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Resisting the resistance: the antimicrobial peptide DGL13K 
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show increased resistance to its stereoisomer LGL13K, but not 
to DGL13K
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ABSTRACT About 30% of the population are nasal carriers of Staphylococcus aureus, 
a leading cause of bacteremia, endocarditis, osteomyelitis, and skin and soft tissue 
infections. Antibiotic-resistant bacteria, in particular, are an increasing problem in both 
hospital and community settings. In this study, we sought to determine the cellular 
consequences of long-term exposure of S. aureus to the antimicrobial peptide ster­
eoisomers, DGL13K and LGL13K. Both peptides selected for mutations in the choris­
mate/menaquinone biosynthetic pathway, which resulted in increased resistance to 
LGL13K but not DGL13K. DGL13K-selected isolates showed a mutation in aroF, while 
menA and menH were mutated in LGL13K-selected isolates. The latter also contained a 
mutation of frsA. The peptide-selected isolates exhibited golden coloration, suggesting 
increased production of the carotenoid staphyloxanthin, which could enhance resistance 
to cationic antimicrobial peptides (AMPs). The peptide-selected isolates grew as small 
colony variants, which have also been associated with resistance to AMPs. Addition of 
menaquinone to the growth medium reduced the generation time of DGL13K-selected 
mutants, but not LGL13K-selected mutants. Instead, the latter showed an increased 
MIC to LGL13K and greatly reduced ATP levels. The peptide-selected isolates showed 
increased biofilm formation and decreased autolysis, which was further reduced by 
alkaline shock, consistent with increased Asp23 expression. The mechanisms behind the 
differential effect of DGL13K and LGL13K on S. aureus resistance remain to be elucida­
ted. The finding that DGL13K induced resistance to the stereoisomer LGL13K but not 
to DGL13K itself suggests that peptide primary structure is responsible for inducing 
bacterial defense mechanisms, but the peptide secondary structure determines if the 
defense mechanisms are effective against each peptide.

IMPORTANCE This work examines resistance to stereoisomers of the antimicrobial 
peptide GL13K in Staphylococcus aureus. Both DGL13K and LGL13K isomers cause 
mutations in the menaquinone pathway. While LGL13K causes resistance to LGL13K, 
the bacteria remain susceptible to DGL13K. Conversely, DGL13K also raises resistance to 
LGL13K, but the cells remain susceptible to DGL13K. The resistant isolates exhibit a small 
colony variant phenotype and overproduce the pigment staphyloxanthin. Menaquinone 
supplementation decreases the long generation time of DGL13K-selected isolates and 
increases the MIC of LGL13K-selected isolates.
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M ucosal surfaces are exposed to both commensal and invading bacteria, which 
must survive in an environment rich in host-defense molecules, including 

antimicrobial peptides (AMPs) (1). As an example, about 30% of the population are nasal 
carriers of Staphylococcus aureus, which has been associated with systemic infections, 
including bacteremia (2). Although decolonization efforts, including a nasal antiseptic, 
can reduce hospital-acquired methicillin-resistant S. aureus (MRSA) rates, it may come 
with a cost of increased antiseptic resistance (3). A highly adaptable metabolism allows 
S. aureus to infect various host environments (4), and it is a leading cause of bacteremia, 
endocarditis, osteomyelitis, skin, and soft tissue infections. Antibiotic-resistant bacteria, 
in particular, are an increasing problem in both hospital and community settings. As an 
example, the U.S. Centers for Disease Control and Prevention estimates that over 300,000 
infections and 10,000 deaths annually are attributable to MRSA, which is listed as a 
serious threat by the agency (5). WHO also lists S. aureus as a high-priority pathogen for 
which novel antibiotics are urgently needed (6).

A dozen cationic AMPs mediate the antibacterial function of human nasal fluid 
(7), and 45 AMPs have been identified in the oral cavity (8). Bacteria use a variety 
of mechanisms to defend against AMPs, including electrostatic repulsion, cell wall 
alteration, membrane alteration, proteolysis, protein binding, and efflux pumps (9–12). 
Accordingly, a number of resistance genes have been identified in Gram-positive bacteria 
(13), including two dozen resistance genes—the “resistome,” which are associated 
with resistance to the AMP LL-37 (14). The identification of diverse resistance genes, 
belonging to different functional families, points to the plasticity of bacterial resist­
ance. As an example, the Gram-positive bacteria Enterococcus faecalis and Streptococcus 
gordonii are resistant to the AMP LGL13K. However, deletion of dltA, which functions in 
D-alanylation of teichoic acids, renders the bacteria sensitive to LGL13K. Upon prolonged 
exposure to LGL13K, these dltA− bacteria develop de novo resistance to this peptide 
through a separate mechanism (15).

Host-defense peptides have served as inspiration for the design of therapeutic 
AMPs (9, 16). To be successful, a therapeutic AMP must overcome multiple resistance 
mechanisms, which has raised the concern that resistance to therapeutic AMPs could 
also render bacteria resistant to host-defense peptides (“arming the enemy”) (17, 18). 
Indeed, cross-resistance has been achieved experimentally in vitro and in animal models 
(19–21), but this is not a consistent outcome of AMP selection, which may increase, 
decrease, or have no effect on the minimum inhibitory concentration (MIC) of a different 
antimicrobial peptide; reviewed in reference 9. Moreover, the widespread use of nisin 
and polymyxin B, without generalized resistance, suggests that this is not a general 
threat to host defenses (22).

We designed the AMP LGL13K, which kills Gram-negative bacteria and their biofilms 
(23, 24). However, LGL13K is not effective against Gram-positive bacteria and is 
susceptible to proteolysis. To overcome this problem, an all-D-amino acid isomer, 
DGL13K, which resists proteolysis, was designed (23). DGL13K is highly effective against 
Gram-positive bacteria, and this activity is independent of proteolytic activity (15). In this 
report, we extend these studies to S. aureus and show that these Gram-positive bacteria 
are also resistant to LGL13K but not DGL13K. Remarkably, either peptide isomer increases 
resistance to LGL13K but not DGL13K. The resistant bacteria contain mutations in the 
shikimate/menaquinone biosynthetic pathways and exhibit a small colony variant (SCV) 
phenotype that differs from traditional SCVs.

MATERIALS AND METHODS

Bacterial cultures

Pseudomonas aeruginosa Xen41, a bioluminescent derivative of P. aeruginosa PAO1, 
was obtained from Xenogen (Alameda, CA; now Revvity, Waltham, MA). Staphylococcus 
aureus Xen36, a bioluminescent derivative of American Type Culture Collection strain 
49525, was obtained from Revvity. P. aeruginosa and S. aureus were cultured from 
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glycerol stocks at 37°C with constant shaking at 200 rpm in liquid cultures prepared in 
Luria-Bertani broth and Todd Hewitt Broth (THB) (Difco, Franklin Lakes, NJ), respectively. 
Overnight cultures typically reached an optical density at 600 nm (OD600) correspond­
ing to 5 × 108 CFU/mL for P. aeruginosa and 3 × 108 CFU/mL for S. aureus. Colonies of the 
latter were isolated on 1.5% agar prepared in THB and cultured at 37°C.

Peptides

LGL13K and DGL13K were purchased from AappTec (Louisville, KY) or Bachem (Tor­
rance, CA) at >95% purity. Peptide identity and purity were confirmed by the supplier 
by mass spectrometry and reversed-phase high-performance liquid chromatography, 
respectively. Peptides were dissolved at 10 mg/mL in sterile 0.01% acetic acid, and these 
stock solutions were stored at 4°C until use. Peptide batches were tested for antimicrobial 
activity by MIC assays. The stock solutions retained activity for at least 2 years at 4°C (Fig. 
1).

Minimum inhibitory concentration

MIC assays were performed essentially as previously described (15, 25). The overnight 
cultures were diluted to about 105 CFU/mL in THB for S. aureus and Mueller-Hinton 
Broth (Difco) for P. aeruginosa. Diluted bacteria (100 µL/well) were incubated in 96-well 
polypropylene microtiter plates with twofold serial dilutions of each peptide in 20 µL 
“10% PBS” (a 10-fold dilution of PBS in sterile water). LGL13K was tested in the concen­
tration range 1,667 µg/mL to 1.6 µg/mL, while DGL13K was tested in the range 167 
µg/mL to 0.16 µg/mL. Control samples without added peptide were included in each 
assay. Culture plates were incubated overnight at 37°C with constant shaking on a Stovall 
Belly Dancer lab shaker at speed 5 (IBI, Dubuque, IA). The OD630 was determined in 
a BioTek Synergy HT plate reader (BioTek, Winooski, VT; now Agilent, Santa Clara, CA). 
The OD630 for each peptide dilution was plotted, and the MIC was determined in four 
parallel replicates. In some experiments, the MIC was determined in the presence of 
50 µM menaquinone (Vitamin K2; Supelco), which was added from a 5 mM stock solution 
in 95% ethanol.

For serial MIC assays (25), a single representative well, containing a peptide concen­
tration twofold lower than the MIC (0.5× MIC), was sampled, and the bacteria were 
diluted 1,100× in THB or Mueller-Hinton Broth and used to inoculate the next MIC assay. 
Sampling in two separate experiments was repeated for 6 days for S. aureus and 12 days 
for P. aeruginosa.

Peptide-selected isolates

Aliquots of S. aureus cultures, which were treated with DGL13K or LGL13K in 5–6 
consecutive MIC assays, were streaked on THB agar or cultured overnight in the absence 
of DGL13K or LGL13K and then streaked on THB agar. Individual colonies were selected 
and expanded in THB, in the absence of DGL13K or LGL13K, overnight at 37°C with 
shaking at 200 rpm. The overnight cultures of individual colonies were mixed with 
glycerol (10% final concentration) and stored at −80°C as DGL13K-selected and LGL13K-
selected isolates, respectively.

Genome sequencing

Bacterial pellets of peptide-selected isolates were submitted to the University of 
Minnesota Genomics Center for DNA purification, genomic library generation, and MiSeq 
genomic sequencing. gDNA samples were converted to Illumina sequencing libraries 
using Illumina’s DNA Prep Sample Preparation Kit (Illumina, San Diego, CA). Briefly, 1–
500 ng of gDNA was simultaneously fragmented and tagged with a unique adapter 
sequence. The DNA was simultaneously indexed and amplified by PCR. Final library size 
distribution was validated using capillary electrophoresis and quantified using PicoGreen 
fluorimetry.
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Libraries were sequenced on an Illumina MiSeq platform (2 × 300 bp) using Illumina’s 
SBS chemistry. Primary analysis and de-multiplexing were performed using Illumina’s 
bcl-convert v4.0.3. The resulting FASTQ files were mapped to the published S. aureus 
reference genome sequence (NCBI reference sequence: NC_002950.2) via BWA (0.7.17-
r1188) to generate BAM files. Variant calling was done in parallel across all samples via 
Freebayes using a minimum variant frequency of 0.01 and a minimum coverage of 34 
reads. Polymorphism frequencies in each culture were determined and gated at a >10% 
threshold. Raw data files associated with genome sequencing are maintained by the 
Minnesota Supercomputing Institute (https://www.msi.umn.edu/).

Growth curves and colony size

Aliquots (5 µL) of glycerol stocks of peptide-selected isolates were diluted in 1 mL THB, 
and 200 µL aliquots were cultured in 96-well plates at 37°C without shaking. OD630 was 
read at 45–90 min intervals and fitted to an exponential growth curve, which was used 
to calculate generation time (doubling time) (Graphpad Prism 8; GraphPad Software, 
Boston, MA).

To visualize differences in colony size, overnight cultures of wild-type and peptide-
selected isolates were diluted in THB, and an aliquot was spread on THB agar and again 
cultured overnight at 37°C.

Colony pigmentation

To determine colony pigmentations, aliquots of wild-type or peptide-selected isolates 
were plated on blood agar containing 50 µg/L menadione, 5 mg/L hemin, and 0.25% 
sheep blood. The plates were incubated for 2 days at 37°C.

Menaquinone supplementation

To determine if menaquinone supplementation affected growth rate, wild-type and 
peptide-selected isolates were cultured in Mueller-Hinton broth alone or supplemented 
with 50 µM menaquinone (Vitamin K2; Supelco), which was added from a 5 mM stock 

FIG 1 DGL13K retains activity in solution. Two stock solutions of DGL13K were stored at 4°C for 2 years (2020 A □ and B ○) or 

freshly made (2022 ●). MIC was tested against S. aureus Xen 36. Data are shown as mean ± range of duplicate samples, N = 2.
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solution in 95% ethanol. Exponential growth curves were determined, and the genera­
tion time was calculated, as described above.

Cellular ATP content

S. aureus Xen 36 contains a stable copy of the modified Photorhabdus luminescens 
luxABCDE operon, which utilizes cellular ATP to emit light. We employed this system 
to determine cellular ATP content, as a measure of metabolic activity (26). Bacteria 
were cultured to the stationary phase, and the bacterial luminescence (relative light 
units—RLU) was recorded and expressed relative to OD600 of the culture, to account for 
different growth rates.

Biofilm analysis

Bacteria were cultured in 200 µL THB/well in a 96-well polystyrene plate for 48 h at 
37°C with gentle rocking. The OD630 was measured at the end of the culture period to 
determine culture density.

Unattached bacteria were aspirated, and adhered bacteria were washed with 300 µL 
PBS and then stained with 0.03% crystal violet for 30 min at room temperature. The wells 
were washed with 2 × 300 µL PBS, followed by incubation with 95% ethanol for 30 min 
at 37°C to dissolve biofilm-associated crystal violet. The dissolved crystal violet solutions 
from four wells were combined, and OD570 was determined (27). The reading for each 
sample was normalized to the culture density to account for differences in growth rates 
between different strains.

Alkaline shock

Overnight cultures of each strain were diluted 10-fold in THB and cultured to log phase 
(OD630 = 0.5–0.9). The bacteria were pelleted and resuspended in THB adjusted to pH 7 
or pH 10 and incubated for 1 h at 37°C before use in the autolysis assay.

Autolysis assay

Autolysis was performed as previously described with minor modifications (15). Bacteria 
that had been pre-incubated at pH 7 or pH 10 (alkaline shock) were pelleted and 
resuspended in PBS and then pelleted and resuspended in ice-cold dH2O. The bacteria 
were again pelleted and then resuspended in PBS with 0.05% Triton X-100, as previ­
ously described (15). The OD630 was monitored spectrophotometrically for 3 h. Percent 
autolysis was calculated from the absorbance at T = 0 h and T = 2 h: [1 − (OD630T=0 – 
OD630T=2)/OD630T=0] × 100%.

RESULTS

Resistance to LGL13K or DGL13K

The Gram-negative bacteria P. aeruginosa are highly susceptible to both LGL13K and 
DGL13K, showing only a twofold to fourfold difference in MIC between the two peptide 
isomers (27, 28). In fact, in a serial peptide exposure experiment, the MIC only increased 
about twofold for LGL13K, and this increase was not statistically significant, suggesting 
that the bacteria are not able to mount resistance to either peptide stereoisomer (27). 
To validate this finding, P. aeruginosa was serially exposed to LGL13K or DGL13K. As 
expected, neither LGL13K nor DGL13K showed an increased MIC after serial exposure for 
up to 12 days (Fig. 2A).

In contrast to P. aeruginosa, Gram-positive bacteria are relatively resistant to LGL13K, 
but not DGL13K (15, 28). To characterize further this stereoselective resistance, these 
studies were extended to the Gram-positive bacteria S. aureus. This species shows a 
lower initial MIC to LGL13K than the previously tested Gram-positive species (15, 28), 
which allows for further selection with LGL13K. Figure 2B shows that the MIC for LGL13K 
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increased on day 2 of selection, reaching a 20-fold increase on day 5. In contrast, the 
initial MIC for DGL13K was about 40-fold lower than that for LGL13K and increased less 
than twofold over 6 days of selection (Fig. 2B), consistent with our results with other 
Gram-positive bacteria (15).

Bacteria selected with either DGL13K or LGL13K for 5–6 days were cultured in the 
absence of peptide, and individual colonies were isolated for further study (peptide-selec­
ted isolates).

Cross-over resistance

To further explore the different levels of resistance induced by the two stereoisom­
ers, the peptide-selected isolates were tested against both stereoisomers (Fig. 3). 
The DGL13K selected isolates remained susceptible to DGL13K, consistent with the 
selection experiments shown in Fig. 2B. Similarly, the LGL13K-selected isolates retained 

FIG 2 Acquired resistance of P. aeruginosa (A) and S. aureus (B) after serial MIC assays for 12 and 6 days, 

respectively. Bacteria were treated with LGL13K (□) or DGL13K (●) in successive MIC assays, which 

were each inoculated with the culture at 0.5× MIC from the previous day. Daily MICs are shown as the 

mean ± 95% CI of two (P. aeruginosa) or three (S. aureus) independent experiments, each performed in 

quadruplicate (N = 7–12).
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an increased MIC for this peptide, compared to WT bacteria (Fig. 3). In contrast, the 
LGL13K-selected isolates were readily killed by DGL13K, suggesting that resistance was 
selective for the L-isomer of this peptide. Surprisingly, the DGL13K-selected isolates 
became resistant to LGL13K, although they had not previously been exposed to this 
stereoisomer (Fig. 3). These results suggest that both peptide stereoisomers induce 
similar resistance mechanisms, but these mechanisms are not effective against the 
D-isomer, which “resists the resistance.”

Genome sequencing

To investigate the molecular mechanism behind the increased MIC for LGL13K, DGL13K-
selected and LGL13K-selected isolates of S. aureus were submitted for whole-genome 
sequencing. The analysis was focused on mutations that distinguished the peptide-selec­
ted isolates from the S. aureus Xen 36 wild-type genome. As shown in Table 1, four 
different mutations were identified in the isolates. Three of the four mutations mapped 
to the biosynthetic pathways for chorismate and menaquinone (KEGG: map00400 and 
map00130). All four DGL13K-selected isolates were mutated in aroF (DAHP synthase; EC 
2.5.1.54; SAOUHSC_01852), which catalyzes the first step in the synthesis of chorismate 
(shikimate pathway) (29). LGL13K-selected isolates were mutated in menA (EC 2.5.1.74; 
SA0894) (1/1) or menH (EC 4.2.99.20; SAOUHSC 00984) (3/3), which act in the conversion 
of chorismate to menaquinone. The menH mutants (3/3) also showed mutation of frsA 
(EC 3.1.1.1; GenBank: QHL66799.1), which acts as a switch between respiration and 

FIG 3 Cross-over MIC assays. Wild type (WT), DGL13K-selected (Ds), or LGL13K-selected (Ls) isolates were analyzed in MIC 

assays against the test peptide, DGL13K or LGL13K. The MIC was determined in 2–5 independent experiments and expressed 

as median MIC ± 95% CI. *, different from WT, P < 0.002; **, different from WT, P < 0.0001; N = 6–21.
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fermentation (30). Notably, these mutations appear to be novel and were not identified 
in a recent screen for the AMP-induced resistome in S. aureus (14).

Characterization of small colony variants

The peptide-selected isolates showed colony morphology reminiscent of SCVs (Fig. 
4A), which are associated with antibiotic resistance (31–34). The LGL13K-selected 
colonies were somewhat smaller than WT colonies, while DGL13K-selected colonies were 
substantially smaller than WT colonies. This difference was quantified from exponen­
tial growth curves. The generation time (doubling time) for DGL13K-selected isolates 
was 3.5-fold longer than for wild-type cultures, while LGL13K-selected isolates showed 
a 1.8-fold increase in doubling time (Fig. 4B), consistent with the observed colony 
morphology.

In addition to longer generation times and the resulting small colony size, SCVs 
of S. aureus have been characterized by a lack of pigmentation and auxotrophism 
caused by mutations in metabolic pathways that lead to defective electron transport 
and decreased ATP production (32, 33). S. aureus Xen36 is a derivative of ATCC 49525 
and produces non-pigmented (cream colored) colonies (35). The lack of pigmentation 
of WT Xen36 was confirmed by culture on blood agar for 2 days (Fig. 5A). In contrast, 
the DGL13K-selected variants showed strong pigmentation, while the LGL13K-selected 
variants showed varying levels of pigmentation (Fig. 5A). Thus, higher levels of pigmenta­
tion were correlated with smaller colony size. The culture on blood agar did not affect 
relative colony sizes: DGL13K-selected isolates produced considerably smaller colonies 
than WT bacteria.

SCVs are typically auxotrophic, including menadione auxotrophy (36–38), which 
makes the bacteria unable to synthesize menaquinone. Given the mutations identified in 
the chorismate and menaquinone biosynthetic pathways (Table 1), we tested the growth 
rates of peptide-selected isolates cultured in the presence or absence of menaquinone. 
The generation times of WT and LGL13K-selected isolates were not affected by this 
supplementation, while the longer generation time of DGL13K-selected isolates was 
reduced to that of the other samples in the presence of menaquinone (Fig. 5B).

Menadione-auxotrophy is associated with electron transport deficiency that reduces 
ATP production (37). S. aureus Xen36 has been engineered to express a Photorhabdus 
luminescens luciferase (35), which can be used as an indicator of cellular ATP levels. To 
determine if peptide-selected isolates showed defects in ATP production, the bacteria 
were cultured to stationary phase, and the relative ATP-dependent luminescence was 
recorded. Figure 5C shows that the DGL13K-selected isolates expressed similar ATP levels 
as WT bacteria, while the LGL13K-selected isolates were highly deficient in ATP content. 
This pattern was not affected by culture in the presence of menaquinone (not shown).

TABLE 1 Genome sequencing of peptide-selected isolatesa

Selection Colony GENE NT change AA change

LGL13K1 A frsA A→T Tyr256Asn
B
C
A menH A→T Ile106Leu
B
C

LGL13K2 D menA C→G Ala91Pro
DGL13K1 E aroF G→A Arg210Cys

F
G
H

aBacteria were selected with LGL13K (two selection experiments) or DGL13K (one selection experiment), and 
1–4 individual colonies from each set were sequenced. The mutated genes, nucleotide (NT) change, and the 
corresponding location and change of protein sequence (AA) are shown.
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Addition of menaquinone to bacterial membranes has been linked to increased 
resistance to a cationic antimicrobial peptide (39). To determine how menaquinone 
affects resistance to LGL13K, peptide-selected isolates were cultured in the presence 
or absence of menaquinone (Fig. 6). WT bacteria show a low level of resistance, which 
was not affected by the addition of menaquinone. DGL13K-selected isolates showed a 
high level of resistance to LGL13K, and this was not further affected by the addition 
of menaquinone. In contrast, LGL13K-selected isolates showed an intermediate level of 
resistance, which was further increased by the addition of menaquinone (Fig. 6).

The increased pigmentation of the SCVs identified in this study (Fig. 5A) is an unusual 
observation since SCVs are typically defined by slow growth and lack of pigment, e.g., 
reference 40. On the other hand, both the SCV phenotype (31–34, 41) and increased 
pigmentation by staphyloxanthin (42) have been associated with antibiotic resistance. 
Staphyloxanthin production in S. aureus is regulated by the alternative transcription 
factor sigmaB (sigB) through an upstream sigmaB-dependent promoter in the staphylox­
anthin biosynthetic operon (43). Deletion of sigB eliminates pigmentation (44). Thus, 
the upregulation of staphyloxanthin production in peptide-selected isolates (Fig. 5A) 
is consistent with increased sigB activity. To confirm that sigB activity is increased 
in peptide-selected isolates, additional cellular processes that are regulated by this 
transcription factor were analyzed.

Overexpression of sigB in SCVs has been linked to increased biofilm formation (45). 
DGL13K-selected SCVs showed significantly increased biofilm formation when compared 
to LGL13K-selected isolates and wild-type S. aureus (Fig. 7A), suggesting that sigB is 
upregulated in the DGL13K-selected SCVs compared to WT bacteria.

FIG 4 Growth characteristics of peptide-selected isolates. (A) Wild type (WT) and two isolates, each selected with DGL13K 

or LGL13K, were plated on THB agar and photographed to show the relative colony sizes. The images are representative 

of three independent cultures. (B) The generation time (doubling time) was calculated from exponential growth curves for 

WT, DGL13K-selected, and LGL13K-selected isolates. Data from four independent experiments with 1–2 WT samples and 3–6 

isolates are shown as mean ± 95% CI, N = 6–21. *, different from WT, P < 0.05; **, different from WT, P < 0.001.
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sigB is also an exclusive regulator of Alkaline Shock Protein 23 (Asp23) (46), a cell 
surface protein that is involved in autolysis (47) and the bacteria’s response to alkaline 
growth conditions (48). Indeed, autolysis is reduced in the D-selected and L-selected 
isolates compared to wild-type bacteria (Fig. 7B), suggesting that Asp23 is upregulated 
in the peptide-selected isolates. The role of Asp23 was further confirmed by testing 
the effect of alkaline shock on autolysis (Fig. 7B). WT samples showed a small decrease 
in autolysis after alkaline shock, while both D-selected and L-selected isolates showed 
larger reductions in autolysis in the face of alkaline shock at pH 10. These results are 
consistent with upregulation of Asp23 in peptide-selected isolates exposed to alkaline 
conditions.

DISCUSSION

We have previously reported that S. aureus is relatively resistant to the AMP LGL13K but 
not the stereoisomer DGL13K (28). In this study, we sought to determine the cellular 
consequences of this difference. Surprisingly, both peptides selected for mutations in 
the chorismate/menaquinone biosynthetic pathway, resulting in increased resistance to 
LGL13K but not DGL13K. Thus, bacteria selected with DGL13K become resistant to the 
stereoisomer LGL13K, but DGL13K can evade this resistance (“resisting the resistance”). 
Cross-resistance between different AMPs has been observed experimentally (19–21). 

FIG 5 Characterization of peptide-selected isolates. (A) Aliquots of WT, DGL13K-selected, and LGL13K-selected isolates were cultured on blood agar for 2 days. 

Colony ID refers to Table 1. Mutant lists the genes mutated in each isolate (see Table 1). (B) Generation time (doubling time) for WT (white bar), DGL13K-selected 

(black bar), and LGL13K-selected (gray bar) isolates cultured in Mueller-Hinton broth with (MH+MK4) or without (MH) menaquinone supplementation. Data from 

two independent experiments are shown as mean ± 95% CI; *, different from MH WT and LGL13K; **, different from MH DGL13K; P < 0.0001, N = 3–7. (C) ATP 

activity in peptide-selected isolates. Bacterial luminescence (RLU) was recorded at the stationary phase of growth and expressed relative to the OD600 of the 

culture. The average OD600 in each group was WT = 0.7; DGL13K = 0.5; LGL13K = 0.6. The data from eight independent experiments are shown as mean ± 

95% CI. *, different from WT and DGL13K, P < 0.0001, N = 26–35.
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Indeed, the selection of bacteria resistant to one AMP may increase, decrease, or have 
no effect on the MIC of a different AMP, as reviewed in reference 9. This has led to 
the proposal that widespread use of AMPs could render the host-defense peptides 
ineffective against invading bacteria by “arming the enemy” (17, 18). However, it has 
been countered that the AMPs nisin and polymyxin have been in general use for decades 
without affecting host defenses (22). The present results suggest that resistance to an 
AMP can be overcome by a closely related AMP, which bodes well for future clinical use.

Unlike early suggestions that AMPs, which act on the cell membrane, are unlikely 
to cause extensive resistance (49, 50), the present results clearly support subsequent 
findings that membrane-active peptides, including LGL13K (51), can cause resistance in S. 
aureus (52–54). Our genome sequencing data suggest that the chorismate/menaquinone 
pathway plays a role in resistance to LGL13K. Indeed, this pathway has previously been 
associated with activity and resistance to AMPs (39, 55), and menF is part of a mutated 
gene complex in pexiganan-selected S. aureus (21). On the other hand, men genes 
were not included in the “resistome” identified upon selection of S. aureus with the 
endogenous AMP LL-37 or engineered LL-37 derivatives (14).

Both peptide isomers were selected for mutations in the chorismate/menaquinone 
pathway. The DGL13K-selected isolates showed a mutation in aroF (DAHP synthase), 
which catalyzes the first step in the synthesis of chorismate (shikimate pathway) (29, 56). 
Based on the structures of DAHP synthase in other species, the conserved Arg residue at 
position 210 contributes to the substrate-binding site for phosphoenolpyruvate (57). It 
remains to be determined if this mutation affects substrate binding.

Menaquinone is synthesized from chorismate in the vitamin K pathway, which 
includes the genes menA and menH that were mutated in two distinct selections with 
LGL13K. The mutation identified in menH, Ile106Leu, is conservative and not located 
in the catalytic triad or a conserved region of the protein (58). Thus, the functional 
significance of this mutation is unclear. However, these mutants also showed mutation 
of frsA, which acts as a switch between respiration and fermentation (30) and could 
affect ATP production. Indeed, ATP content is greatly reduced in the LGL13K-selected 
isolates (Fig. 5C). Overexpression of frsA was noted in bacteria that are resistant to 
the glycopeptide Phleomycin (59). FrsA has also been described in Vibrio vulnificus 
(GenBank: HM172799.1), where it increases glucose fermentation by interaction with 
glucose-specific enzyme IIA(Glc) under oxygen-limited conditions (60). Alignment of the 
FrsA protein sequences of S. aureus and V. vulnificus did not reveal any strong similarity in 

FIG 6 MIC of LGL13K in the presence and absence of menaquinone. S. aureus Xen36 (WT), DGL13K-selec­

ted isolates (Ds), and LGL13K-selected isolates (Ls) were cultured in the absence (−) or presence (+) of 

menaquinone (MK4). MICs (µg/mL) were determined in three independent experiments and expressed as 

mean ± 95% CI; N = 5–10. *, different from “Ls–MK4,” P < 0.005.
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the sequence surrounding the mutated Tyr256 of S. aureus (Table 1). Thus, the functional 
implication of this mutation remains to be determined.

To validate the role of the menaquinone pathway in the selected mutants, the 
bacteria were cultured in the presence of menaquinone in two separate experiments: 
when the effect of menaquinone on growth rate was tested, the DGL13K-selected 
isolates showed faster growth, while LGL13K-selected isolates and WT bacteria were 
unaffected. Conversely, when MIC was determined in the presence of menaquinone, 
LGL13K-selected isolates showed an increase in MIC, while DGL13K-selected isolates 
and WT bacteria were unaffected. The DGL13K-selected isolates grow more slowly, with 
smaller colonies than the LG13K-selected isolates. It appears that menaquinone can 
overcome this deficit and return their growth rate to that of WT cells (Fig. 5B). LGL13K-
selected isolates already exhibit a growth rate similar to WT cells, and this is not affected 
by the addition of menaquinone.

A similar pattern emerges for the effect of menaquinone on the MIC of LGL13K. 
DGL13K-selected isolates are already highly resistant to LGL13K, and this is not further 
increased by the addition of menaquinone. Conversely, the intermediate resistance of 
LGL13K-selected isolates can be increased by the addition of menaquinone. In contrast, 
the low resistance of WT bacteria is not affected by menaquinone, presumably since 
these bacteria already produce sufficient amounts of this lipid.

The observed differences between DGL13K and LGL13K-selected isolates extend
from the effect of menaquinone to the production of the carotenoid staphyloxanthin, 
which lends the colonies their golden color and has been assigned a protective effect 
against oxidative stress (61). The golden colony color was most pronounced in the 

FIG 7 Biofilm formation (A) and autolysis (B) of peptide-selected isolates. (A) Forty-eight-hour biofilms of S. aureus Xen36 (WT), DGL13K-selected isolates (Ds), 

and LGL13K-selected isolates (Ls) were stained with crystal violet, and the OD570 of crystal violet (Biofilm) was expressed relative to culture density (Growth; 

OD630). Biofilm/growth is expressed as mean ± 95% CI. One to two WT, 4 Ds isolates, and 3–4 Ls isolates were tested in duplicate in three separate experiments; 

N = 12–24. The values for each experiment were normalized to the mean of the WT samples for that experiment. Data were analyzed by Brown-Forsythe and 

Welch analysis of variance (ANOVA) with Tukey’s multiple comparison test. *, different from WT, P < 0.02. (B) Autolysis of S. aureus Xen36 (WT), DGL13K-selected 

isolates (Ds), and LGL13K-selected isolates (Ls) that were pre-incubated at pH 7 (left panel) or pH 10 (right panel). % Autolysis was calculated after 2 ¼ h as 

described in Materials and Methods. WT, 3–4 Ds isolates, and 4 Ls isolates were tested in quadruplicate; N = 4–16. WT was compared to Ds and Ls for each pH 

by Brown-Forsyth and Welch ANOVA. *, different from WT at pH 7, P < 0.0004. **, different from WT at pH 10, P < 0.0001. WT, Ds, and Ls were independently 

compared at pH 7 and pH 10 by Student’s t-test. #, different from WT pH 7, P < 0.03; ##, different from Ds pH 7, P < 0.0001. ###, different from Ls, pH 7, P < 0.0001. 

The experiment was repeated with similar results.
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DGL13K-selected isolates, suggesting that the aroF mutation, in particular, affected 
staphyloxanthin production. Increased staphyloxanthin production is associated with 
increased membrane rigidity, and it has been suggested that this could enhance 
resistance to cationic AMPs (42). Indeed, the golden isolates showed increased resist­
ance to LGL13K, while DGL13K was able to overcome this barrier, suggesting that 
the structure of the D-stereoisomer allows it to bypass the more rigid membrane 
structure. It has previously been reported that LGL13K and DGL13K differ in their 
interaction with components of the Gram-positive cell wall (15, 62). The present results 
suggest that this concept extends to interaction with components of the bacterial 
cell membrane. Experiments with model membranes have found that LGL13K forms a 
beta-sheet structure in the presence of negatively charged liposomes and destabilizes 
the membrane by removing lipid micelles (63). Harmouche et al. (51) similarly found 
that LGL13K transitions from random coil in solution to beta-sheet conformation in the 
presence of negatively charged lipid membrane, which leads to deformation of the 
membrane and opening of the bilayer. The ability to form beta-sheets and self-assem­
bled nanostructures in solution is faster for DGL13K than LGL13K and is lacking in a 
randomized GL13K sequence. Thus, these nanostructures correlate with the antimicro­
bial activity of each peptide (64). Together, these results support the notion that L-
and D-isomers of AMPs are not perfect mirror images but display subtle differences in 
secondary structure that manifest in differentiated antimicrobial activity, beyond their 
differences in proteolytic susceptibility (15, 65).

In addition to their golden color, the peptide-selected isolates displayed as SCVs, 
which have been associated with antimicrobial resistance (31, 33), including resistance to 
AMPs (34, 41). This colony morphology was most pronounced for the DGL13K-selected 
aroF mutants, but was still notable for the LGL13K-selected mutants. In addition to 
colony morphology, SCVs are frequently characterized by auxotrophism for menadione, 
hemin, and/or thymidine (37). Mutations in menC, menD, menE, or menF block the 
biosynthesis of menadione, which renders the bacteria unable to synthesize mena­
quinone (38). Indeed, LGL13K-selected mutants, but not DGL13K-selected mutants, 
showed greatly reduced ATP levels, suggesting that the former exhibit defective electron 
transport, which is associated with menadione auxotrophism (37).

The SCVs identified in this study differ from “conventional” SCVs in several ways 
(Table 2). SCVs typically present as small colonies with defects in electron transport that 
lead to reduced electrochemical gradient, resistance to cationic antibiotics—including 
AMPs, decreased ATP levels and cellular growth, and decreased pigment formation (37). 
The DGL13K-selected isolates present with a small colony morphology and resistance 
to LGL13K but not DGL13K. The ATP content is not affected, but the colonies show 
increased pigment formation. LGL13K-selected isolates show moderately reduced colony 
size and greatly reduced ATP content. However, the resulting colonies only display a 
moderate increase in pigment formation.

The increased coloration of the SCVs described in this report suggests that additional 
regulatory changes have taken place. Staphyloxanthin production is regulated by the 
alternative sigma factor sigmaB, and deletion of sigB is associated with loss of staphylox­
anthin production (44, 66, 67). Indeed, sigB is a regulator of multiple virulence genes and 
stress responses (67, 68). To determine if the increased coloration of the peptide-selected 
isolates was associated with increased sigB activity, additional processes regulated by 
sigB were tested, including biofilm formation (45), autolysis, and alkaline shock (47, 48). 
The latter two processes are mediated by Alkaline Shock Protein 23 (Asp23), a cell surface 
protein that is exclusively regulated by sigB (46, 47). Increased biofilm formation and 
decreased autolysis, which was further reduced by alkaline shock, all support that Asp23 
and sigB expression are increased in the peptide-selected isolates. The effects were most 
pronounced in the DGL13K-selected isolates, consistent with the deeper color produced 
by these isolates.

The mechanisms behind the differential effect of DGL13K and LGL13K on S. aureus 
resistance remain to be elucidated. The finding that DGL13K induced resistance to the 
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stereoisomer LGL13K but not to DGL13K itself suggests that peptide primary structure 
is responsible for inducing bacterial defense mechanisms, but the peptide secondary 
structure determines if the defense mechanisms are effective against each peptide. 
In this context, cationic peptides may be recognized as alkaline mediators that trig­
ger an Asp23 response (48). Introduction of cellular stress by sub-MIC concentrations 
of vancomycin has similarly been reported to increase sigb and asp23 expression in 
vancomycin-resistant S. aureus (69).

It is notable that the stress response recorded for DGL13K-selected isolates is not 
sufficient to increase resistance to this peptide. We have now attempted to develop 
resistance to DGL13K in S. aureus (this report), Enterococcus faecalis (15), Streptococcus 
gordonii (15), Pseudomonas aeruginosa (this report [27]), and Porphyromonas gingivalis 
(70) and failed in each species. Notably, S. aureus and P. gingivalis showed mutations 
associated with bacterial resistance, but neither species was able to mount resistance 
to DGL13K, although P. gingivalis showed increased tolerance to the peptide (70). Thus, 
while it may not be possible to avoid an antimicrobial resistance/stress response in 
bacteria exposed to novel antibiotics, it appears possible to design antibiotics that can 
overcome this response by “resisting the resistance.”
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