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ABSTRACT

Found in the skins of red fruits, including grapes, resveratrol (RES) is a 
polyphenolic compound with cancer chemopreventive activity. Because of this 
activity, it has gained interest for scientific investigations. RES inhibits tumor growth 
and progression by targeting mitochondria-dependent or -independent pathways. 
However, further investigations are needed to explore the underlying mechanisms.

The present study is focused on examining the role of RES-induced, mitochondria-
mediated, caspase-independent apoptosis of prostate cancer cells, namely transgenic 
adenocarcinoma of mouse prostate (TRAMP) cells. These cells were exposed to 
RES for various times, and cell killing, cell morphology, mitochondrial membrane 
potential (Δψm), expression of Bax and Bcl2 proteins, the role of caspase-3, and DNA 
fragmentation were analyzed.

TRAMP cells exposed to RES showed decreased cell viability, altered cell 
morphology, and disrupted Δψm, which led to aberrant expression of Bax and Bcl2 
proteins. Furthermore, since the caspase-3 inhibitor, z-VAD-fmk (benzyloxycarbonyl-
valine-alanine-aspartic acid-fluoromethyl ketone), had no appreciable impact on 
RES-induced cell killing, the killing was evidently caspase-independent. In addition, 
RES treatment of TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells caused an appreciable 
breakage of genomic DNA into low-molecular-weight fragments.

These findings show that, in inhibition of proliferation of TRAMP cells, RES 
induces mitochondria-mediated, caspase-independent apoptosis. Therefore, RES may 
be utilized as a therapeutic agent to control the proliferation and growth of cancer 
cells.

INTRODUCTION

In Western populations, prostate cancer is the 
second leading cause of death (after heart disease) in men 
older than 65 years of age [1–6]. It arises through the 
change of pre-neoplastic lesions into adenocarcinomas, 
and thereafter progresses to metastatic disease [6–9]. 
Recent advances have found genetic alterations that 
enhance the probability of prostate cancer development 
[10, 11]. To limit the growth of prostate cancer, high doses 

of chemotherapeutic drugs and high-frequency radiation 
have been used, but the limited efficacy and side effects 
of these treatments raise a concern [12, 13]. Therefore, 
it is desirable to find anti-cancer agents that are non-
toxic and effective in inducing apoptosis in cancer cells. 
Previous studies have demonstrated that treatment with 
anti-androgens is beneficial in the early stages of prostate 
cancer development, suggesting that their growth may be 
dependent on androgens [14–17]. In contrast, androgen-
independent prostate cancer cells do not undergo apoptosis 
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[14–17]. In view of these results, advanced therapies that 
target the proliferation of both androgen-dependent and 
-independent prostate cancer cells are needed.

Compounds naturally occurring and present 
in the human diet are generally nontoxic, and some 
have beneficial effects on human health. Among these 
dietary components, resveratrol (RES), a polyphenol 
found in the skin of red fruits, exhibits anti-cancer, 
anti-proliferative, anti-inflammatory, and anti-oxidative 
effects [18, 19]. The anti-cancer properties of RES are 
facilitated through various changes in apoptotic signaling, 
metabolic pathways, and other signaling pathways that 
regulate apoptosis, cell cycle progression, inflammation, 
proliferation, metastasis, and angiogenesis [18, 20]. 
Furthermore, cells exposed to RES show inhibition 
of PI3K/AKT signaling, which stimulates apoptosis 
[21–29]. RES induces the death receptor (TRAIL/DR4 
and TRAIL-R2/DR5)-mediated apoptosis [7, 30–39], 
and it is involved in mitochondrial-mediated apoptosis 
[40–45]. Mitochondria are the primary provider of ATP 
in most mammalian cells, they regulate both necrotic and 
apoptotic cell death pathways [46]. Thus, apoptosis is 
considered to be the most likely mechanism adopted by 
cells after activation of death signals. Apoptosis may be 
triggered intrinsically or extrinsically, depending on the 
type of apoptotic signals [40, 41, 43–45].

In human lung adenocarcinoma cells, RES activates 
the intrinsic apoptotic pathway by inducing release of 
apoptosis-inducing factor (AIF) [47]. Intrinsic signals of 
apoptosis function mainly through mitochondria [48]. In 
healthy cells, the outer mitochondrial membrane expresses 
the B-cell lymphoma-2 (Bcl-2) family of proteins, which 
controls the release of pro-apoptotic factors from the inner-
membrane space in mitochondria [49–52]. In response to 
internal damage to the cells, a Bcl-2 associated protein, 
Bax, migrates to the mitochondrial membrane and inhibits 
the action of Bcl-2, causing damage to the mitochondrial 
membrane that in turn releases cytochrome-c [49–52]. 
Cytochrome-c binds with the apoptotic protease activator 
factor-1 (Apaf-1) and forms a multimeric protein structure 
called the “apoptosome.” The apoptosome activates 
caspase-9, which triggers the activation of caspase-3 and 
caspase-7 [53–59]. Their activation initiates proteolytic 
activity that leads to cell death [53–59]. The extrinsic 
pathway of apoptosis, however, is triggered by external 
signals that stimulate death receptors, such as ligands 
Fas-L and TNF-α (tumor necrosis factor-α), which activate 
caspase-8 [60]. This activated molecule initiates a cascade 
of caspase activity, which facilitates cell death [60].

RES shows anti-cancer, anti-proliferative, anti-
inflammatory, and anti-oxidative properties, which are 
involved in the mitochondrial pathway of apoptosis 
[18, 20, 40–44, 61, 62]. However, how RES-induced, 
mitochondria-mediated, caspase-independent apoptosis 
operates in controlling the progression of tumor cells is 
not clear.

In the present effort, we examined the effects of 
RES on mitochondria-mediated, caspase-independent 
apoptosis in transgenic adenocarcinoma of mouse 
prostate (TRAMP-C1, TRAMP-C2, and TRAMP-C3) 
cells. TRAMP cells exposed to RES showed, in a time- 
and dose-dependent manner, increased cell killing and 
altered cell morphology. Furthermore, RES treatment 
resulted in disrupted mitochondrial membrane potential 
(Δψm), which triggered disproportionate expression 
of Bax and Bcl2 proteins. In addition, RES treatment 
did not induce marked fragmentation of DNA into low-
molecular-weight segments. As determined by exposure 
of cells to the caspase-3 inhibitor, z-VAD-fmk, caspase-3 
was not involved in RES-mediated cell killing. Thus, these 
findings indicate that RES induces mitochondria-mediated, 
caspase-independent apoptosis and delays proliferation of 
prostate cancer cells. Therefore, RES may be an agent for 
treatment of prostate cancer.

RESULTS

RES kills tumor cells

To test the effect of RES on TRAMP cells, a cell-
killing assay was performed. First, we determined the 
optimal time and concentration of RES needed to kill 
TRAMP cells. Annexin V-FITC+ and double positive 
(FITC+, PI+) cells showed sign of early and late apoptosis 
respectively; however, PI+ cells considered as dead cells 
as shown in representative Figure 1A. We established 
that 16 hours was the optimal time for maximum killing 
(Figure 1B). These experiments were repeated 5 times 
independently in triplicates. Data are represented as mean 
values ±SEM (Standard Error of the Mean) in Figure 1B. 
We also conducted experiments at 24 hours and 48 hours 
but did not find any significant difference in RES-mediated 
cell killing (data not shown). Cells incubated with 50 μM 
or 100 μM of RES showed a concentration-dependent 
increase in the percent of cells killed (Figure 1B). Further 
analysis revealed that RES (100 μM) treatment resulted in 
a significantly greater (*P<0.001) killing of TRAMP-C3 
cells (43±5%) as compared to TRAMP-C1 (21±5%) 
and TRAMP-C2 (6±5%) cells (Figure 1B). In addition, 
TRAMP cells were incubated with RES in the presence 
or absence of Nec-1, a necroptosis blocker, to confirm 
whether RES-mediates apoptosis or necroptosis. We found 
that RES exhibited a similar pattern of cell killing in the 
presence or absence of Nec-1 (Supplementary Figure 1A; 
TRAMP-C1, Supplementary Figure 1B; TRAMP-C2, and 
Supplementary Figure 1C; TRAMP-C3).

RES treatment alters cell morphology

To evaluate the impact of RES on cell morphology, 
phase contrast microscopy was conducted. Cells were 
treated with 100 μM of RES for 16h exhibited altered 
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cell morphology in a concentration-dependent manner 
(Figure 1C). Furthermore, cells exposed to 100 μM of 
RES showed more prominent morphological alterations in 
TRAMP as compared to cells treated with 50 μM of RES 
(Figure 1C). Additionally, TRAMP-C3 cells were more 
sensitive to 100 μM of RES as compared to TRAMP-C1 
and TRAMP-C2 cells (Figure 1C). TRAMP-C3 cells 
showed more oval shapes as compared to TRAMP-C1 and 
TRAMP-C2 cells, suggesting loss of adherence and loss 
of cell-to-cell contact.

RES induces mitochondrial membrane potential

To examine the effect of RES on mitochondria, the 
Δψm was measured using fluorescence microscopy and 
flow cytometry. TRAMP cells treated with RES (50 or 100 
μM) showed disrupted Δψm as compared to appropriate 
control (Figure 2A). Observed under a fluorescence 
microscope, DePsipher-stained TRAMP cells exhibited 
a distinct fluorescence color: red, green, or an overlap of 
green and red that results in orange/yellow. Cells with red 
fluorescence were considered to be healthy and normal; 
cells with green fluorescence were considered to have 
disrupted Δψm, indicating apoptosis. Cells with orange/
yellow fluorescence were considered to have collapsed 
mitochondria. Most of the treated TRAMP cells showed 
green and orange/yellowish color, indicating that these cells 

had disrupted Δψm (Figure 2A); however, TRAMP-C3 
cells showed significantly disrupted Δψm as compared to 
TRAMP-C1 and TRAMP-C2 cells (Figure 2A).

Further, the Δψm was validated by flow cytometric 
analysis of TRAMP cells treated with 100 μM RES 
as demonstrated in representative Figure 2B. In this 
figure, three cell populations were evident: (i) TRAMP 
cells showing only green fluorescence (FL1: 488/530 
nm) corresponding to those with disrupted (low) Δψm 
following apoptosis as compared to control cells. (ii) 
Cells with different intensities of green and red or 
yellow/orange were also considered to have intermediate 
disrupted Δψm. (iii) Cells emitting red fluorescence (FL2: 
488/585nm) were considered to demonstrate high Δψm. 
Further analysis revealed that, with exposure to 100 μM 
RES, the percentages of TRAMP-C3 cells showing green 
fluorescence, that is, with disrupted Δψm, were higher 
relative to TRAMP-C1 and TRAMP-C2 cells (Figure 2C). 
This experiment was performed 5 times independently 
in triplicates; the sum of all experimental data (± SEM) 
is shown in the histogram Figure 2C (*p<0.05 and 
**p<0.01).

RES modulates the expression of Bax and Bcl2

Western blots were performed to investigate 
the effect of RES on the expression of Bax and Bcl2 

Figure 1: RES kills TRAMP cells in a dose- and time-dependent manner. TRAMP cells were treated with RES (50 μM or 
100 μM), and cell killing and cell morphology were examined. A. Representative figure of gating strategies to study percent cell killing after 
RES treatment using a flow cytometer. B. Mean average values with ±SEM of cell death at 0, 2, 4, 8, 12, and 16 hours. C. Morphological 
changes in cells due to RES treatment (* indicates p<0.05 and ** indicates p<0.01).
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proteins. It was found that RES treatment modulated 
the expression of Bax and Bcl2 proteins in TRAMP-C1, 
TRAMP-C2 and TRAMP-C3 cells as compared to the 
control (Figure 3A). Further, densitometric analysis 
revealed that treatment with 50 μM or 100 μM of 
RES resulted in significantly high expression of Bax 
in TRAMP-C1 (*p<0.02), TRAMP-C2 (*p<0.001) 
and TRAMP-C3 (*p<0.001) cells when compared to 
the respective control (Figure 3C). In contrast to Bax, 
Bcl2 expression repressed significantly in TRAMP-C2 
(*p<0.03) and TRAMP-C3 (*p<0.02) cells after 100 μM 
of RES treatment (Figure 3B). In addition, TRAMP-C1 
(#p>0.05) cells did not show a significant difference 
in the expression of Bcl2 protein in comparison to the 
control (Figure 3B).

RES induces caspase-independent cell killing

To evaluate the role of caspase-3 in RES-mediated cell 
killing, caspase-3 activation was blocked with an inhibitor 
(z-VAD-fmk). RES treatment with and without z-VAD-fmk 
induced RES-mediated cell killing (Figure 4A). TRAMP-C3 
cells exposed to 100 μM of RES with or without z-VAD-
fmk showed significantly (**p<0.001) higher percentage 
of cell death as compared to TRAMP-C1 (*p<0.05) and 
TRAMP-C2 (*p<0.05) cells (Figure 4A). However, there 
was no significant difference in TRAMP cells treated with 
either RES or with RES plus z-VAD-fmk (Figure 4A). 
There were corresponding results when cells were analyzed 
morphologically under a phase contrast microscope 
(Figure 4B: resultant morphology of TRAMP cell after 
100μM of RES+z-VAD-fmk treatment). In addition, 

Figure 2: RES disrupts Δψm. Cells were treated with 100 μM of RES for 16 hours, and Δψm was examined by using DePsipher 
dye. A. Fluorescence microscopy of TRAMP cells. B. Representative gating of cells. (i) cells with disrupted (low) Δψm are indicated as 
DePsipher-monomers (34.52%), (ii) cells with intermediate Δψm (4.26%), and (iii) cell with high Δψm indicated as DePsipher-aggregates 
(11.89%). C. Percent of cells with disrupted Δψm. Data represented as mean values ± SEM (* indicates p<0.05 and ** indicates p<0.01).
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treatment with Nec-1 (an inhibitor of necroptosis) did not 
change RES-mediated cell killing in the presence or in the 
absence of z-VAD-fmk (Supplementary Figure 2). Thus, 
in TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells, the 
caspase-3 inhibitor, z-VAD-fmk, and Nec-1, had negligible 
effects on RES-mediated apoptosis (Supplementary Figure 
2A; TRAMP-C1, Supplementary Figure 2B; TRAMP-C2, 
and Supplementary Figure 2C; TRAMP-C3 cells).

RES modulates the γ-H2A.X expression

To test the effect of 50 and 100μM of RES treatment 
on the expression of γ-H2A.X in TRAMP cells. The 
expression of γ-H2A.X was examined using western 
blot analysis which demonstrated significantly (*p<0.05) 
higher expression in TRAMP-C2 and TRAMP-C3 cells 
when compared to the control (Figure 5A and 5B). 
However, in TRAMP-C1 cells, γ-H2A.X expression 
was not significant (#p>0.05) as compared to the control 
(Figure 5A and 5B). These findings suggest that RES 

treatment sensitizes DNA damage which further leads to 
apoptosis of TRAMP cells.

DISCUSSION

Resistance to anti-cancer therapies is facilitated 
through an array of mechanisms that vary across tumor 
types [63, 64]. In the present study, we demonstrated 
that RES modulates mitochondria-mediated, caspase-
independent apoptosis in murine prostate cancer cells. 
These results reveal that dietary compounds such as 
RES may play a critical role in inducing mitochondria-
dependent apoptotic pathway(s) in murine prostate cancer 
cells (Figure 6).

Dietary compounds can be used to target 
mitochondria-mediated, caspase-independent apoptosis. 
This pathway is characterized by changes in Δψm and 
by maintenance of an optimal ratio of Bcl2/Bax [65]. 
A high Δψm and a high Bcl2/Bax ratio are believed to 
promote cell proliferation and enhanced cell survival, 

Figure 3: RES modulates the expression of Bax and Bcl2. Results indicated altered expression of Bax and Bcl2 in TRAMP cells 
after Res treatment. A. Representative western blot of Bax, Bcl-2 and β-actin for the respective doses of RES in TRAMP-C1, TRAMP-C2 
and TRAMP-C3 cells. B. Expression of Bcl-2 relative to the control. C. Expression of Bax relative to the control. Results are representative 
of three independent experiments (* indicates p<0.05 and # indicates p>0.05).
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thereby contributing to cancer progression. Dietary 
compounds such as RES inhibit cell growth in several 
types of human cancers, including prostate cancers [8, 
66–70]. Consistent with results of previous studies, our 
data demonstrate that RES treatment results in enhanced 
cell killing in a time and dose-dependent manner. As 
cell viability decreases, altered cell morphology, a 
characteristic of apoptosis, increases [71]. RES induces 
cellular morphological changes similar to those caused 
by other anti-cancer drugs [40–45, 61, 62, 72]. To 
confirm our preliminary results relating to viability, 
we determined the effect of RES on the expression of 
Bcl2 and Bax proteins, Δψm, caspase-3 activity, and 
DNA fragmentation. TRAMP-C3 and TRAMP-C2 
cells exhibited significant difference in Bax expression 
as compared to control at 50 μM and 100 μM of RES; 
however, TRAMP-C1 showed significant difference at 
100 μM of RES, not at 50 μM when compared to the 
control (Figure 3C). In contrast to Bax, Bcl2 expression 
in TRAMP-C1, TRAMP-C2 and TRAMP-C3 was 

observed altered as compared to control at both 50 μM 
and 100 μM of RES (Figure 3B). Additionally, Bcl2 was 
found significantly repressed at 50 μM and 100 μM of 
RES in TRAMP-C2 and TRAMP-C3 when compared to 
control (Figure 3B). Furthermore, RES treatment also 
caused disrupted Δψm, which is associated with apoptosis 
[73]. Most TRAMP-C3 cells showed decreased Δψm 
relative to TRAMP-C1 and TRAMP-C2 cells. Thus, RES 
treatment induced killing of TRAMP cells in a caspase-3-
independent manner, for the caspase-3 inhibitor (z-VAD-
fmk), failed to prevent RES-mediated cell killing. 
Therefore, apoptosis of TRAMP cells induced by RES 
apparently acts through the mitochondrial mediated, 
caspase-independent pathway (Figure 6).

Changes in Δψm are evident in mitochondria-
mediated, caspase-independent apoptosis [74, 75]. As 
shown in the present effort, RES treatment decreases 
Δψm in TRAMP-C3 cells compared to TRAMP-C1 and 
TRAMP-C2 cells. However, RES induces apoptosis of 
colon cancer cells independently of the tumor suppressor 

Figure 4: RES causes caspase-independent cell killing. Cells were treated with 100 μM of RES with or without 10 μM of z-VAD-
fmk (a broad-spectrum caspase-3 inhibitor) and incubated for 16 hours. Thereafter, annexin V-PI staining was accomplished. A. The percent 
of cell killing by RES in the presence or absence of 10 μM of z-VAD-fmk. B. Morphological alterations in TRAMP cells caused by 100μM 
of RES treatment in the presence of z-VAD-fmk. Data indicated mean values of ± SEM (* indicates p<0.05 and ** indicates p<0.001).
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p53 via epithelial differentiation and mitochondrial 
membrane collapse [76, 77]. The present data correspond 
with these findings, which suggest that RES treatment 
induces a collapse of Δψm [76, 77].

Proteins of the Bcl2 family, particularly Bcl2 and 
Bax, are involved in mitochondria-mediated apoptotic 
pathways [65]. After treatment of HCT-116 colon 
carcinoma cells with RES, Bax is involved in alteration of 

Figure 6: RES induces apoptosis in TRAMP cells. A schematic representation of the mechanism of RES-mediated, caspase-
independent apoptosis in TRAMP cells.

Figure 5: RES treatment induced DNA fragmentation in TRAMP cells. TRAMP cells were incubated with 50 μM and 100 μM 
of RES to examine the expression of γ-H2A.X in TRAMP cells. The resulting western blots of γ-H2A.X showed that the expression of 
γ-H2A.X was found significantly higher in TRAMP-C2 and TRAMP-C3 cells when compared to the control. Furthermore, TRAMP-C1 
cells, did not show a significant difference in γ-H2A.X expression when compared to the control (* indicates p<0.05 and # indicates p>0.05).
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mitochondrial membrane permeability [78–80]. However, 
by up-regulation of Bcl2 and inhibition of p53 and Bax, 
RES reverses cadmium chloride-induced testicular damage 
and subfertility [79]. In bladder cancer cells, RES also 
induces apoptosis by down-regulating the expression of 
Bcl2 proteins [81, 82]. However, the current results show 
that RES modulates the expression of Bax and Bcl2 in 
TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells compared 
to the control cells; however, in TRAMP-C1 cells Bax at 
50 μM of RES and Bcl2 at 50 μM and 100 μM of RES 
were found insignificant. These findings corroborated with 
other reports [65, 81, 82].

RES decreased cell viability and Δψm, and 
modulated the expression of Bax and Bcl2 proteins in 
TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells. In an 
investigation of the involvement of caspase-3 in RES-
mediated cell killing and DNA fragmentation, we found 
that RES treatment with or without the caspase-3 inhibitor, 
z-VAD-fmk, resulted in similar cell killing. This result was 
supported by morphological examination of the cells after 
DePsipher staining. The mechanism of action, however, 
is not yet defined. RES induces apoptosis by depolarizing 
the mitochondrial membranes in a caspase-independent 
manner [73] [48, 83, 84]. Nevertheless, in U937 cells, 
overexpression of Bcl2 attenuates RES-mediated apoptosis 
by blocking caspase-3 activation [53]. Moreover, RES 
induces caspase-dependent and -independent apoptosis in 
various cancer cells [85–87]. In colon cancer cells, RES 
induces caspase-2 activation that subsequently triggers 
Bax-Bak-dependent and -independent cell death [79]. 
In human lung adenocarcinoma cells, RES stimulates 
mitochondria-mediated and caspase-dependent cell death 
[88]. Conversely, in primary mouse fibroblasts, RES 
exhibits a cytoprotective effect by acting against caspase-3 
[89]. The present results show that, for TRAMP cells, the 
caspase-3 inhibitor, z-VAD-fmk, and Nec-1, which blocks 
necroptosis, had a negligible effect on RES-mediated 
cell killing. Thus, in these cells, RES induces caspase-
independent apoptosis.

The present results show that RES treatment to 
TRAMP cells caused significant cleavage of genomic 
DNA, which was accomplished by the expression of 
γ-H2A.X, an evolutionary conserved variant of histone 
H2A, has been identified as one of the key histones 
to undergo various post-translational modification in 
response to double stranded DNA breaks [90, 91]. DNA 
damage caused by radiation, UV light, or anti-cancer 
agents results in phosphorylation of Histone γ-H2A.X at 
ser-139 by PI3K-like kinases, including ATM, ATR, and 
DNA-PK [92–94]. The DNA damage response during 
DNA fragmentation is required for DNA-damage response 
proteins including DNA-PK that phosphorylates γ-H2A.X 
[95, 96]. Phosphorylation of γ-H2A.X at Tyr142 inhibits 
the recruitment of DNA repair proteins and promotes 
binding of pro-apoptotic factors such as JNK1 [97, 98]. 
Thus, γ-H2A.X expression was significantly higher in 

TRAMP-C2 and TRAMP-C3 cells after 50 and 100μM 
of RES treatment as compared to the control. However, in 
TRAMP-C1 cells, γ-H2A.X expression was not significant 
as compared to the control. These findings are consistent 
with the previous results, which show RES-mediated 
caspase-independent cell killing. Furthermore, previous 
studies have demonstrated that RES induces apoptosis 
and DNA fragmentation in several types of cancer cells 
[99–102]. These properties of RES suggest that it could be 
used as a therapeutic agent to treat prostate cancer.

Our results demonstrate that, for TRAMP-C1, 
TRAMP-C2, and TRAMP-C3 cells, RES increases cell 
killing in a dose- and time-dependent manner, induces 
morphological alterations, and triggers apoptosis. In 
these cells, RES causes a disrupted Δψm that leads 
to modulated expression of Bax and Bcl2 proteins. 
Additionally, caspase-3 is not involved in RES-mediated 
cell killing, showing that, in TRAMP cells, RES induces 
caspase-independent apoptosis. In these cells, RES 
treatment contributed to DNA fragmentation which 
enhanced γ-H2A.x expression in treated TRAMP-C2 and 
TRAMP-C3 cells, but not in TRAMP-C1 when compared 
to the control, indicating the sign of DNA damage after 
RES treatment [92]. Therefore, RES may be a promising 
dietary compound for the treatment of prostate cancer. 
However, further investigations are necessary to uncover 
the underlying mechanisms.

MATERIALS AND METHODS

Cell lines and culture conditions

TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells 
were obtained from American Type Culture Collection 
(www.ATCC.org) and were maintained at 370 C under 
5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS) (v/v), 
bovine insulin (0.005 mg/ml), dehydroisoandrosterone (10 
nM), and antibiotics/antimycotics (1%).

Cell killing assay

To assess percentages of cell death, 70-80% 
confluent cells were harvested by trypsinization, counted, 
and seeded (105) in 24-well plates in 1 ml of culture 
medium. Cells were treated with 50 μM or 100 μM of RES 
and were analyzed by flow cytometry at 0, 2, 4, 8, 12, and 
16 hours. They were stained with annexin V-propidium 
iodide (PI) as directed by manufacturer. Briefly, into 
each tube, annexin V (5 μl of 600 μg/ml) and PI (5 μl 
of 30 μg/ml) were added, and tubes were then incubated 
for 15 min at 40C. Cells were washed with Dulbecco’s 
phosphate buffered saline (DPBS) and centrifuged. 
For flow cytometric analysis, the cells were suspended 
in 200-500 μl of annexin V binding buffer. Data were 
acquired by use of a 13-color flow cytometer (Novocyte, 
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Acea Biosciences, San Diego, CA). PI+, Annexin V+, and 
Annexin V+ PI+ cells were counted as dead populations; 
PI/Annexin V FITC- cells were counted as live cells. All 
experiments were performed in triplicate.

Assessment of cell morphology

Cells were exposed to 50 μM or 100 μM of RES for 
16 hours. Media were removed, and after media removal, 
cells were washed with DPBS and then suspended in 50 
μl of DPBS. To assess morphological changes, cells were 
observed under a phase-contrast microscope (Life Tech, 
Grand Island, NY).

Assessment of mitochondrial membrane 
potential

To examine Δψm, cells in DMEM supplemented 
with 10% FBS were exposed to RES (50 μM or 100 
μM) for 16 hours. After incubation, cells were harvested, 
washed, stained with the mitochondria-specific dye, 
DePsipher (Trevigen, Gaithersburg, MD) and flow 
analyzed as suggested by the manufacturer. DePsipher, a 
cationic dye (5,5’6,6’-tetrachloro-1,1’,3,3’-tetraethylbenz
imidazolylcarbocyanine iodide) stains both healthy cells 
and cells with disrupted Δψm. The dye enters into healthy 
mitochondria and, in its multimeric form, fluoresces 
red. However, in apoptotic cells, the dye remains in the 
cytoplasm and fluoresces green while in its monomeric 
form. Thus, cells with disrupted mitochondria can be 
differentiated from healthy cells. Cells were observed 
under a fluorescent microscope for morphology (Nikon 
ECLIPSE Ti, Melville, NY).

Western blotting

Total protein was extracted from TRAMP cells 
(106) treated with RES (50 μM or 100 μM) by use of 
2x radioimmunoprecipitation assay buffer (RIPA). The 
concentrations of total proteins in lysates were estimated 
according to Bradford et al. [57], using bovine serum 
albumin as the standard. Estimated concentration of total 
proteins (30-40 μg/well) was run on 12% SDS-PAGE. 
Protein complexes were then transferred to nitrocellulose 
membranes, which were blocked in 5% skimmed milk 
and then incubated overnight with mouse anti-Bax (1:500) 
or anti-Bcl2 (1:100) monoclonal antibodies (Trevigen, 
Gaithersburg, MD and Thermo Scientific, NY, respectively). 
After repeated washing, the membranes were treated with 
a goat anti-mouse secondary antibody (1:1000) for 1 hour 
at room temperature. Proteins on the membranes were 
detected using an ECL-liquid substrate system (BioRad, 
Hercules CA). As an internal control, β-actin antibody 
(Grand Island, NY) was used to measure β-actin.

Next, in a separate experiment, estimated 
concentration of total proteins (20-40μg/well) were 

electrophoresed on 10% SDS-polyacrylamide gels. Protein 
complexes were transferred on nitrocellulose membranes 
(cat#162-0112: BioRad, CA, USA) and incubated with 
rabbit anti-γ-H2A.X polyclonal antibody (cat#2595: Cell 
signaling technology, MA, USA). Membranes were washed 
and incubated with goat anti-rabbit secondary antibody 
(cat#31460: Thermoscientific, NY, USA). Protein blots 
were visualized using super signal west femto ECL western 
blotting detection system (cat#34095: Thermoscientific, 
NY, USA), equal amount of proteins loading were tested 
by reprobing with anti-b-actin antibody (cat#3700S: Cell 
signaling technology, MA, USA).

Assessment of caspase-independent cell death

To determine the role of caspases in RES-mediated 
cell death, cells were exposed to RES (100 μM) with or 
without 10 μM of z-VAD-fmk (a broad-spectrum caspase 
inhibitor) (Thermo Fisher Scientific, Grand Island, NY) 
for 16 hours. After incubation, caspase-independent cell 
death was determined. To accomplish this, cells were 
stained with annexin V (5 μl of 600 μg/ml) and PI (5 μl 
of 30 μg/ml) for 15 min at 40C. Cells were washed with 
DPBS and suspended in 200-500 μl of annexin V buffer 
for flow cytometric analysis. Data were acquired by use of 
a 13-color flow cytometer (Novocyte, Acea Biosciences, 
San Diego, CA).

Statistical analysis

Statistical significance of data was determined using 
Student’s t test to determine the p value. For comparison of 
differences among the groups, single factor or multifactor 
one-way analysis of variance (ANOVA) followed by 
post hoc Bonferroni and Tukey test was used. Data were 
considered statistically significant at value p<0.05.
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