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Abstract Pharmacometabolomics has been already successfully used in toxicity prediction for one
specific adverse effect. However in clinical practice, two or more different toxicities are always
accompanied with each other, which puts forward new challenges for pharmacometabolomics. Gastro-
intestinal toxicity and myelosuppression are two major adverse effects induced by Irinotecan (CPT-11),
and often show large individual differences. In the current study, a pharmacometabolomic study was
performed to screen the exclusive biomarkers in predose serums which could predict late-onset diarrhea
and myelosuppression of CPT-11 simultaneously. The severity and sensitivity differences in gastro-
intestinal toxicity and myelosuppression were judged by delayed-onset diarrhea symptoms, histopathology
examination, relative cytokines and blood cell counts. Mass spectrometry-based non-targeted and targeted
metabolomics were conducted in sequence to dissect metabolite signatures in predose serums. Eventually,
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two groups of metabolites were screened out as predictors for individual differences in late-onset diarrhea
and myelosuppression using binary logistic regression, respectively. This result was compared with
existing predictors and validated by another independent external validation set. Our study indicates the
prediction of toxicity could be possible upon predose metabolic profile. Pharmacometabolomics can be a
potentially useful tool for complicating toxicity prediction. Our findings also provide a new insight into
CPT-11 precision medicine.

& 2019 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chemotherapy is one of the major methods for cancer therapy1–4.
However, antitumor drugs could induce varieties of adverse effects
including myelosuppression, nausea, vomiting, diarrhea and per-
ipheral neuropathy5–8. What's more, these adverse effects often
show large individual differences. Thus, in order to maximize drug
efficacy and minimize toxicity, it is necessary to pick out the
subgroups of patients with different responses.

Pharmacometabolomics is an effective approach for individual
differences recognition and prediction. It was first proposed in 2006
and defined as “the prediction of the outcome (for example, efficacy
or toxicity) of a drug or xenobiotic intervention in an individual
based on a mathematical model of pre-intervention metabolite
signatures9.” In recent years, pharmacometabolomics has been
widely used in personalized medicine10–12 and shows great potential
in drug toxicity prediction13–15. Almost all previous studies only
focused on one specific adverse effect. However, in clinical, two or
more different toxicities are always accompanied with each other,
which puts forward new challenges for pharmacometabolomics.

In the current study, we try to explore the possibility of using
pharmacometabolomic approach to predict two complicating toxicities
using irinotecan (CPT-11) as an example. CPT-11 is a potent inhibitor
of topoisomerase I16 and has been used as first-line or second-line
chemotherapeutic agents in several malignancies, especially for
colorectal cancer17. However, the higher risk of several adverse
effects and individual differences, particularly gastrointestinal toxicity
(delayed-onset diarrhea, grade 3–4 occurred in 22%–44%18–21)
complicating myelosuppression toxicity (neutropenia, leukopenia,
etc., grade 3–4 occurred in 27%–54%20–22) have been reported,
which limited its clinical application. Previous investigations indicated
that genetic variations of enzymes, especially UGT1A1, which
involved in CPT-11 metabolism (Supporting Information
Fig. S1), play an important role in chemotherapeutic toxicity
individual differences23,24. Thus, US Food and Drug Administration
recommended the UGT1A1*28 genotyping test before CPT-11
administration. However, recent studies revealed that UGT1A1
genotyping may have limited effects on toxicity prediction. Carbox-
ylesterases, ABC-transporters, patients living habits, etc., could all
influence the individual chemosensitivity25–30. Meanwhile, some
studies indicated that bilirubin and pharmacokinetic markers such as
biliary index could also predict CPT-11 toxicity21,31. However, these
predictors only focus on one single specific adverse effect of CPT-11
and the prediction ability remains questioned32,33. Thus, new
indicators are needed to predict individual response to CPT-11.

In this paper, a pharmacometabolomic study was designed and
performed to screen the exclusive biomarkers in predose serums which
could predict late-onset diarrhea and myelosuppression of CPT-11
simultaneously. CPT-11-induced toxicity model was divided into
sensitive (S) group (more deviations from control group) and non-
sensitive (NS) group (closer to control group) based on non-targeted
metabolomics natural grouping of postdose serum samples. The
severity and sensitivity differences in gastrointestinal toxicity and
myelosuppression were evaluated by delayed-onset diarrhea symptoms,
histopathology examination, blood routine examination and relative
cytokines, which indicated more severe chemotherapy-induced injuries
happened in sensitive group (S group). Next, mass spectrometry-based
non-targeted metabolomic analysis of predose serum samples was
conducted to screen the potential biomarkers which can predict CPT-
11-induced late-onset diarrhea and myelosuppression respectively.
These biomarkers were confirmed by a follow-up targeted metabo-
lomics using LC–MS/MS and constructed the prediction models based
on the quantitative analysis results and binary logistic regression. The
prediction abilities of these two models were compared with existing
predictors (UGT1A1, biliary index, bilirubin) and validated by another
independent external experiment.
2. Materials and methods

2.1. Chemicals and reagents

Irinotecan hydrochloride (CPT-11, active pharmaceutical ingredients)
was obtained from Jaripharm (Jiangsu, China). CPT-11 for injection
was prepared according to published papers34–36. O-Methoxyamine
hydrochloride, N-methyl-N-trifluoroacetamide (MSTFA), pyridine,
deoxycholic acid (DCA, 98%), glycocholic acid (GCA, 97%),
tryptophan (Trp, 98%), lysine (Lys, 98%), phenylalanine (Phe, 99%)
and cortisone acetate were purchased from Sigma–Aldrich (St. Louis,
MO, USA). Cholic acid (CA, 98%), β-hydroxybutyric acid (BHB,
95%) were purchased from Bailingwei (Beijing, China). Cortisone
acetate, fudosteine and acetaminophen were obtained from National
Institutes for Food and Drug Control (Beijing, China). Camptothecin
(95%), 7-ethyl-10-hydroxy-camptothecin (SN-38, 99%), SN-38
glucuronide (SN-38G, 95%) were purchased from TRC (Toronto,
Canada). Acetonitrile, methanol and ethyl acetate (LC/MS grade) were
obtained from Merck (Germany). Deionized water was purified by
Milli-Q system (Millipore, Bedford, MA, USA).
2.2. Animal experiments and samples collection

All animal procedures were performed by the Animal Ethics
Committee of China Pharmaceutical University and in accordance
with the Guide for the Care and Use of Laboratory Animals. Forty-
eight male Sprague–Dawley rats (SPF grade, 200710 g) were
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purchased from Sino–British SIPPR/BK Lab Animal Ltd. (Shang-
hai, China), housed in a temperature-controlled environment
(2472 1C) under 12/12h-dark/light cycle. After 1 week acclima-
tized with the raising condition, rats were randomly divided into
CPT-11 treated group (T, n ¼ 40) and control group (C, n ¼ 8).
Rats in CPT-11 treated group (T group) were treated with CPT-11
by intravenously (i.v.) injection via the tail vein with 60 mg/kg for
4 consecutive days (days 1–4). Rats in control group (C group)
were received a same dose of vehicle. Every individual was
monitored body weight loss daily and the score of diarrhea twice a
day (9 a.m. and 9 p.m.) since day –1. Diarrhea score was assessed
according to Akinobu Kurita's and Zeping Hu's studies34,37.
Diarrhea observed within 2 h after the injection of CPT-11 was
considered as acute diarrhea and observed after the final admin-
istration (occurring from day 5) was defined as late-onset diarrhea.

Blood samples on days 1 and 7 were collected for metabolomic
studies and relative biochemical examination. Serum samples were
collected at 0.25, 0.5, 1, 2, 4, 6, 8, 10, 12, and 14 h after CPT-11
administration on day 1 for pharmacokinetic studies. On day 7 after
blood samples collection, rats were sacrificed and cecums were
prepared for histological examination. All the samples were collected
after a 12-h fast and stored in –80 oC until analysis. The process of
samples collection was shown in Supporting Information Fig. S2.

2.3. Histopathology and biochemistry examination

Cecums were embedded in paraffin, stained by hematoxylin and eosin
for histological examination. Blood cell counts (erythrocyte, leukocyte,
platelet, neutrophil and lymphocyte) and bilirubin were tested in
ZhongDa Hospital (Nanjing, China). Rat UGT1A1 in serums was
tested by ELISA Kit (Jianglaibio, Shanghai, China). Tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were
determined by Luminex 200 (Luminex, Austin, TX, USA) and
Milliplex Map kit (EMD Millipore, Billerica, MA, USA).

2.4. Non-targeted metabolomics analysis

Non-targeted metabolomic analysis was performed on both GC/MS
and LC/MS. For GC/MS analysis, samples were separated on an Rtx-
5MS capillary column (30.0m� 0.25mm ID, 0.25 μm) and detected
by GC/MS-QP2010 Ultra (Shimadzu Inc., Kyoto, Japan). Ultrafast
liquid chromatography (UFLC) system coupled with ion trap/time-
offlight hybrid mass spectrometry (IT-TOF/MS, Shimadzu Inc.,
Kyoto, Japan) was used to conduct LC/MS analysis. Blood sample
preparation, analytical and data preprocessing methods were all on
the basis of our previous studies38,39 (as shown in Supporting
Information Methods 1.1). After serum metabolomics analysis, GC/
MS data and LC/MS data were combined as the whole dataset to
contain as much information on metabolites as possible.

Multivariate statistical data analysis including principal compo-
nent analysis (PCA) and orthogonal partial least-squares-
discriminant analysis (OPLS-DA) was performed by SIMCA-P
(version 13.0, Umetrics, Sweden). PCA was used to find the
grouping trends of postdose samples to divide the models in S and
NS group. OPLS-DA was used to find the potential biomarkers of
predose samples between S and NS group. To ensure data quality,
quality control (QC) samples were inserted randomly in analytical
batch. The variable importance in the projection (VIP) values,
nonparametric Mann–Whitney U test (SPSS Inc., Chicago, USA)
with Benjamini–Hochberg false discovery rate (FDR) correction,
area under receiver operating characteristic (AUC-ROC) curve
(SPSS Inc., Chicago, USA) and lasso regression in the R package
(http://www.r-project.org) were used to select the predictor bio-
markers. The VIP value 41 indicated this metabolite showed
contribution for grouping. False-discovery-rate-adjusted P values
(pFDR) o0.05 can reduce the probability of false positives and
indicate this metabolite is significantly differentially expressed40.
AUC-ROC is a common evaluation parameter for classification
performance and the classification performance can be considered
excellent when AUC-ROC 40.938. Metabolites heatmaps were
performed by MultiExperiment View v4.6.1 (www.tm4.org).

2.5. Pharmacokinetic studies

The quantitative analysis of CPT-11 and its major metabolites
(SN-38, SN-38G) was performed in accordance with published
paper41. A Kinetex C18 column (50 mm� 2.1mm, 2.6 μm, Phe-
nomenex, Torrance, CA, USA) and a LC/MS 8040 triple-
quadrupole mass spectrometer with ESI source (Shimadzu, Kyoto,
Japan) were used for quantitative analysis. Pharmacokinetic para-
meters were estimated by DAS 3.2 (Mathematical Pharmacology
Professional Committee of China, Shanghai, China). Blood sample
preparation and analytical methods were shown in Supporting
Information Methods 1.2.

2.6. Targeted metabolomics analysis of bile acids and ketogenic
amino acids

The quantitative analysis of bile acids (CA, DCA, GCA) was
performed on a ZORBAX Eclipse XDB-C18 column
(150mm� 2.1mm, 3.5 μm, Agilent, CA, USA) and detected by a
triple quadruple TSQ Quantum mass spectrometer with ESI source
(Thermo Fisher, Palo Alto, CA, USA). Blood sample preparation and
analytical methods were shown in Supporting Information Methods
1.3.

For ketogenic amino acids (Phe, Lys, Trp) and BHB quantitative
analysis, samples were separated on a BEH HILIC column
(100mm� 2.1mm, 1.7 μm, Waters, Ireland) and detected by a triple
quadruple TSQ Quantum mass spectrometer with ESI source (Thermo
Fisher, Palo Alto, CA, USA). Blood sample preparation and analytical
methods were shown in Supporting Information Methods 1.4.

All the quantification methods were developed and validated in
accordance with FDA guidance for Bioanalytical Method Validation
(2013) (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRe
gulatoryInformation/Guidances/UCM368107.pdf) in terms of accuracy,
precision, linearity, matrix effects, extraction recovery and stability.

2.7. Construction and validation of prediction models

Binary logistic regression was applied to construct the prediction
models (SPSS Inc., Chicago, USA). Probability (P) is a binary
logistic regression parameter and the default cut value was 0.5.
Logit (P) ¼ ln (P/(1�P)), its default cut value was 0. In the
present study, logit (P)40 was considered as S individuals and
logit (P)o0 was considered as NS individuals. ROC curve was
also used to evaluate the prediction ability of logit (P).

To further validate the prediction models, another independent
experiments were performed. The logit (P) values were calculated
according to the predose serum samples quantitative results. Based
on logit (P) values of gastrointestinal toxicity prediction model,
validation set (n¼25) was classified into Sgt (sensitive for
gastrointestinal toxicity) group (logit (P)40, n¼15) and NSgt

http://www.r-project.org
http://www.tm4.org
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM368107.pdf
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM368107.pdf
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(non-sensitive for gastrointestinal toxicity) group (logit (P)o0,
n ¼ 10); meanwhile, validation set was divided into Smt (sensitive
for myelosuppression toxicity) group (logit (P)40, n¼15)
and NSmt (non-sensitive for myelosuppression toxicity) group
(logit (P)o0, n¼10) in accordance with logit (P) values of
myelosuppression toxicity prediction model.

Next, diarrhea score and blood cell counts in the postdose
samples were statistically compared. If diarrhea score showed
significant difference (P o 0.05) between Sgt and NSgt group and
blood cell counts showed significant difference (Po0.05) between
Smt and NSmt group, the prediction ability of these two models
were successfully validated.
3. Results

3.1. Differentiating S and NS individuals

After the administration of CPT-11, distinct differences in
body weight loss, diarrhea score and blood cell counts between
T group and C group were observed, which indicated the
occurrence of gastrointestinal and myelosuppression toxic injuries
(Supporting Information Fig. S3). PCA score plot of serum
samples obtained on day 7 revealed that T group was completely
separated from C group. Meanwhile, T group was naturally
divided into two subgroups (Fig. 1), which were defined as non-
sensitive group (NS group, more closer to C group) and S group
(more deviations from C group), respectively. OPLS-DA model
was constructed to further explore the differences between S and
NS group (Supporting Information Fig. S4B). The good prediction
power (Q2 40.5) demonstrated that there were clear metabolic
differences between these two subgroups.

3.2. Data quality assurance for non-targeted metabolomics

All the samples were randomly analyzed to avoid inter-batch
differences. QC samples were made by pooling equal aliquot of
each sample and mixed completely. To make sure the data quality,
QC samples were inserted randomly in analytical batch. As shown
in Supporting Information Figs. S4A and Fig. S6A, QC samples
were clustered efficiently in PCA score plots. The relative standard
deviation (RSD) values of all peaks in QC samples were lower
Figure 1 Recognizing individual differences after CPT-11 administration
based on non-targeted metabolomic analysis of postdose serum samples.
PCA score plot revealed that CPT-11 treated group (T group) was
completely separated from control group (C group). T group was naturally
divided into non-sensitive group (NS group) and sensitive group (S group).
than 30% and the retention time shifts were less than 0.10 min,
which indicated the analytical process was stable and reliable42.
Meanwhile, the permutation test of partial least-squares-
discriminant analysis (PLS-DA) model with the same number of
components as the corresponding OPLS-DA model confirmed that
the performance of the OPLS-DA model was not overfitting38

(Supporting Information Figs. S4C and Fig. S6B).
3.3. Chemotherapeutic toxicity differences verification between
subgroups

As shown in Fig. 2A and B and Supporting Information Table S4,
compared with NS group, S group showed a higher late-onset diarrhea
score and a lower blood cell counts (except erythrocyte counts), which
indicated that S group experienced more serious injuries on gastro-
intestinal and myelosuppression after CPT-11 administration. Histolo-
gical examination of cecums also revealed more severe damages, such
as intestinal epithelium degeneration and inflammatory infiltration
occurred in S group (Fig. 2C and D). TNF-α, IL-1β and IL-6 are
excellent markers of inflammatory response induced by chemother-
apy43,44. Their postdose expression levels showed significant differ-
ences between S and NS group (Fig. 2E). The baselines between S and
NS group with respect to body weight (day 1), blood cell counts (day
1) and pharmacokinetic parameters of CPT-11 and its major metabo-
lites (SN-38, SN-38G) on day 1 were also compared (Supporting
Information Fig. S5 and Table S5). As a result, there were no
significant differences observed. All above results confirmed the
individual differences of CPT-11 chemotherapeutic toxicity.
3.4. Screening biomarkers for prediction

In order to find differential metabolites between S and NS group,
metabolomic analysis of predose serums was performed. S and NS
group were completely separated in OPLS-DA score plot with
prediction power score Q2 40.5 (Fig. 3). The corresponding PCA
score plot and permutation test are shown in Supporting Information
Fig. S6A and B. Twenty-seven differential metabolites were identified
with VIP 41, pFDR o0.05 and AUC-ROC 40.80 (Supporting
Information Table S6, Figs. S7 and S8). With AUC of late-onset
diarrhea score or reduction rate of blood cell counts as the dependent
variable, lasso regression was conducted to find the specific markers for
predicting late-onset diarrhea and myelosuppression respectively38,45.
Eventually, bile acids (CA, DCA, GCA) and Phe were focused as
predictors for late-onset diarrhea. Meanwhile, ketogenic amino acids
(Phe, Lys, Trp) could be used to predict myelosuppression.
3.5. Establishing prediction models based on quantitative
analysis results

The absolute concentration levels of these predictive biomarkers
screened out in predose serums were determined (Fig. 4A–F,
Supporting Information Fig. S9). On the basis of quantitative
analysis results, binary logistic regression was applied to construct
the prediction models. The equation Logit (P) ¼ 6.190þ
1.403CAþ3.652DCAþ5.717GCA�1.196Phe was used to predict
CPT-11 induced late-onset diarrhea with the predictive accuracy of
95.0% in the training set (n¼40). As shown in Fig. 4H, AUC-
ROC of the model was 0.99. As for predicting myelosuppression,
the predictive accuracy of equation which contained Phe, Lys and
Trp was only 85.0%.



Figure 2 Chemotherapeutic toxicity differences verification between NS and S group. (A) Diarrhea scores from day –1 to day 7 in NS and S group.
(B) Blood cell counts in day 7 in NS and S group. Representative histological examination of cecum in NS (C) and S (D) group (scale bar, 50 μm).
(E) Cytokines (TNF-α, IL-1β and IL-6) levels in postdose serums. Data are expressed as mean 7 SD. n (NS group) ¼ 17, n (S group) ¼ 23. Mann–
Whitney U test, *P o 0.05, **P o 0.01, ***P o 0.001.
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BHB is the common and abundant downstream metabolite of
ketogenic amino acids. In clinical, it has already been used as parameter
for diabetic ketoacidosis diagnosis and monitoring46,47. As its concen-
tration is very low and is generally to be miss-detected by non-targeted
Figure 3 Screening differential metabolites between NS group and S
group based on non-targeted metabolomic analysis of predose serum
samples. NS and S group were completely separated in OPLS-DA
score plot with prediction power score Q2 ¼ 0.720.
approach, we wondered whether BHB also showed differences between
S and NS groups. If so, it might be used as another variable to further
improve model's accuracy. Then predose BHB concentration was also
quantified (Fig. 4G) and incorporated into the prediction function.
As a result, a new model Logit (P) ¼ 66.666�0.075Phe�0.054Lys–
0.418Trp�0.080BHB was constructed, which showed a higher
predictive accuracy (from 85.0% to 92.5%) and higher AUC-ROC
(from 0.90 to 0.99, Fig. 4I) for predicting CPT-11 induced myelosup-
pression in the training set (n ¼ 40).
3.6. Predictive ability comparison with existing predictors

To illustrate the advantages of established models, the predictive
ability was compared with other reported CPT-11 toxicity predictors.
Biliary index is calculated based on the pharmacokinetic parameters
and has been reported to be an important kinetic variable32. Patients
with higher biliary index may experience more severe diarrhea21,48.
Other markers derived from pharmacokinetic parameters31 were also
compared and their formulas were shown in Supporting Information
Table S7. Indirect bilirubin (IBIL) can be converted into direct
bilirubin (DBIL) by UGT1A1 in vivo. Thus DBIL could serve as a



Figure 4 Targeted metabolomics analysis of screened biomarkers and prediction models construction. (A)–(G) Concentration of CA, DCA,
GCA, Phe, Lys, Trp and BHB in predose serums of NS and S group, respectively. (H) ROC curves of CA, DCA, GCA, Phe and prediction model
for predicting late-onset diarrhea. (I) ROC curves of Phe, Lys, Trp, BHB and prediction model for predicting myelosuppression. Data are
expressed as mean 7 SD. n (NS group) ¼ 17, n (S group) ¼ 23. Mann–Whitney U test, **P o 0.01, ***P o 0.001. CA, cholic acid; DCA,
deoxycholic acid; GCA, glycocholic acid; Phe, phenylalanine; Lys, lysine; Trp, tryptophan; BHB, β-hydroxybutyric acid.
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marker for UGT1A1 activity in liver and is associated with CPT-11
induced myelosuppression31. We compared the correlations between
CPT-11 toxicity and predictors mentioned above (Table 1 and
Supporting Information Fig. S10). The results indicated the models
we built showed a better correlation in predicting these two adverse
effects.

3.7. Predictive ability validation of established models

Another independent experiment (n¼25) was performed as
validation set to further validate the predictive ability of these
two established models. The levels of these selected biomarkers in
predose serums were determined (Supporting Information Table
S8) and logit (P) values were calculated. As described in Materials
and Methods, validation set was further divided in two subgroups
for CPT-11 gastrointestinal toxicity and two subgroups for CPT-11
myelosuppression toxicity according to the logit (P) values
obtained using corresponding prediction model.
Diarrhea score and blood cell counts in the postdose samples
were statistically compared. As shown in Fig. 5A and B, AUC of
late-onset diarrhea score in Sgt group (3.5570.88, n¼15) was
significantly higher than that in NSgt group (1.5371.25, n¼10).
Meanwhile, blood cell counts (except erythrocyte counts) in Smt
group (n¼15) were significantly lower than those in NSmt group
(n¼10). The results indicated that these two models we constructed
could be successfully used to predict the individual gastrointestinal
and myelosuppression toxicity induced by CPT-11.
4. Discussion

Pharmacometabolomics has already been used in predicting one
special toxicity of chemotherapy13. However in clinical practice,
chemotherapy toxic effects such as diarrhea, nausea, myelosup-
pression usually appeared not alone49. Two or more different
toxicities are always accompanied with each other. Different toxic



Table 1 Correlations comparison between CPT-11 adverse effects and predictors.

Predictor P value Correlation of gastrointestinal toxicity Correlation of myelosuppression

Prediction models for gastrointestinal toxicity P o 0.001 0.385 –

Prediction models for myelosuppression P o 0.001 – 0.692
BI 0.002 0.340 0.302
GR 0.002 �0.252 �0.316
MR 0.027 0.019 0.053
REC 0.588 0.037 0.092
TBIL 0.766 0.063 �0.043
DBIL 0.570 �0.062 �0.220
IBIL 0.149 0.220 0.213
DBIL/IBIL 0.015 �0.313 �0.428
UGT1A1 0.034 �0.298 �0.198

BI: biliary index; GR: glucuronidation ratio; MR: metabolic ratio; REC: relative extent of conversion; TBIL: total bilirubin; DBIL: direct bilirubin;
IBIL: indirect bilirubin. P value: Mann–Whitney U Test between NS (n ¼ 17) and S group (n ¼ 23). Correlation coefficients: Pearson correlation.
– Not applicable.

Figure 5 Validations for the predictive ability of models. (A) Diarrhea scores from day �1 to day 7 in NSgt (non-sensitive for gastrointestinal toxicity)
and Sgt (sensitive for gastrointestinal toxicity) group, n (NSgt group) ¼ 10, n (Sgt group) ¼ 15. (B) Blood cell counts in day 7 in NSmt (non-sensitive
for myelosuppression toxicity) and Smt (sensitive for myelosuppression toxicity) group, n (NSmt group) ¼ 10, n (Smt group) ¼ 15. Mann–Whitney U
test, **P o 0.01, ***P o 0.001.
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effects have different pathogenesises and they also have cross-talk.
Thus, how to pick out specific biomarkers for each type of toxicity
brings new challenges for pharmacometabolomics.

In the current study, we try to explore the possibility of using
pharmacometabolomic approach to predict gastrointestinal and
myelosuppression toxicity caused by CPT-11. Different che-
motherapy toxic effects are always accompanied with each other
and have interplay of their pathogenesises. Thus, it is difficult to
find a reasonable strategy in screening biomarkers which takes
account of the complication's integrity and individuality. Only
choosing one single toxicity as grouping criterion in screening
biomarkers may ignore the interplay of chemotherapy toxicities.
Treating all the pathological indexes as a whole cannot screen out
specific biomarkers for specific chemotherapy toxicity.

In our studies, factors mentioned above were under consideration
during data analysis. CPT-11-induced toxicity model was divided into
S group and NS group based on non-targeted metabolomics natural
grouping of postdose serum samples. Relative pathological indexes
indicated more severe chemotherapy-induced injuries happened in S
group. Then we chose toxicity scores of late-onset diarrhea or
myelosuppression as the dependent variables to screen specific
biomarkers for predicting gastrointestinal or myelosuppression toxicity
respectively. The biomarkers we screened out via this strategy not
only represent the overall toxicity of CPT-11, but also have more
specificity in gastrointestinal or myelosuppression toxicity and closer
correlations to the pathogenesises compared with the present metabo-
lomic studies.

Non-targeted metabolomics studies of postdose serums were
utilized to distinguish the individual differences of CPT-11
chemosensitivity. Based on PCA model, T group was naturally
divided into S group and NS group. Furthermore, late-onset
diarrhea score, blood cell counts, histological examination and
cytokines test results indicated more severe chemotherapy-induced
injuries happened in S group. After the verification of chemother-
apeutic toxicity differences between these two subgroups, non-
targeted metabolomic analysis of predose serum samples was
performed and 27 differential metabolites were identified. Then we
chose pathological indexes of late-onset diarrhea or myelosuppres-
sion as dependent variables in lasso regression to screen biomar-
kers for predicting gastrointestinal or myelosuppression toxicity,
respectively. Eventually, two groups of biomarkers were screened
out. These biomarkers we focused on were further confirmed by a
follow-up targeted metabolomics and the absolute concentration
levels of these predictive biomarkers in predose serums were
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determined. Based on quantitative analysis results, binary logistic
regression was applied to construct the prediction models. These
two prediction models showed a good predictive ability for
gastrointestinal or myelosuppression toxicity respectively in the
training set (n¼40). Finally, another independent experiment was
performed as validation set (n¼25) to further validate the
predictive ability of these two established models.

As shown in Supporting Information Fig. S8 and Fig. 4, AUC-
ROC values of most biomarkers were lower than those in non-
targeted metabolomics studies. This phenomenon is in accordance
with published study50, which indicated it is necessary to perform
targeted quantitative analysis in pharmacometabolomic studies.

After CPT-11 administration, T group was naturally divided into
two subgroups. Previous studies have revealed CPT-11 can induce
serum metabolic profiles changes and these changes are associated with
CPT-11's toxicity51,52. In this study, the PCA score plot of postdose
serum samples revealed S and NS groups were completely separated
from C group. Comparing with NS group, S group deviated more
broadly from C group. The reason for this discrepancy may due to
more severe toxicity happened in S group and resulted in greater
metabolic profiles changes. Pharmacometabolomic analysis of the
predose serum samples revealed S and NS group were completely
separated in OPLS-DA score plot. Considering about the predictive
biomarkers we screened out, we speculated the individual differences
in liver function, enterohepatic circulation, gut microbiota homeostasis
and the levels of oxidative stress may contribute to different degrees of
chemotherapeutic toxicity induced by CPT-11.

Bile acids are synthesized in liver and metabolized by the gut
microbiota. CA and GCA are primarily synthesized in liver, released
in intestine with bile and transported back to the liver via portal blood
circulation, which is called “enterohepatic circulation of bile acids”53.
Bile acids can show negative feedback effects on the bile salt export
pump (BSEP)54 and major metabolic enzymes CYP7A1 in liver by
activating farnesoid X receptor55. Besides, GCA has already been
used to evaluate liver function56. DCA is a secondary bile acid and
mainly synthesized in intestine by gut microbiota. It has been
reported that DCA can increase mucosal permeability and bacterial
uptake57. Recent studies have revealed that bile acids can represent
the metabolic interactions between gut microbiota and host58. Mean-
while, gut microbiota also plays an important role in pharmacoki-
netics of CPT-1148 and the disturbance of gut microbiota is one of the
mechanisms of chemotherapy-induced diarrhea59,60. Gut microbiota
can also influence enterohepatic circulation and the levels of bile
acids61,62. In our studies, CPT-11 induced late-onset diarrhea can be
predicted by CA, DCA and GCA, whose different levels may
represent the differences in liver function, enterohepatic circulation
and homeostasis status of gut microbiota.

It should be noted that in our studies, CLs of SN-38G between
NS and S group showed a significant difference (Supporting
Information Table S5). As shown in Supporting Information
Fig. S1, SN-38G is excreted in bile and then hydrolysed to
SN-38 by gut bacterial β-glucuronidase. The difference of CLs
may indicate that the gut microbiota homeostasis individual
differences existed between S and NS group, which supported
our speculations.

Ketogenic amino acids can be converted to ketone bodies
(mainly BHB) and ultimately degraded in the citric acid cycle.
Ketogenic amino acids have been reported to show efficacy in
hepatosteatosis63. BHB has showed many signaling functions such
as suppressing oxidative stress as endogenous histone deacetylase
inhibitor64,65. Chemotherapy-induced myelosuppression has var-
ious proposed pathogenesises including oxidative stress66.
Meanwhile, oxidative stress also contributes to the pathophysiol-
ogy of CPT-11-induced chemotherapy toxicity67. A higher levels
of Phe, Lys, Trp and BHB may enhance the ability to resist
oxidative stress and further reduce myelosuppression induced by
CPT-11. It should be noted that ketogenic diets have already been
used in clinical studies as a complementary approach for cancer
therapy to enhance curative effects68,69. However, it is still unclear
whether ketone bodies could reduce chemotherapy toxicity
as well.

From the above, we established two models to predict gastro-
intestinal toxicities and myelosuppression induced by CPT-11
respectively. However, in clinical, the typing, grading and staging
of cancers are various. Besides, CPT-11 is always combined with
other antitumor drugs such as fluorouracil for the treatment. The
complicated situations in clinical practice are challenges for applica-
tion of our findings and deserve further investigation and discussion.
5. Conclusions

In this study, a pharmacometabolomic approach was performed to
screen exclusive predictive biomarkers for CPT-11 complicating
toxicity. Eventually, the model based on CA, DCA, GCA and Phe
showed a good predictive ability for late-onset diarrhea; while
another model based on Phe, Lys, Trp combined with BHB
showed a good predictive ability for myelosuppression. These two
prediction models we established were compared with existing
predictors and validated by another independent external experi-
ment. This study demonstrates that drug toxicity could be
predicted using predose metabolome. Our fingdings could provide
new insight into CPT-11 complicating toxicity and may facilate
personalized medicine of other antitumor drugs in future.
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