast must make the 
choice between haematopoietic and endothelial cell fate. 
While the hierarchy of transcription factors that programme 
haematopoietic development, spearheaded by Scl, is 
relatively well characterised, those governing endothelial 
cell specifi cation remain more elusive. However, some 
of the signalling pathways involved in the differentiation 
and proliferation of endothelial precursors and in their 
subsequent migration and patterning have been identifi ed. 
Most notably, VEGF is one of the most critical and specifi c 
drivers of vascular development, known to be intimately 
involved in endothelial precursor specifi cation and 
patterning. Onset of expression of the VEGF receptor fl k1, 
along with scl, marks the earliest precursors of the developing 
endothelial lineage, both in the yolk sac and in the embryo 
proper [8]. In the yolk sac blood islands, these cells give 
rise to both blood and endothelium, and thus appear to be 
haemangioblasts. Cells coexpressing fl k1 and scl generated in 
vitro in embryoid bodies also give rise to both lineages [9]. 
Despite its early associations, fl k1 expression is later restricted 
to endothelial cells [8,10]. Recently VEGF signalling via 
Flk1 has been shown to be crucial for the allocation of early 
mesoderm to the endothelial lineage [11]. 

Insight into the role of VEGF signalling during vascular 
development has also been provided by gene-targeting 
experiments in the mouse. Mice generated with mutations 
in three different proteins—Flk1−/−, VEGF+/−, or plcg1−/− 
(a downstream effector of VEGF signalling)—die at 
midgestation (E8.5–E9.5) due to a complete lack of 
endothelial or haematopoietic development [12–15]. Further 
studies in both murine and amphibian embryos suggested 
that VEGF signalling is required for the correct migration 
of haemangioblast/angioblast precursors to their sites of 
differentiation [16,17]. However, the defects of the fl k1−/− 
mouse cannot be ascribed to impaired migration alone, since 
development of angioblasts was completely blocked and the 
embryos failed to form even a primitive vascular plexus [12]. 
VEGF signalling is therefore essential for initial specifi cation, 
proliferation, and migration of early vascular progenitors in 
mouse embryos.

In contrast to experiments in the mouse, disruption of the 
VEGF signalling pathway in zebrafi sh by way of mutation, 
antisense knockdown, or inhibition of ligand or receptors 
[18–21] does not produce the same severe early defects in 
vasculogenesis. Later defects in dorsal aorta specifi cation and 
sprouting of intersomitic vessels are seen, but endothelial 
cells are specifi ed and vessels are otherwise formed as 
normal. The most probable explanation for this stems from 
a fundamental difference in the regulation of fl k1 expression 
in the zebrafi sh. In mouse embryos, fl k1 is the fi rst gene to 
be expressed in emerging haemangioblasts and endothelial 
precursors, initiating prior to and driving expression of scl. 
However, in zebrafi sh, fl k1 expression commences later, when 
haemangioblasts have already been specifi ed, and is partially 
dependent on Scl. Although the existence of an unidentifi ed 
earlier-acting VEGF receptor cannot yet be completely ruled 
out, it seems unlikely that VEGF plays such a critical role in 
endothelial specifi cation in zebrafi sh. 

So what might be driving endothelial specifi cation in the 
zebrafi sh embryo? Ets factors are likely candidates. Gene 
expression is regulated by the binding of transcription factors 
to regulatory elements in the DNA, called enhancers, which 
promote transcription of the gene by RNA polymerase. One 
gene can have several different enhancers that serve to drive 
expression in different tissues and at different times during 
development. Ets factor binding sites in a fl k1 regulatory 
enhancer sequence have been shown, through mutagenesis, 
to be essential for fl k1 expression in endothelial cells in 
transgenic mice, and can be activated by coexpression 
with Ets1 and Ets2 [22]. Characterisation of a downstream 
enhancer that drives expression of scl in haematopoietic 
stem cells, endothelial cells, and haemangioblasts revealed 
critical GATA and Ets factor binding sites [23]. The 
same Ets-Ets-GATA motif was subsequently found to be 
present in candidate enhancers in the fi rst introns of 
the Ets factor, fl i1, and hhex—a transcription factor also 
expressed in haemangioblasts, in endothelial cells, and in 
the haematopoietic stem cell [24]. Expression of Lmo2, the 
partner of Scl, in endothelial cells has also recently been 
shown to be driven by its proximal promoter, which binds the 
Ets factors Elf1, Fli1, and Ets1 in vivo [25]. 

The Ets factors comprise a large multigene family of 
transcription factors. Previous attempts to identify Ets factors 
with important roles in zebrafi sh endothelial development 
have proven unsuccessful. Although the Ets factor fl i1 is one 

DOI: 10.1371/journal.pbio.0040024.g002

Figure 2. The Haemangioblast
Many lines of evidence support the notion that blood and endothelium 
share a common precursor, the haemangioblast. EC, endothelial cell; 
Hmgb, haemangioblast; HSC, haematopoietic stem cell.
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of the earliest genes to be expressed in haemangioblasts 
in the lateral plate mesoderm in zebrafi sh embryos, its 
loss-of-function phenotype, both in zebrafi sh and in 
mice, is relatively mild (A. Rodaway, N. Lawson, personal 
communication; [26]). In a recent study, knockdown of 
several zebrafi sh Ets factors, including ets1, fl i1, fl i1b, or 
mef/elf4, either alone or combined, failed to reveal any 
requirement for haematopoietic or endothelial development 
[27]. 

Therefore, it is of great interest that in this edition of PLoS 
Biology, Sumanas and colleagues [28] report the expression 
and functional characterisation of a novel Ets factor, Ets1-
related protein (Etsrp), which is essential for endothelial 
development in zebrafi sh embryos. Crucially, this is the 
earliest identifi ed gene in the hierarchy of transcription 
factors governing endothelial development that does not 
also affect haematopoietic development, unlike cloche, for 
example, and may therefore be involved in specifi cation of 
endothelial cell fate from the haemangioblast. While cloche 
acts to specify the haemangioblast, Etsrp may be required in 
the subsequent decision—whether to become a blood cell or 
an endothelial cell (Figure 3).

The Emphasis on Different Signals and Factors at 
Different Stages of Vascular Development May Vary 
between Species

Previous experiments in avian and amphibian embryos have 
suggested that fi broblast growth factor (FGF) signalling 
can induce angioblast formation in mesodermal tissues 
[31–33]. Although FGF signalling is known to be involved 
in angiogenesis [34], how the FGF pathway infl uences 
endothelial commitment is still unclear. Interestingly, many 
Ets factors have been shown to be targeted by the mitogen-
activated protein kinase (MAPK) signalling pathway. 
Phosphorylation of different Ets factors by MAPK can affect 
DNA binding, transcriptional activity, protein stability, and 
subcellular localisation [35]. The MAPK signalling cascade 

is one of the major pathways that transmit FGF signals 
[36]. It is therefore possible that in the absence of VEGF 
signalling, FGF/MAPK signalling to Etsrp drives endothelial 
specifi cation in zebrafi sh. Conceivably, different signalling 
pathways play more or less dominant roles during early 
development in different species. In this way, the players and 
set pieces are essentially the same, but the order of play can 
vary. For example, whereas VEGF signalling is important early 
in vasculogenesis in the mouse, it is only required at later 
stages in the zebrafi sh. The precise roles of individual Ets 
factors in the mouse may differ from those in the zebrafi sh, 
but an understanding of their functions in zebrafi sh will 
also likely inform our overall understanding of their roles in 
mammalian vascular development. �
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Figure 3. A Putative Model for the Regulation of Haemangioblast 
Specifi cation and Differentiation in the Zebrafi sh Posterior Lateral 
Plate Mesoderm
Cloche acts to specify the haemangioblast and is required for the 
expression of both scl and etsrp [5,29]. Scl is essential for the initiation of 
GATA1 expression and for all subsequent haematopoietic development 
[30]. Although endothelial cells are formed in the absence of Scl, fl k1
expression is reduced from the outset, culminating in the failure of dorsal 
aorta specifi cation [30]. Conversely, Etsrp is essential for fl k1 expression 
and for elaboration of the endothelial programme.
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