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Abstract: This study hypothesizes that bacteria inhabiting shale rock affect the content of the sed-
imentary cobalt protoporphyrin present in it and can use it as a precursor for heme synthesis. To
verify this hypothesis, we conducted qualitative and quantitative comparative analyses of cobalt
protoporphyrin as well as heme, and heme iron in shale rock that were (i) inhabited by bacteria in the
field, (ii) treated with bacteria in the laboratory, and with (iii) bacterial culture on synthetic cobalt
protoporphyrin. Additionally, we examined the above-mentioned samples for the presence of en-
zymes involved in the heme biosynthesis and uptake as well as hemoproteins. We found depletion of
cobalt protoporphyrin and a much higher heme concentration in the shale rock inhabited by bacteria
in the field as well as the shale rock treated with bacteria in the laboratory. Similarly, we observed
the accumulation of protoporphyrin in bacterial cells grown on synthetic cobalt protoporphyrin. We
detected numerous hemoproteins in metaproteome of bacteria inhabited shale rock in the field and in
proteomes of bacteria inhabited shale rock and synthetic cobalt protoporhyrin in the laboratory, but
none of them had all the enzymes involved in the heme biosynthesis. However, proteins responsible
for heme uptake, ferrochelatase and sirohydrochlorin cobaltochelatase/sirohydrochlorin cobalt-lyase
were detected in all studied samples.

Keywords: shale rock; protoporphyrin; heme

1. Introduction

Porphyrins occur both in the biosphere and lithosphere. The best-known porphyrins
in the biosphere are heme and chlorophyll, which are compounds playing a key role in
the metabolism of living organisms. Geoporphyrins or sedimentary porphyrins are found
in the lithosphere. These compounds occur in fossil fuels and asphalt as well as in oil
shales and associated source rocks where they are found dominantly as metal complexes.
The porphyrins of organisms that lived in distant geological periods are the precursors of
geoporphyrins and underwent changes during the diagenesis process [1–5]. The studies
carried out so far have indicated the potential use of geoporphyrins by microorganisms
currently living on earth, although their importance in the bacterial metabolism and the
underlying biochemistry are still unknown [6–11].

One of the most important porphyrins is protoporphyrin IX (PPIX) (C34H34N4O4),
which plays a crucial role in the metabolism of living organisms as a precursor of critical
metalloporphyrins—hemes and chlorophylls. A number of organisms can synthesize PPIX
from basic precursors such as glycine and succinyl-CoA or from glutamate, which are
converted to aminolevulinic acid (Figure 1A,B) [12]. This compound is then converted to
mono-pyrrole (porphobilinogen) and subsequently to tetrapyrrole (porphyrinogen specif-
ically uroporphyrinogen III) and protoporphyrinogen IX, which is oxidized to PPIX by
protoporphyrinogen oxidase. Finally, PPIX is converted to heme b (protoheme) (or chloro-
phyll) by the insertion of iron (or magnesium) cation by enzymes called ferrochelatases
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(hemH; EC: 4.99.1.1; 4.99.1.9) (or magnesium chelatase (EC: 6.6.1.1)). In addition to the proto-
porphyrin dependent pathway of heme biosynthesis described above, alternative siroheme-
and coproporphyrin-dependent pathways of heme biosynthesis are also known [13].
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shale rock) and proteomes of SR-BC (shale rock-bacterial culture) and CoPPIX-BC (cobalt protopor-
phyrin-bacterial culture) (C); biotransformation of uroporphyrinogen III, coproporphyrinogen and 
heme b not studied in this study (D). Number of sequences of hemoproteins (cytochromes, peroxi-
dases, and catalases) detected in the studied metaproteome of BISRand proteomes of SR-BC and 
CoPPIX-BC (E). The figure does not take into account the transformation of heme b into other types 
of heme. Numbers of sequences of detected enzymes are presented in Tables S4 and S5. The PPIX 
transformations studied in this study are marked in red. 

However, numerous bacteria lack some or all the enzymes needed to synthesize their 
own PPIX and most of them are dependent on exogenous PPIX or require heme acquisi-
tion [13–18]. These bacteria are diverse in terms of both the demand for the heme group 
and sources of the heme group used. Usually, they use external sources of heme or its 

Figure 1. Biosynthesis of heme b including products (A) and enzymes (B); number of sequences of
enzymes involved in heme b biosynthesis detected in metaproteome of BISR (bacteria inhabited shale
rock) and proteomes of SR-BC (shale rock-bacterial culture) and CoPPIX-BC (cobalt protoporphyrin-
bacterial culture) (C); biotransformation of uroporphyrinogen III, coproporphyrinogen and heme b
not studied in this study (D). Number of sequences of hemoproteins (cytochromes, peroxidases, and
catalases) detected in the studied metaproteome of BISRand proteomes of SR-BC and CoPPIX-BC (E).
The figure does not take into account the transformation of heme b into other types of heme. Numbers
of sequences of detected enzymes are presented in Tables S4 and S5. The PPIX transformations studied
in this study are marked in red.

However, numerous bacteria lack some or all the enzymes needed to synthesize their
own PPIX and most of them are dependent on exogenous PPIX or require heme acquisi-
tion [13–18]. These bacteria are diverse in terms of both the demand for the heme group
and sources of the heme group used. Usually, they use external sources of heme or its
tetrapyrrole precursors. The external heme source is usually blood or the heme-containing
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enzymes. However, bacteria expressing ferrochelatase can also use tetrapyrroles such
as PPIX, coproporphyrinogen, uroporphyrinogen, as well as mesoPPIX, deuteroPPIX,
manganese protoporphyrin (MnPPIX), cobalt protoporphyrin (CoPPIX), and zinc protopor-
phyrin (ZnPPIX) [19,20]. Therefore, the use of tetrapyrrole has been proved. However, it
is worth mentioning that bacteria that possess all the enzymes of the heme biosynthetic
pathway can also use the external sources of heme [21].

The research presented in this paper is part of a project, the main goal of which is to
test whether bacteria inhabiting shale rock rich in fossil organic matter affect sedimentary
porphyrins. We conducted our research on the example of subsurface shale rock located in
the area of Fore-Sudetic Monocline and known as Kupferschiefer black shale. In this study,
we checked if sedimentary CoPPIX may be used/degraded by the bacterial community
and the selected bacterial strain. Additionally, weattempted to check if CoPPIX can be
used as a source of tetrapyrrole ring for the synthesis of heme b (FePPIX; C34H32O4N4Fe)
and hemoproteins (cytochromes, catalases and peroxidases) (Figure 1; transformations
marked in red). We focused on the protoporphyrin-dependent biosynthetic pathway
because, according to the literature, this pathway dominates in bacteria, especially in
Gammapoteobacteria, which dominate in the studied environment [13,22]. The hypothesis of
the study was made based on the fact that CoPPIX is a structural analogue to heme where
the iron (II) has been replaced with cobalt (III). The macrocyclic ring structure and the side
chain groups are identical. To answer these questions, we divided this study into two parts.
In the first part, we analyzed two field samples collected from Kupferschiefer shale rock.
The first shale rock (SR) sample was obtained from a freshly exposed rock profile, while
the second sample—bacteria-inhabited shale rock (BISR)—was obtained from the profile
created 12 years ago. In the second part, SR was exposed to LM27 strain, which was isolated
from BISR, for a period of 30 days (SR-BC), and the obtained results were compared with
those observed for SR incubated in a sterile mineral medium (sterile control; SR-SC). The
results of the analyses were verified in an experiment using synthetic CoPPIX treated with
the LM27 strain (bacterial culture; CoPPIX-BC) and incubated in a sterile medium (sterile
control; CoPPIX-SC).

As part of the research, we compared: (1) the content of CoPPIX; (2) the content of
heme b and heme iron; (3) the presence of hemoproteins such as cytochromes, peroxidase,
and catalase; and (4) the presence of enzymes associated with heme biosynthetic pathway;
proteins of heme uptake and sirohydrochlorin cobaltochelatase/sirohydrochlorin cobalt-
lyase in the metaproteome of BISR and the proteome of the LM27 strain grown on two types
of media (SR-BC, CoPPIX-BC). We chose CoPPIX for laboratory tests because literature
data suggest that in the studied shale rock, protoporphyrins are present only in complexes
with metals, including cobalt [23,24].

2. Materials and Methods
2.1. Field Samples

BISR and SR were, respectively, collected aseptically from a 12-year-old outcrop and a
freshly exposed outcrop (2 days) at a depth of 770 m in Lubin copper mine in Lubińsko-
Głogowski Copper District (SW Poland). The samples were obtained from outcrops to
a depth of 10 cm. The collected samples were stored at –80 or –4 ◦C, respectively, until
further use. The geochemical characteristics of the samples are presented in our previous
publication [22].

2.2. Synthetic Porphyrin

A synthetic porphyrin 21H,23H-porphine-2,18-dipropanoic acid, 7,12-diethenyl-3,8,13,17-
tetramethyl-cobalt (II)—CoPPIX (C34H32CoN4O4Cl; Frontiers Specialty Chemicals, Logan,
UT, USA) was used in the laboratory analysis.
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2.3. Culture Media

Bacteria were grown in lysogeny broth (LB), LB agar [25], or in a modified mineral salts
(MBS) medium (prepared by dissolving 800 mg of K2HPO4 and 200 mg of KH2PO4·2H2O
in a liter of demineralized water, pH 7.0 [26]).

2.4. Isolation and Identification of Bacteria

The BISR sample (10 g) was resuspended in 20 mL of sterile salt solution (0.85% NaCl).
It was shaken at 22 ◦C for 2 h and streaked onto LB agar. The culture plates were incubated
at 22 ◦C for 1–2 weeks, and single colonies were isolated.

A colony PCR [27] was performed to amplify the 16S rRNA genes. For each bacterial
isolate, a single colony was resuspended in 20 µL of PCR lysis solution (50 mM NaOH,
0.25% sodium dodecyl sulfate) and boiled at 95 ◦C for 15 min. After placing on ice, each
sample was mixed with 180 µL of cold, sterile water, and the prepared solutions were used
as DNA templates for PCR. The amplification reaction mixture had a volume of 50 µL
with the following composition: 1 µL of lysed cell samples, 0.1 nmol of primers (27f and
1492r; [28]), 0.2 mM of dNTPs, and 1 U of Taq polymerase with 1× buffer (Qiagen, Hilden,
Germany). PCR was performed in a Mastercycler (Eppendorf, Wesseling, Germany) under
the following conditions: initial denaturation at 94 ◦C for 5 min, and then 20 cycles of 94 ◦C
for 30 s, 53 ◦C (−1 ◦C in every successive cycle) for 30 s, and 72 ◦C for 1.5 min, followed
by 15 cycles of 94 ◦C for 30 s, 46 ◦C for 30 s, and 72 ◦C for 1.5 min, and a final extension at
72 ◦C for 10 min. The obtained PCR products were examined by agarose gel electrophoresis
and purified using a PCR Purification Kit (Qiaquick, Qiagen, Germantown, MD, USA).
Using the amplified 16S rRNA gene fragments as templates, DNA sequencing was carried
out in an ABI Prism 377 automatic sequencer (Applied Biosystems, Foster City, CA, USA).
The following three universal primers were used for sequencing: 27f, 515f, and 1492r [28].
The sequence data thus obtained were compared with the 16S rRNA sequences available in
the GenBank database using the BLAST program [29].

2.5. Culture of LM27 Strain on SR (SR-BC)

The modified MBS medium (500 mL) was supplemented with 50 g of SR. The SR
was used after crushing to increase the surface area for the exposure of factors (bacteria,
medium, and oxygen); the fragments had a diameter in the range of 0.125–0.25, 0.25–0.5,
0.5–1.0, and 1.0–2.0 mm. Then, the crushed SR was mixed and pasteurized by heating
thrice for 1 h at 100 ◦C, on 3 successive days. This sterilization method has been previously
confirmed to minimize the degradation of fossil organic matter (data not shown).

SR-BC was prepared from the bacteria growing in LB medium during the exponential
phase and harvested by centrifugation (8000× g, 4 ◦C, 10 min). The pellet was washed
thrice in MBS medium (to remove traces of LB medium), resuspended, and inoculated
into the MBS medium. The final number of bacterial cells in the inoculated medium was
1 × 106 cells/mL. All experiments were conducted in triplicate. The cultures were grown
under static aerobic conditions at 22 ◦C for 30 days in darkness. The sterile MBS medium
supplemented with SR was used as the chemical control (SR-SC).

Bacterial growth was estimated once every 5 days. For this, diluted culture samples
were plated on solid LB medium, and the number of colony-forming units was determined
(CFU/mL).

After 30 days, BCs and SCs were centrifuged (8000× g, 4 ◦C, 10 min), and the cell-free
aqueous phase (supernatant) and solid sample (sediment) were obtained. The sediments
were dried at 60 ◦C and powdered, while the supernatants were filtered through a Whatman
filter paper with a pore size of 0.22 µm.

2.6. Culture of LM27 Strain on CoPPIX (CoPPIX-BC)

The modified MBS medium (500 mL) was supplemented with glucose (10 mM) and
CoPPIX (0.05 mM). The prepared medium was inoculated and incubated as described in
subsection Culture of LM27 strain on SR (SR-BC). The sterile MBS medium supplemented
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with glucose and CoPPIX was used as the chemical control (CoPPIX-SC). All experiments
were conducted in triplicate.

2.7. Extraction of Organic Matter from the Aqueous Phase (Supernatants)

Organic matter was extracted from 100 mL of cell-free aqueous phase using 25 mL of
chloroform in a separatory funnel for 3 min. The extraction procedure was repeated thrice.
After extraction, the chloroform extracts were pooled and dried with anhydrous Na2SO4,
while the solvent was evaporated under the N2 stream. The extraction was performed in
triplicate. A blank sample was prepared by following the same procedure.

2.8. Extraction of Organic Matter from Solid Samples (Sediments)

Organic matter was extracted using a dichloromethane/methanol mixture (volume
ratio of 9:1) for 4 h using a Soxhlet extraction apparatus (Velp, Usmate Velate, Italy). After
extraction, the solvent was evaporated under N2 stream. The extraction was performed in
triplicate. A blank sample was prepared by following the same procedure.

2.9. CoPPIX Analysis Using GC with Mass Spectrometry (MS)

The extracted organic compounds were separated using an Agilent 7890A Series Gas
Chromatograph interfaced to an Agilent 5973c Network Mass Selective Detector and an
Agilent 7683 Series Injector (Agilent Technologies, Santa Clara, CA, USA). A 5 µL sample
was injected with a split ratio of 1:5 by 0.3% standard deviation into an HP-5MS column
(30 m × 0.25 mm, 0.25 µm film thickness; Agilent Technologies, USA) using helium as
the carrier gas at 1 mL/min. The ion source was maintained at 250 ◦C. The GC oven
was programmed with a temperature gradient starting at 100 ◦C (for 3 min), which was
gradually increased to 300 ◦C (for 5 min) at 8 ◦C/min.

MS was carried out in the electron-impact mode at an ionizing potential of 70 eV by
selected ion monitoring (SIM). The presence of CoPPIX-specific m/z 621 ion was monitored.

The qualitative and quantitative analyses of CoPPIX were performed using synthetic
CoPPIX as a standard (Figure S1). Its concentration was determined based on the standard
curve (0.08, 0.8, 1.6, 16, and 32 µM (50, 500, 1000, 10,000, and 20,000 µg/L)). A concentration
curve was plotted with the peak areas corresponding to the concentration of CoPPIX tested
(Figure S2). The analysis was performed in triplicate. Error bars represented the classical
standard deviation for 3 replicates. The statistical significance of the obtained results was
tested using the Student’s t-test.

2.10. Heme Extraction

Heme was extracted using the method described by Brown et al. [30]. Briefly, 100 mL
of the cell-free aqueous phase was mixed with an equal volume of 5% HCl/acetone and clar-
ified by centrifugation (8000× g, 4 ◦C, 20 min). The resulting supernatant was concentrated
to 2 mL.

Solid samples (20 g of shale rock or 2 g of bacterial biomass) were frozen at −20 ◦C for
12 h. Then, the samples were resuspended in 30 mM Tris buffer (pH 8.0) containing 10 mM
EDTA and 20% sucrose, and disrupted by sonication on ice for 15 × 1 min, with 1 min
pauses (Sonics Vibracell, Newtown, CT, USA; LABO PLUS, Model CV18 head). Following
sonication, heme was extracted using the method described above for the liquid sample.
The extraction was performed in triplicate.

2.11. Heme Analysis Using High-Performance Liquid Chromatography (HPLC) with Photodiode
Array Detector (PAD)

Heme was analyzed with an HPLC Waters Separation module 2695 (Waters Alliance,
Milford, MA, USA) equipped with a PAD (2996; Waters Alliance, Milford, MA, USA). The
solvents used were 0.1% trifluoroacetic acid (TFA)/H2O (buffer A) and 0.1% TFA/CH3-
CN (buffer B). They were filtered through a 0.22 µm filter and degassed with N2 before
analysis. The sample was loaded at 0.5 mL/min onto a C18 Nova Pack Waters column
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(3.9 × 150 mm, 5 µm) in 25% buffer B and 75% buffer A, and resolved using a 1%/min
gradient from 55% to 75% buffer B (45–25% buffer A). The separated heme was analyzed at
a wavelength of 400 nm.

Qualitative and quantitative analyses were performed using bovine heme b (Sigma
Aldrich, Hamburg, Germany) as a standard (Figure S3A,B). Heme concentration was
determined based on the standard curve (0.0162, 0.162, 1.62, 16.2, 40.5, and 81.0 µM (0.01,
0.1, 1.0, 10, 25, and 50 mg/L)) (Figure S4). Calibration curves were plotted with the peak
areas corresponding to the heme concentrations tested. The analysis was performed in
triplicate. Error bars represented the classical standard deviation for 3 replicates. The
statistical significance of the obtained results was tested using the Student’s t-test.

2.12. Heme Iron Analysis Using Gas Chromatography (GC) with Atomic Emission Detector (AED)

Heme iron was separated and analyzed on a GC Agilent 7890A Series system (Agilent
Technologies, USA) interfaced to a JAS G2350A AED (JAS, Neu-Isenburg, Germany). GC
control was carried out using Chemstation ver. B.04.02. A 5 µL sample was introduced into
an HP-5 column (30 m × 0.32 mm, 0.50 µm film thickness; Agilent Technologies, USA),
with 5% phenyl polysiloxane and 95% dimethyl polysiloxane used for column filling. The
injector and detector temperatures were maintained at 380 ◦C. Sample split 5:1 with He
was used as the carrier gas (1 mL/min). The oven temperature was held at 50 ◦C for 3 min,
ramped at 8 ◦C/min to 100 ◦C, and finally at 10 ◦C/min from 100 to 325 ◦C. The detector
was working at carbon, iron, and nitrogen channels, with hydrogen and oxygen used as
reaction gases while N2 was used as a reference gas.

Heme iron was analyzed using bovine heme as a standard (Figure S5). Its concentration
was determined based on the standard curve (0.00016, 0.00162, 0.0162, 0.162, 1.62, and
16.2 µM (0.0001, 0.001, 0.01, 0.1, 1.0, and 10 mg/L)). Calibration curve was plotted with
the peak areas corresponding to the concentrations of heme iron tested (Figure S6). The
analysis was performed in triplicate. Error bars represented the classical standard deviation
for 3 replicates. The statistical significance of the obtained results was tested using the
Student’s t-test.

2.13. Spectrophotometry

CoPPIX accumulation was analyzed using spectral measurements obtained with a Shi-
madzu UV-1800 spectrophotometer (Shimadzu Corporation, Kyoto, Japan). Spectra were
collected every 10 days in the wavelength range of 300–700 nm. High-performance liquid
chromatograms and UV–Vis spectra of CoPPIX (425 nm) are presented on Figure S3C,D.

2.14. Cobalt Concentration Analysis Using Atomic Absorption Spectrometry

Cobalt concentration was determined in the studied samples using a Solar M6 spec-
trometer (TJA Solution, Christchurch, Dorset, United Kingdom) by following the manufac-
turer’s instructions. The analysis was performed in triplicate. Samples for analysis were
prepared by digestion with 69% nitric acid. Error bars represented the classical standard
deviation for 3 replicates. The statistical significance of the obtained results was tested
using the Student’s t-test.

2.15. Isolation of Proteins

Proteins were isolated using the modified procedure of Ram et al. [31]. Briefly, 10 g of
sample was resuspended in 120 mL of 20 mM Tris–HCl (pH 8). The sample was shaken for
3 min and sonicated on ice up to 10 times for 1 min, with 1 min pauses (Sonics Vibracell;
LABO PLUS, Model CV18 head). Then, 100 mL of 0.4 M Na2CO3 (pH 11) was added to
the lysed cell suspension, and the suspension was centrifuged at 6000× g for 20 min at
4 ◦C to remove the unlysed cells and cell membrane fragments. The obtained supernatant
was filtered through a filter paper with a pore size of 0.22 µm, and the proteins were
precipitated from the solution using trichloroacetic acid at a ratio of 1:10 (v/v). The mixture
was allowed to precipitate overnight at 4 ◦C and then centrifuged at 20,000× g for 10 min at
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4 ◦C. The aqueous phase was discarded, and the protein pellet was resuspended in 0.5 mL
of precooled methanol (4 ◦C) and centrifuged at 20,000× g for 10 min at 4 ◦C. The resulting
precipitate was dried and stored at −80 ◦C. The isolation was performed in triplicate.

2.16. Identification of Proteins Using Liquid Chromatography (LC) Coupled to Tandem Mass
Spectrometry (MS/MS)

The proteins were identified using a Nano-Acquity (Waters) LC system and Orbitrap
Velos mass spectrometer (Thermo Electron Corp., San Jose, CA, USA). The analysis was
conducted at the Environmental Laboratory of Mass Spectrometry, Institute of Biophysics
and Biochemistry (Polish Academy of Sciences, Warsaw, Poland). The equipment used was
sponsored in part by the Centre for Preclinical Research and Technology (CePT), a project
co-sponsored by the European Regional Development Fund and Innovative Economy, The
National Cohesion Strategy of Poland.

Before the analysis, proteins were subjected to a standard “in-solution digestion” proce-
dure. During this process, the proteins were reduced with 50 mM Tris(2-carboxyethyl)phosphine
(for 60 min at 60 ◦C), alkylated with 200 mM S-methyl methanethiosulfonate (45 min at room
temperature), and digested overnight with trypsin (Sequencing Grade Modified Trypsin;
Promega V5111).

The peptide mixture thus obtained was transferred to an RP-18 precolumn (nanoAC-
QUITY Symmetry® C18; Waters 186003514) using water and 0.1% trifluoroacetic acid as
mobile phase and then to a nano-HPLC RP-18 column (nanoACQUITY BEH C18; Waters
186003545) using acetonitrile (ACN) gradient (5–35% ACN in 180 min) in the presence of
0.05% formic acid at a flow rate of 250 µL/min. The column outlet was directly coupled to
the ion source of the spectrometer which was working in the regime of data-dependent
MS to MS/MS switch. A blank run preceded each analysis to ensure a lack of cross-
contamination from previous samples.

The raw data acquired were processed by Mascot Distiller followed by Mascot Search
(on-site license; Matrix Science, London, UK) against the National Centre for Biotechnology
Information (NCBI) protein database. Peptides with a Mascot score exceeding a threshold
value corresponding to <5% expectation value, as calculated by the Mascot procedure, were
considered as positively identified.

The raw data acquired were processed by Mascot Distiller followed by Mascot Search
(on-site license; Matrix Science, London, UK) against the NCBI protein database. Peptides
with a Mascot score exceeding a threshold value corresponding to <5% expectation value,
as calculated by the Mascot procedure, were considered as positively identified. Metapro-
teome (BISR) and proteomes (SR-BC, CoPPIX-BC) analysis was performed as described by
Kanehisa et al. [32] using GhostKOALA and Kyoto Encyclopedia of Genes and Genomes
(KEGG) mapping service.

3. Results
3.1. Results of BISR and SR Studies

As a result of the conducted research, we confirmed lack of CoPPIX-specific m/z 621
ion in the BISR sample, while this ion was detected in the SR sample and the CoPPIX
concentration was estimated to be 0.817 µmol/kg (Figures 2, S7 and S8; Table S1). At
the same time heme was detected in both BISR and SR samples, but its concentration in
BISR was found to be over three times higher (0.924 µmol/kg) than in SR (0.291 µmol/kg)
(Figures 2 and S3–S5).

Similar differences were found between the studied samples in the content of heme
iron (0.948 and 0.332 µmol/kg, respectively) (Figures 2 and S12).

In the BISR metaproteome, we detected 28 sequences matching six of the 11 en-
zymes involved in heme biosynthesis (Figure 1C and Table S4). These included por-
phobilinogen synthase, hydroxymethylbilane synthase, uroporphyrinogen decarboxy-
lase, coproporphyrinogen III oxidase, oxygen-independent coproporphyrinogen III ox-
idase, and protoporphyrin/coproporphyrin ferrochelatase. The sequence numbers of
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the detected proteins from the NCBI database are given in Table S4. Moreover, eight
sequences matching four proteins involved in heme uptake (periplasmic protein TonB,
hemoglobin/transferrin/lactoferrin receptor protein (HemR), biopolymer transport protein
ExbB, and biopolymer transport protein ExbD) and nine sequences matching sirohydrochlo-
rin cobaltochelatase/sirohydrochlorin cobalt-lyase were identified in BISR (Table S4). In
addition to the above, 49 sequences matching hemoproteins were identified in BISR, in-
cluding 34 sequences of cytochromes, five of peroxidases, and 10 of catalases (Figure 1E;
Table S5). In the case of the SR sample, the proteins isolated were not sufficient to perform
the above-mentioned analyses.
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and Table S1.

3.2. Isolation and Identification of Pseudomonas spp.

Considering that Pseudomonas dominated in the BISR [22], we attempted to iso-
late the bacteria belonging to this genus. As a consequence, we identified and isolated
four Pseudomonas strains from the BISR sample. Among them, the LM27 strain was selected
for further study. It showed 99% similarity to the species P. stutzeri and 100% similarity to
the strain LM8 (EU821344) that was previously isolated from shale rock [33].

3.3. Results of SR-BC and SR-SC Studies

To verify the results of the analyses on field samples, the LM27 strain was cultivated
on the mineral medium with SR in the second part of the study. The growth curve of the
LM27 strain cultured on SR mineral medium (SR-BC) is shown in Figure S13.

In SR-BC sample no CoPPIX-specific m/z 621 ion was detected in the supernatant or
sediment (Figures 3, S14 and S15 and Table S2). On the other hand, in the SR-SC sample,
CoPPIX was detected at a concentration of 0.520 µmol/kg in the sediment and 0.021 µM in
the supernatant (Figures 3, S16 and S17). It should be noted that the presence of CoPPIX in
the supernatant indicated that protoporphyrin was partially dissolved in the medium. At
the same time, heme was detected in the SR-BC sample (Figures 3 and S18–S21), and its
content was found to be approximately 80 times greater (27.57 µmol/kg) than in the SR-SC
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(0.34 µmol/kg) (Figure 3). Similarly, the concentration of heme iron was much higher in
the SR-BC sample (35.03 and 0.29 µmol/kg, respectively) (Figures 3 and S22).
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or µM (supernatant)). Selected ion (m/z 621) gas chromatogram of CoPPIX and calibration curve for
determining the concentration of CoPPIX are presented in Figures S1 and S2, respectively. HPLC-PAD
chromatogram of heme is presented in Figure S3A. AED chromatogram of heme is presented in
Figure S5. Calibration curves for determining the concentration of heme and heme iron are presented
in Figures S4 and S6, respectively. All presented differences are statistically significant (significance
level: p < 0.05). Supplementary results of chemical analyses of SR-BC and SR-SC are presented in
Figures S13–S22 and Table S2.

In the proteome of the LM27 strain cultivated on SR (SR-BC), we identified 86 se-
quences that matched six enzymes of the heme biosynthetic pathway (Figure 1B,C and
Table S4). Five of enzymes of this pathway were not detected. Seven protein sequences
identified in the proteome matched protoporphyrin ferrochelatase; 53 sequences matched
four selected proteins involved in heme uptake system and seven matched sirohydrochlo-
rin cobaltochelatase/sirohydrochlorin cobalt-lyase. In addition, 18 sequences matching
hemoproteins were identified, including 10 sequences of cytochromes, three of peroxidases,
and five of catalases (Figure 1E and Table S5). None of these were detected in SR-SC.

3.4. Results of CoPPIX-BC and CoPPIX-SC Studies

In the third part of the study, the LM27 strain cultured on the mineral medium
supplemented with synthetic CoPPIX was analyzed. The results of the growth analysis
clearly indicated the ability of the strain to grow in the presence of CoPPIX (CoPPIX-BC)
(Figure S23).

Accumulation of CoPPIX in the LM27 cells was observed during the growth of the
strain on the CoPPIX medium. This phenomenon was monitored by measuring the
(i) UV–Vis spectra, (ii) CoPPIX concentration, and (iii) cobalt concentration in the super-
natant as well as in the sediment of CoPPIX-BC/SC.

The UV–Vis spectra (300–700 nm) of CoPPIX obtained for the supernatant and sedi-
ment of CoPPIX-BC are shown in Figure 4A,B. The characteristic absorption band of the
porphyrin ring was found in the range of 390–425 nm (Soret band), and 10–15 times weaker
bands were observed at 480–700 nm (Q-bands) (Figure S3C,D). Soret bands and Q-bands



Biomolecules 2021, 11, 1913 10 of 16

were clearly extinguished in the spectra of CoPPIX-BC supernatant obtained on the 30th
day of the experiment (Figure 4A). At the same time, analogous spectra were detected in
the cells (sediment) of the LM27 strain (Figure 4B). This finding was accompanied by the
gradual disappearance of the characteristic red color of the CoPPIX-BC, and at day 30, the
medium was colorless. No such changes in the UV–Vis spectrum or discoloration of the
culture medium were observed in the control (CoPPIX-SC) (data not shown).
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Figure 4. Accumulation of CoPPIX by LM27 strain—UV–Vis spectra of supernatant (A) and bacterial
cells (B); t0–t30: time of the experiment. Concentration of CoPPIX, heme and heme iron in CoPPIX-
BC and CoPPIX-SC (µmol/g of biomass or µM (supernatant)) (C). Percentage content of CoPPIX
in supernatant and cells of CoppIX-BC after 10, 20, and 30 days of cultivation (D). Selected ion
(m/z 621) gas chromatogram of CoPPIX and calibration curve for determining the concentration
of CoPPIX are presented in Figures S1 and S2, respectively. HPLC-PAD chromatogram of heme is
presented in Figure S3A. AED chromatogram of heme is presented in Figure S5. Calibration curves for
determining the concentration of heme and heme iron are presented in Figures S4 and S6, respectively.
All presented differences are statistically significant (significance level: p < 0.05). Supplementary
results of chemical analyses of CoPPIX-BC and Co-PPIX-SC are presented in Figures S23–S32 and
Table S3.

The values of CoPPIX concentration in CoPPIX-BC confirmed its loss in the supernatant
with a simultaneous increase in concentration in the LM27 cells (Figures 4C and S24–S26 and
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Table S3). Simultaneously, it was found that the concentration of CoPPIX accumulated in
the cells decreased during cultivation and reached 0.091 µmol/g of biomass (Figure 4C). On
the 30th day of cultivation, the LM27 strain accumulated approximately 90% of CoPPIX,
of which almost 70% was used (Figure 4D). In CoPPIX-SC, no such changes in CoPPIX
concentration were observed; the concentration of CoPPIX in the supernatant was constant
(50 µM) (Figure 4C).

The third parameter that proved the bioaccumulation of CoPPIX was the increase in
cobalt concentration in the LM27 cells and its simultaneous decrease in the supernatant
(Figure S27). In CoPPIX-SC, no changes in cobalt concentration were observed (data
not shown).

In the CoPPIX-BC culture, heme was detected at a concentration of 0.49 µmol/g of
biomass and heme iron at 0.59 µmol/g of biomass (Figures 4C, S27 and S32), while no
heme was detected in the sterile control (Figure 4C).

In total, 65 sequences of seven enzymes involved in the heme biosynthetic pathway,
including seven sequences matching protoporphyrin ferrochelatase, were identified in
the proteome of the strain grown on CoPPIX medium (Figure 1B,C; Table S4). In addi-
tion, 44 sequences matching four proteins involved in heme uptake and six sequences
matching sirohydrochlorin cobaltochelatase/sirohydrochlorin cobalt-lyase were identi-
fied (Table S4). Moreover, 42 sequences matching hemoproteins were detected, including
32 sequences matching cytochromes, five matching peroxidases, and five matching cata-
lases (Figure 1E; Table S5). In the control experiments (CoPPIX-SC), no heme-containing
proteins were identified.

4. Discussion

The experiments on field samples (BISR and SR) and laboratory tests using shale rock
(SR-BC/SC) and synthetic CoPPIX (CoPPIX-BC/SC) allowed for a comprehensive analysis
of the impact of bacteria on sedimentary CoPPIX. The three parallel analyses, for the first
time, clearly demonstrated that sedimentary CoPPIX are affected by bacteria. The absence
of CoPPIX in the BISR and SR-BC compared to the SR and SR-SC, respectively, indicates
its use by bacteria (Figures 2 and 3). Similarly, the results of the third part of our study
showed that the LM27 strain can take up synthetic CoPPIX from the medium, accumulate
it in the cell, and then potentially transform (Figure 4C).

Based on these results we can assume that CoPPIX is used by bacteria as a carbon
and/or nitrogen source, especially considering that CoPPIX is a water-soluble compound.
However, the presence of heme in the BISR, SR-BC, and CoPPIX-BC and the absence of
complete set of enzymes involved in biosynthesis of this compound may also indicate the
use of CoPPIX as the source of the tetrapyrrole ring. This assumption is also confirmed by
the presence of ferrochelatase and hemoproteins in the studied samples (Figure 1). Another
important result is the presence of cobalt chelatase (Table S4). According to the literature,
this enzyme may also detach cobalt [34]. The systematic name of this enzyme is cobalt-
sirohydrochlorin cobalt-lyase (sirohydrochlorin-forming); cobaltochelatase (ambiguous).
This result potentially indicates conversion of CoPPIX to PPIX, which then may be chelated
with iron by ferrochelatase. It is worth noting that probably the heme biosynthetic pathway
enzymes present in the metaproteome of BISR and proteome of SR-BC can be used to
synthesize intermediates such as hydroxymethylbilane which can be converted into uro-
porphyrinogen I or uroporphyrinogen III [35]. Uroporphyrinogen I can be converted into
coproporphyrin I and uroporphyrin III. Uroporphyrinogen III is a precursor of precorrin 2,
from which siroheme, coenzyme F430 and cobalamin are synthesized (Figure 1D).

The hypothesis that PPIX may be used as a source of tetrapyrrole ring by some bacteria
is consistent with previous reports showing that for bacteroids [19], Lactobacillus lactis [36],
and Hemophilus influenzae [37,38]. These bacteria have a shortened heme biosynthetic path-
way which involves only ferrochelatase reactions during which an iron atom is inserted
in the center of PPIX yielding heme. Similarly, the lack of a complete set of enzymes in
heme biosynthetic pathway, with the simultaneous production of this compound, is often



Biomolecules 2021, 11, 1913 12 of 16

observed in bacteria. Especially, it concerns the lack of protoporphyrinogen oxidase. For
example, the research by Panek and O’Brian [39] showed that out of 21 examined proteobac-
terial genomes, 12 were characterized by the lack of the gene encoding protoporphyrinogen
oxidase. Additionally, the bioaccumulation of PPIX as well as metal-substituted porphyrins
by bacteria has already been described in the literature [40–44]. However, at the same
time, we can find reports showing the inhibition of bacterial growth under the influence
of certain metalloporphyrins. For example, Stojiljkovic et al. [40], Stojiljkovic and Perkins-
Balding [14], and Olczak et al. [45] described the growth inhibition of selected bacteria
due to the effect of metalloporphyrins such as gallium(III), cobalt(III), and copper(II) PPIX.
Similarly, Fyrestam and Östman [46] showed the effect of additives in the culture medium
on the biosynthesis of heme using Escherichia coli as a model microorganism. They showed
that addition of CoPPIX to the growth medium reduced the amount of heme in E. coli,
demonstrating this compound’s ability to mimic real heme and inhibit the heme acquisition
mechanisms. While Majtan et al. [47] showed that even increased cobalt concentrations in
the culture medium of E. coli may result in the production of CoPPIX, which was incorpo-
rated into heme proteins including membrane-bound cytochromes. The presence of CoPPIX
in cytochromes inhibited their electron transport capacity and resulted in a substantially
decreased respiration. Finally, the toxicity of heme analogues such as PPIX was explained
by Brugna et al. [42]. Using the heme protein catalase in the Gram-positive bacterium Ente-
rococcus faecalis as an experimental system, they showed that a variety of heme analogues
can be taken up by bacterial cells and incorporated into heme-dependent enzymes. The
resulting cofactor-substituted proteins were dysfunctional, generally resulting in arrested
cell growth or death. However, it is an important conclusion, that microorganisms that do
not rely on exogenous heme for survival such as E. faecalis, are resistant to the toxicity of
heme analogues. It can be also assumed that the microorganisms to which CoPPIX is toxic
do not have the ability to detach cobalt and incorporate iron. Thus, as can be seen from
the literature review presented above, the effect of PPIX on bacteria is still unknown. This
compound may be toxic, but some studies show that it can also be used by some bacteria.

To sum up, in our research we experimentally proved both the depletion of rock
in CoPPIX and the use of synthetic CoPPIX by bacteria. Moreover, the obtained results
indicate the potential possibilities of using absolutely unknown sources of the tetrapyrrole
ring, i.e., CoPPIX occurring in the lithosphere. However, unambiguous confirmation of
this original process is extremely difficult, especially in the case of bacterial communities
inhabiting natural environment. All the more difficult in such a complex environment in
terms of composition as shale rock. Based on the obtained results, it cannot be excluded
that shale rock bacteria may use CoPPIX as a source of carbon and/or nitrogen although it
should be noted that in the shale rock more simple compounds are present. Moreover, we
cannot exclude that studied bacteria may use other sources of heme. The same may be true
for pure cultures. Therefore, it is difficult to apply any control to the CoPPIX experiment
(CoPPIX-BC) to confirm that this compound is a source of heme. In our opinion, many
compounds can be this source, even heme-containing proteins of dead bacterial cells. It is
even more difficult to study this process for shale rock, which is a complex mixture of many
different organic compounds. Equally important is the question of what is the significance
of other bacteria present in the studied community. Nevertheless, it seems that the obtained
results are a prerequisite for undertaking detailed research of this process and looking for a
way to clearly confirm it.

The results of this study are critical in understanding the ecology and metabolism
of shale-inhabiting bacterial communities. Furthermore, it is extremely important to no-
tice the impact of bacterial metabolism on the geochemistry of shale rocks and other
protoporphyrin-containing deposits and reservoir. The described processes also show the
continuous transformation of sedimentary rock by microorganisms and also shed new light
on the use of porphyrins as biomarkers.

The presented results also indicate an extremely interesting issue, namely the cycle
of the tetrapyrrole ring in the environment. Our results show the potential release of



Biomolecules 2021, 11, 1913 13 of 16

the tetrapyrrole ring from fossil organic matter into the biosphere, something completely
opposite to what happened during the formation of the sedimentary shale rock. This cycle
of tetrapyrrole ring also means mobilization of ancient carbon, associated for millions of
years in fossil sedimentary rock, to bacterial biomass and next to global cycle of carbon on
the Earth. It is worth remembering that the incorporation of fossil carbon in the circulation
may have a crucial impact on global climate [48,49]. In addition, metal transformations
must also be taken into account, including both cobalt, which is detached from the organic
compound, and iron, which is incorporated into the organic compound [50]. Thus, the
described processes are part of the cycle of elements and show the role of the biosphere in
these transformations, and at the same time show the potential influence of the lithosphere
on the metabolism of the biosphere.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11121913/s1, Figure S1. SIM chromatogram m/z 621 (A) and mass spectrum of standard
CoPPIX (16.1 µM (10 mg/L)) (B), Figure S2. Calibration curve for determining the concentration
of CoPPIX using GC–MS; coefficients of determination: R = 0.996067 and R2 = 0.992456, Figure S3.
High-performance liquid chromatograms and UV–Vis spectra of standards (40.5 µM (25 mg/L))—
heme (400 nm) (A,B) and (40.25 µM (25 mg/L)) CoPPIX (425 nm) (C,D)—obtained using HPLC-PAD,
Figure S4. Calibration curve for determining the concentration of heme (400 nm) using HPLC-PAD;
coefficients of determination: R = 0.994382 and R2 = 0.993658, Figure S5. Atomic emission chro-
matogram of heme (1.62 µM (1 mg/L)) (lines of iron, carbon, and nitrogen were selected) (GC-AED),
Figure S6. Calibration curve for determining the concentration of heme iron using GC-AED; coeffi-
cients of determination: R = 0.992458 and R2 = 0.996365, Figure S7. SIM chromatogram and mass
spectrum (inset) of dichloromethane:methanol extract of BISR. SIM chromatogram of CoPPIX is
presented in Figure S1 (Supplementary information A), Figure S8. SIM chromatogram and mass
spectrum (inset) of dichloromethane:methanol extract of SR. SIM chromatogram of CoPPIX is pre-
sented in Figure S1 (Supplementary information A), Figure S9. Detection of heme in BISR and SR
samples—HPLC-PAD chromatograms at 400 nm. HPLC-PAD chromatogram of heme is presented in
Figure S3A (Supplementary information A), Figure S10. High-performance liquid 3D chromatograms
of organic extracts of sediments of BISR and SR obtained using HPLC-PAD, Figure S11. UV–Vis spec-
tra of organic extracts of sediments of BISR and SR obtained using HPLC-PAD, Figure S12. Detection
of heme (carbon, nitrogen, and iron) in BISR and SR—GC-AED chromatograms. AED chromatogram
of heme is presented in Figure S5 (Supplementary information A), Figure S13. Growth curve of
LM27 strain cultured on mineral medium with SR (SR-BC), Figure S14. SIM chromatogram and mass
spectrum (inset) of chloroform extract of the supernatant of SR-BC. SIM chromatogram of CoPPIX is
presented in Figure S1 (Supplementary information A), Figure S15. SIM chromatogram and mass
spectrum (inset) of dichloromethane:methanol extract of the sediment of SR-BC. SIM chromatogram
of CoPPIX is presented in Figure S1 (Supplementary information A), Figure S16. SIM chromatogram
and mass spectrum (inset) of chloroform extract of the supernatant of SR-SC. SIM chromatogram of
CoPPIX is presented in Figure S1 (Supplementary information A), Figure S17. SIM chromatogram
and mass spectrum (inset) of dichloromethane:methanol extract of the sediment of SR-SC. SIM
chromatogram of CoPPIX is presented in S1 (Supplementary information A), Figure S18. Detection
of heme in SR-BC and SR-SC—HPLC-PAD chromatograms at 400 nm. HPLC-PAD chromatogram
of heme is presented in Figure S3A (Supplementary information A), Figure S19. High-performance
liquid 3D chromatograms of organic extracts of sediments of SR-BC and SR-SC obtained using HPLC-
PAD, Figure S20. High-performance liquid 3D chromatograms of organic extracts of supernatants
of SR-BC and SR-SC obtained using HPLC-PAD, Figure S21. UV–Vis spectra of organic extracts of
sediments of SR-BC and SR-SC obtained using HPLC-PAD, Figure S22. Detection of heme (carbon,
nitrogen, and iron) in SR-BC and SR-SC—GC-AED chromatograms. AED chromatogram of heme
is presented in Figure S5 (Supplementary information A), Figure S23. Growth curve of LM27 strain
cultured on mineral medium with CoPPIX (CoPPIX-BC), Figure S24. SIM chromatogram and mass
spectrum (inset) of chloroform extract of the supernatant of CoPPIX-BC. SIM chromatogram of
CoPPIX is presented in Figure S1 (Supplementary information A), Figure S25. SIM chromatogram
and mass spectrum (inset) of dichloromethane:methanol extract of the sediment of CoPPIX-BC. SIM
chromatogram of CoPPIX is presented in Figure S1 (Supplementary information A), Figure S26. SIM
chromatogram and mass spectrum (inset) of chloroform extract of the supernatant of CoPPIX-SC.
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SIM chromatogram of CoPPIX is presented in Figure S1 (Supplementary information A), Figure S27.
Accumulation of CoPPIX by LM27 strain: percentage content of cobalt in supernatant and cells of
CoPPIX-BC after 10, 20, and 30 days of cultivation, Figure S28. Detection of heme in the sediments of
CoPPIX-BC and CoPPIX-SC—HPLC-PAD chromatograms at 400 nm. HPLC-PAD chromatogram of
heme is presented in Figure S13A (Supplementary information A), Figure S29. High-performance
liquid 3D chromatograms of organic extracts of sediments obtained using HPLC-PAD, Figure S30.
High-performance liquid 3D chromatograms of organic extracts of supernatants obtained using
HPLC-PAD, Figure S31. UV–Vis spectra of organic extracts of sediments obtained using HPLC-PAD,
Figure S32. Detection of heme (carbon, nitrogen, and iron) in CoPPIX-BC and CoPPIX-SC—GC-AED
chromatograms. AED chromatogram of heme is presented in Figure S5 (Supplementary informa-
tion A), Table S1. Concentrations of CoPPIX in BISR and SR based on GC-MS analyses of m/z 621,
Table S2. Concentrations of CoPPIX in SR-BC and SR-SC based on GC-MS analyses of m/z 621,
Table S3. Concentrations of CoPPIX in CoPPIX-BC and CoPPIX-SC based on GC-MS analyses of
m/z 621, Table S4. Numbers of sequences of enzymes involved in heme biosynthesis and uptake
and cobalt insertion/disconnection detected in the metaproteome (BISR) and proteomes (SR-BC,
CoPPIX-BC); EC—enzyme catalogue, Table S5. Numbers of hemoprotein sequences detected in the
metaproteome (BISR) and proteomes (SR-BC, CoPPIX-BC)
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7. Mogolloń, L.; Rodríguez, R.; Larrota, W.; Ortiz, C.; Torres, R. Biocatalytic Removal of Nickel and Vanadium from Petroporphyrins

and Asphaltenes. In Biotechnology for Fuels and Chemicals; Humana Press: Totowa, NJ, USA, 1998; pp. 765–777. [CrossRef]
8. Dedeles, G.R.; Abe, A.; Saito, K.; Asano, K.; Saito, K.; Yokota, A.; Tomita, F. Microbial demetallization of crude oil: Nickel

protoporphyrin disodium as a model organo-metallic substrate. J. Biosci. Bioeng. 2000, 90, 515–521. [CrossRef]
9. García-Arellano, H.; Buenrostro-Gonzalez, E.; Vazquez-Duhalt, R. Biocatalytic transformation of petroporphyrins by chemical

modified cytochrome C. Biotechnol. Bioeng. 2004, 85, 790–798. [CrossRef] [PubMed]
10. Sadowski, Z.; Szubert, A.; Maliszewska, I.H.; Jazdzyk, E. A View on the Organic Matter and Metalloporphyrins Biodegradation

as Characteristic Components of Black Shale Ores. In Advanced Materials Research; Trans Tech Publications Ltd.: Freienbach,
Switzerland, 2007; pp. 95–98. [CrossRef]

11. Salehizadeh, H.; Mousavi, M.; Hatamipour, S.; Kermanshahi, K. Microbial demetallization of crude oil using Aspergillus sp.:
Vanadium oxide octaethyl porphyrin (VOOEP) as a model of metallic petroporphyrins. Iran. J. Biotech. 2007, 5, 226–231.

http://doi.org/10.1111/j.1749-6632.1973.tb43244.x
http://doi.org/10.1016/0146-6380(84)90038-X
http://doi.org/10.1021/ef00024a002
http://doi.org/10.1016/0141-0229(93)90131-K
http://doi.org/10.1007/978-1-4612-1814-2_70
http://doi.org/10.1016/S1389-1723(01)80032-3
http://doi.org/10.1002/bit.20023
http://www.ncbi.nlm.nih.gov/pubmed/14991657
http://doi.org/10.4028/www.scientific.net/amr.20-21.95


Biomolecules 2021, 11, 1913 15 of 16

12. Layer, G.; Reichelt, J.; Jahn, D.; Heinz, D.W. Structure and function of enzymes in heme biosynthesis. Protein Sci. 2010, 19,
1137–1161. [CrossRef]

13. Dailey, H.A.; Dailey, T.A.; Gerdes, S.; Jahn, D.; Jahn, M.; O’Brian, M.R.; Warren, M.J. Prokaryotic Heme Biosynthesis: Multiple
Pathways to a Common Essential Product. Microbiol. Mol. Biol. Rev. 2017, 81, e00048-16. [CrossRef]

14. Stojiljkovic, I.; Perkins-Balding, D. Processing of Heme and Heme-Containing Proteins by Bacteria. DNA Cell Biol. 2002, 21,
281–295. [CrossRef]

15. Olczak, T.; Simpson, W.; Liu, X.; Genco, C. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol. Rev. 2005, 29,
119–144. [CrossRef] [PubMed]

16. Ortiz de Montellano, P.R. Hemes in Biology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [CrossRef]
17. Gruss, A.; Borezée-Durant, E.; Lechardeur, D. Environmental Heme Utilization by Heme-Auxotrophic Bacteria. Adv. Microb.

Physiol. 2012, 61, 69–124. [CrossRef]
18. Poulos, T.L. Heme Enzyme Structure and Function. Chem. Rev. 2014, 114, 3919–3962. [CrossRef] [PubMed]
19. Caldwell, D.R.; White, D.C.; Bryant, M.P.; Doetsch, R.N. Specificity of the heme requirement for growth of Bacteroidetes

ruminicola. J. Bacteriol. 1965, 90, 1645–1653. [CrossRef]
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