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ABSTRACT: Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While
current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to
make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes
today. However, the release of nanoparticles (NPs) into the environment without proper safeguards can lead to both physical and
chemical toxicity. Moreover, many methods of NP synthesis are expensive and not environmentally sustainable. The utilization of
biomass as a source for the production of NPs has the potential to mitigate issues pertaining to cost, sustainability, and pollution.
The utilization of biobased nanomaterials (bio-NMs) sourced from biomass has garnered attention in the field of water purification
due to their cost-effectiveness, biocompatibility, and biodegradability. Several research studies have been conducted to efficiently
produce NPs (both inorganic and organic) from biomass for applications in wastewater treatment. Biosynthesized materials such as
zinc oxide NPs, phytogenic magnetic NPs, biopolymer-coated metal NPs, cellulose nanocrystals, and silver NPs, among others, have
demonstrated efficacy in enhancing the process of water purification. The utilization of environmentally friendly NPs presents a
viable option for enhancing the efficiency and sustainability of water pollution eradication. The present review delves into the topic
of biomass, its origins, and the methods by which it can be transformed into NPs utilizing an environmentally sustainable approach.
The present study will examine the utilization of greener NPs in contemporary wastewater and desalination technologies.

■ INTRODUCTION
Given the rapid population increase and ever-increasing needs,
the need for pure water is a challenging problem. According to
recent surveys, over 1.2 billion people throughout the globe do
not have access to safe drinking water.1 Pesticides,
pharmaceuticals, items for personal hygiene, industrial
additives, and household waste are just a few of the emerging
contaminants discovered in aquatic habitats.2−5 The current
situation of wastewater treatments and desalination looks
promising; however, certain barriers must be overcome for
commercializing the processes.6

In water treatment, membranes are often used to remove
pollutants from water depending on features such as charge
and size. Many treatments based on membrane technology like
ultrafiltration (UF), reverse osmosis (RO), nanofiltration
(NF), microfiltration (MF), forward osmosis (FO), electro-
dialysis (ED), pervaporation (PV), and membrane distillation
(MD) are already employed for water purification.7−9 Other

wastewater treatment methods, in addition to membrane
technology, include adsorption, activated sludge bioreactors,
photocatalysis, and aerobic and anaerobic digestion. Some of
these technologies have claimed to have achieved an efficiency
of 99% or more but only under ideal operating conditions of
pH (neutral), (low/medium ambient) temperature, simple
matrices, or low total dissolved solids (TDS) and (reasonable)
contaminant concentration.10 Under industrial conditions, the
efficiency drops down. Moreover, these techniques are costly,
and the affordable ones create secondary waste.7−10 Due to
these reasons, wastewater purification and water desalination
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remain challenging, so much so that some developing countries
have reached irreversible damage with the availability of clean
drinking water. Therefore, a holistic view is required to
establish eco-friendly and economical technologies that may
avoid future water pollution and surpass wastewater treatment
systems’ constraints. Considering this idea, using nanomateri-
als (NMs) stands out among water and wastewater treatment
developments with improved efficiency for eliminating
contaminants.10−12

While nanoparticles are commonly defined as having
dimensions between 1 and 100 nm, several studies have
reported nanoparticles with sizes exceeding 100 nm. This
extended range reflects the diversity in nanoparticle synthesis
and application, acknowledging that size alone does not fully
dictate nanoparticle behavior or functionality.12 NMs operate
differently than bulk equivalents due to their large surface-area-
to-volume ratio and possible quantum effects.13 While various
varieties of NMs are available now, a range of sophisticated
forms are expected to be produced in the following years. The
US Environmental Protection Agency (EPA) classified NPs
into four categories: carbon-based, composites (combining
NPs with other NPs or larger, bulk-type material), dendrimers,
and metal-based. NMs,12 in their different constitutions and
shapes, can be used for various applications like electronics,
energy conservation, biomedicine, textile, food industries, and
environmental remediation, including wastewater purifica-
tion.14

NPs hold impressive advantages in wastewater treatments
due to their large surface area and their catalytic, optical,
electronic, magnetic, hydrophilic, hydrophobic, and antimicro-
bial properties.11−13,15 NMs are incorporated into the
membrane to increase the efficiency of the water treatment
processes. NPs can respond to membrane stimuli, like pH or
temperature.16 This allows for better control over treatment
processes. The benefits of embedding the NPs in membranes
include increased selectivity, water permeability, mechanical
strength, hydrophilicity, and decreased fouling. Moreover,
certain NPs contribute antibacterial and catalytic capabilities to
the membranes. Metals and metalloids (such as As, Pb, Mo,

and others), as well as several hazardous microorganisms and
inorganic and organic pollutants, have also been found to be
effectively eradicated by the use of various NMs as freestanding
NMs or part of the nanocomposite membranes.12,17,18

Different synthesis methods and experimental conditions can
be utilized to customize the characteristics of NPs to specific
pollutants to be eliminated. Synthesis of NPs is done broadly
by a top-down or bottom-up approach.19 The top-down
method includes chemical or physical synthesis, breaking down
the material into its nano size. Physical processes such as
evaporation−condensation, milling techniques, laser ablation,
and chemical processes like sol−gel and pyrolysis are often
used to synthesize the NPs. It offers several advantages, such as
precise size, particle shape, surface area, and chemical
composition control.12,13,16 Nevertheless, they have constraints
like elevated energy consumption, high prices, and the creation
of harmful and destructive waste.8,20,21

The bottom-up strategy for creating NPs, on the other hand,
involves chemical or biological procedures that build an NM
from the molecular level while keeping structural preci-
sion.12,13,16 When NPs are synthesized from biological sources
or biomass, they are termed biobased or bio-NPs.19,22

Biological or thermochemical processes transform biomass
resources into sustainable chemicals, fuels, and (nano)-
materials. Some biomass sources include agricultural wastes
such as rice husk or leaves, animal wastes such as manure or
parts of bones from a meat shop, and algae and municipal
wastes, to name a few. The conversion of biomass into viable
NMs includes using molecular material comprising (wholly or
partially) living components, including proteins, antibodies,
enzymes, nucleic acids, lipids, viruses, and secondary
metabolites.23−25 Therefore, parts of plants, algae, bacteria,
fungi, actinomycetes, and yeasts can produce NPs and act as
reducing and stabilizing agents in NP synthesis.26−28 Each
organism may create the same NP content but with different
morphologies, sizes, and distributions. In general, biological
source type, temperature, pH, reaction medium, solvent, and
buffer used for NP dispersion, and surface charge all have an
influence on the characteristics of the NPs formed during

Figure 1. Number of articles published on the green synthesis of NPs from the year 2013 to 2022.
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biosynthetic synthesis. The synthesis of NMs from biological
sources is an eco-friendly and nonhazardous process.26

Moreover, it gives an alternate way to deal with biowaste
effectively. These advantages have piqued the scientific and
industrial sectors’ interest, primarily due to their environmental
component. This fact is recognized by the exponentially rising
number of published scientific studies which have decided to
analyze NPs produced or formed from natural or residual
substances (Figure 1).29

In this regard, this review aimed to seek current data
exhibited in relevant scientific journals on developments in the
creation of NMs to treat wastewater and effluents using green
synthesis. Detailed analysis of NMs derived from different
biomass sources is provided, along with the discussion of
current wastewater and desalination membrane technology and
how NPs are incorporated into these processes.30

■ BIO-NANOMATERIALS
Advancement in NMs and nanotechnology has led to many
possibilities in various consumer product fields. NMs have one
or more structural dimensions at the nanoscale and have
sparked intense scientific interest due to their potential
applications in numerous fields of science and industry. NMs
are widely used in medicines, food, cosmetics, transport,
textile, healthcare, electronics and, in recent years, water
purification, to name a few sectors.12,31−33

Despite such improvements in NM technology, there is still
a paucity of research on the possible effects of NMs on the
well-being of humans and the environment. Since NPs may be
undetectable after being released into the environment, they
may cause a variety of environmental hazards if the cleanup
method is inadequate. As a result, further research is required
to properly define the structure−function connection of NMs
in terms of their underlying chemistry (toxicity and
functionality). Additionally, thorough risk assessments must
be performed for NMs that pose an actual exposure risk during
manufacture or use. Green nanoscience is now advised to
reduce the possible health and environmental risks connected
with the manufacturing and consumption of NMs and to
develop the substitution of current objects with advanced NMs
that are more ecologically friendly.25,26,31,32

There has been growing interest in NPs for wastewater
treatment, especially in developing countries. As the globe
confronts a lack of drinkable water, scientists have shown that
NMs effectively remove organic pollutants, heavy metals, and
even bacteria from the water. They also enhance the efficiency
of existing wastewater treatment processes due to their high
surface area, strong adsorption properties, strong mechanical
stability, high solution mobility, dispersibility, hydrophilicity,
and hydrophobicity. Further progress has recently been made
in NMs, such as nanophotocatalysts, nanomembranes, and
nanosorbents, which might be used to remediate dirty water
effectively.10−13,16,22,26,34

Biobased NMs are derived from biomass and are a
promising alternative to synthetic NMs due to their
sustainability, biocompatibility, cost-effectiveness, and biode-
gradability. Their biocompatibility makes them suitable for
medical and biomedical applications. Additionally, their
biodegradability and low toxicity make them environmentally
friendly, which is helpful for food packaging, agriculture, and
water treatment. Finally, they have very high sustainability
because of their renewable nature and low environmental
footprint. Biobased NMs such as cellulose and its derivatives,

chitosan, pure carbon-based NMs like graphene, plain and
core−shell silica NPs, and other metal NPs are of interest for
wastewater treatment because of their cost-effectiveness and
biodegradability.20,23,25,35 The next section will discuss in detail
the sources of biomass, major NMs extracted from biomass,
and their synthesis method.

■ BIOMASS PRODUCTION/SOURCES OF WASTE
FOR NANOMATERIAL EXTRACTION

Biomass is a sort of renewable biological material that is
obtained from plants and animals. In 2020, global biomass
production was expected to exceed 130 billion tons annually.36

The bulk of biomass on land (70−90%) is found in forests;
however, the quantity of land biomass is uncertain.37 Biomass
has the potential to contribute to safe and clean renewable
energy generation while also supporting the socioeconomic
growth of the world.37 The conversion of biomass to energy is
one of the critical factors in reducing the dependence on fossil
fuels. Biofuel made from biomass is considered to be a carbon-
neutral energy source. Plants, one of the major sources of
biomass energy, capture similar amounts of carbon dioxide
through photosynthesis while growing as it is released when
biomass is burned, making biomass a carbon-neutral energy
source.38 The benefits of biomass are still debated compared
with other renewable energy sources. Still, its advantages over
fossil fuels are very prominent, mainly due to its renewability,
waste reduction capabilities, and reduction in carbon
emissions.38−43

In theory, burning biomass for energy realizes carbon
dioxide in the atmosphere, which is captured by biomass
sources, such as trees and crops, during photosynthesis and
keeps the carbon dioxide cycle balanced. However, in real life,
this process depends on many factors, like harvesting the
biomass, regrowing plantation efforts, the type of biomass
used, and the energy source it displaces (Figure 2).44,45

By biomass management, carbon emissions from the
atmosphere may be minimized. Biomass is employed in
various applications including water purification, energy
sources (heat, electricity, and biofuels), and the manufacturing
of green chemicals. Biomass has many supplies and significant
reserves and has been extensively developed and exploited.36

This part of the review examines the alternative use of biomass

Figure 2. Factors that contribute to carbon-neutral bioenergy.
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(besides being a source of biogas) in wastewater treatment
procedures. Many compounds may be generated from
biomass, including cellulose, chitin, SiO2 ash, and NPs,
activated carbon, keratin, and collagen. These materials have
a high potential for utilization in existing wastewater
technologies. However, energy costs related with biomass
reprocessing and conversion must be considered while
assessing its benefits. This technique covers the whole biomass
consumption life cycle.

Production of biomass may be ascribed mainly to the
following categories.
Agricultural, Wood, and Food Residues. Agricultural

residues utilized in renewable energy resources offer a
significant potential for expansion in the bioenergy industry
in numerous countries (almost 250 mt/yr in Europe).46

Agricultural leftovers are produced in vast quantities worldwide
each year and are mostly ignored. Examples of crop remnants
are straw, bagasse, stalk, stem, husk, leaves, shell, peel, pulp,
and stubble.47,48 These residues are either sown into the
ground and burned or left to decay before being grazed by
cattle. Unused biomass from agricultural sources may be
turned into various energy-producing materials, including
biofuels (biogas/bioethanol) and energy storage, as well as
adsorbent materials in wastewater treatment and desalination
membranes.49,50 Most of the agricultural biomass like rice husk
(RH),51−53 corn cob (CC),54−56 sugar cane bagasse,57−60

coconut husks and shells,61−64 date palm leaves,65−67 among
others, contains organic matter like cellulose, lignin, hemi-
cellulose, graphene (carbon), and inorganic matter, mainly
silica (SiO2). The materials when converted to NMs are widely
used in various water treatments.61,62

The wood industry generates a lot of trash via various
operations. Plywood, construction components, flooring, wood
panels, and sawmilling are all examples of waste. Wood
biomass is also produced by forest leftovers left over after
timber harvesting, plantation thinning, and the extraction of
stem wood for pulp and lumber.68,69 Wood and wood waste
accounted for about 5.2% of industrial end use and 4.2% of
overall industrial energy consumption in 2021.69 Waste from
the wood industry is also utilized in wastewater treatment
procedures as dyes and heavy metal adsorption material.70−72

Cellulose69−71 and graphene73−76 are two significant materials
that can be extracted from wood waste for use as NMs in the
treatment of wastewater.

The food industry and domestic food waste provide the
highest potential biomass energy source residues. Scraps from
fruits and vegetables and their oils, filter sludges, coffee
grounds, washing and presoaking meat, poultry litter (feathers,
manure, water, and spilt feed), the cleaning process of wine-
making fibers from sugar, blood and bones from slaughter-
houses, and starch extractions are all examples of food industry
waste.77−79 Several techniques may be used to extract many
chemical components from food waste. Chitin, cellulose, and
keratin are the most important source materials that may be
recovered from food and animal wastes for use as NMs in
wastewater treatment procedures.78

Algae. Algae is common in our aquatic settings and is easily
gathered.80 Algae are photosynthetic eukaryotic creatures that
are not commonly considered plants. Single or multicellular
organisms containing chlorophyll thrive in water but lack the
characteristic stems, leaves, and vascular structures that
distinguish plants. Algae have no anthropogenic or negative
repercussions, proliferate, and may be farmed in the effluent.

Microalgae, macroalgae, and cyanobacteria are all sources of
algal production. Microalgae reproduce faster than land crops,
and they may thrive on desolate terrain utilizing nonpotable
waste and salty water. Using the process of photosynthesis,
these organisms synthesize biomass using carbon dioxide and
sunlight. This metabolic activity results in the production of
many components, such as proteins, carbohydrates, metabo-
lites, and lipids.80−82

Algae biomass production focuses on finding and increasing
features such as quick growth rate and high oil content that
make algae an appealing source for biofuel conversion.83 Algae
can also make biopolymers like cellulose (nano), polyolefins,
polyesters, and polyamides as well for use as an aid in the
synthesis of several metal-based NPs.80−82,84,85 Microalgae-
based biofuels exhibit superior cost-effectiveness in comparison
with other feedstocks. According to Demirbas et al.,86

microalgae that are capable of photoautotrophy have a better
efficiency in converting sunlight into biomass compared to
higher plants. Terrestrial plants have a photosynthetic
efficiency of less than 4%, while algae possess a range of
efficiency between 3 and 9%.87 The exceptional efficiency in
using light is seen in the rapid growth rate of microalgae and
the consequent generation of biomass. In addition, it should be
noted that algae exhibit a higher degree of tolerance toward
fluctuations in light intensity when compared to higher
plants.88,89 This characteristic allows them to effectively sustain
themselves through autotrophic means, specifically, by
engaging in the process of photosynthesis. Simultaneously,
some species of microalgae have the capability to produce a
substantial amount of energy-dense molecules via the use of
organic carbon sources such as glucose.90−92

The vast majority of NPs produced by algae species are also
effective bactericides. When it comes to the bioactive
molecules used in the synthesis of NPs, algae use the same
but somewhat different compounds than other types.
Polysaccharides and protein residues in algae can decrease
and stabilize NPs.37,81,85 One significant advantage of using
algae is the availability of a broad range of phytochemicals.
Some algal species include alkaloids, amino acids, flavonoids,
saponins, carbohydrates, tannins, sterols, and phenolic
compounds. Once purified, each of the chemicals may further
modify the NM’s size, shape, and active qualities.26

Bacteria and Fungi. Bacteria are the most numerous
forms of life. They are unicellular organisms with cell walls but
no organelles or an organized nucleus. They inhabit the air,
soil, water, and cells of plants and animals. Some bacteria are
pathogenic, while others are beneficial. Bacteria recycle the
soil’s nutrients and assist in digestion.32 Moreover, several
strains, such as Bacillus subtilis and E. coli, are exceedingly
simple to cultivate and have a highly adaptable genetic code.
Due to these properties, beneficial bacteria are being used as
biomass sources in various wastewater treatments. They can be
used for the green production of NMs.93−95 Apart from the aid
in synthesis of metallic NPs,93,94,96,97 bacteria can produce
bacterial cellulose to be used in wastewater treatments.98−107

Fungi are eukaryotic creatures that get nourishment by
secreting digestive juices into their immediate surroundings
and absorbing the dissolved molecules.94,108−110 As a by-
product of large-scale fermentation operations, fungal biomass
(FB) is a potential biomass source. Its distinguishing feature is
chitin, a long-chain polymer and glucose derivative that
strengthens their cell walls.94,111 Fungi cell walls, besides
chitin,112 may also comprise of polysaccharides like cellulose31
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and facilitate the development of metallic NPs of various
forms, sizes, and compositions.32,109,110,113,114

A variety of active chemicals found in bacteria and fungi may
stabilize NPs. Amino acids from proteins found on the cell wall
and within the cytoplasm, like tryptophan and tyrosine, may
decrease and stabilize NPs. These acids serve as a protective
capping agent, rendering them nontoxic to mammalian cells.
Sugars (like aldose and ketose) may also act as reducing/
stabilizing agents. These active molecules, found in and on
many bacteria species, react with metal ions and reduce them,
enabling metal ions to combine with one another and
encourage the formation of more structural features, such as
NPs of different shapes.26,94,115,116

■ NANOPARTICLE SYNTHESIS
The field of NM synthesis has made great strides in recent
years, providing more novel pathways to create NPs for
applications in multiple fields. NP synthesis is usually done by
two approaches, top-down or bottom-up, which are considered
traditional approaches (Figure 3).13,16,23,26,117,118 The top-
down approach involves chemical or mechanical disruption of
larger particles into smaller components. It entails employing
electron beams to etch nanoscopic features onto a substrate,
followed by appropriate engraving and deposition methods.
Top-down treatments often use physical processes like
evaporation−condensation, milling techniques, and laser
ablation.119 It offers several advantages, such as a precise
surface area, particle shape, size, and chemical composition
control. Regarding drawbacks, the process requires high
temperatures and high shear, which might introduce defects
and degrade the particles. It can also be costly, especially for
smaller volume production.16,26

On the other hand, the bottom-up method refers to
synthesizing NPs from their atomic or molecular precursors
arranged in a predetermined pattern or design.119 This
approach relies on the self-assembly of the ingredients to
create the NPs. This process of creating NPs involves a step-
by-step assembly in a fixed pattern. The advantages of this
approach include great control over the size, shape, and
composition of the NPs. Additionally, this approach can create
unique structures, which might not be possible with a top-

down approach. However, the bottom-up approach is
expensive, time-consuming, and unsuitable for large-scale
synthesis. Also, the defects in the nanostructures cannot be
easily rectified, and most organic solvents used are not
considered environmentally friendly.16,26

Many traditional NP synthesis methods are energy-
consuming and create hazardous wastes. To reduce the
environmental burden, researchers have been exploring green
synthesis methods for producing NPs. Green synthesis
methods aim to reduce the use of toxic chemicals, minimize
resource consumption, and reduce the environmental impact.
Many green approaches include/propose using green solvents,
and bioinspired synthesis, i.e., using biomass as the raw
material for NP synthesis.26,32,118 In recent years, extensive
studies on biological systems such as bacteria, fungi, plants
residue, algae, and various food wastes has resulted in the
transition of biomass into NPs.47,108

Using plant (wood and agricultural) and animal leftovers to
make NMs is perhaps the most fascinating and ecologically
beneficial method of green synthesis.7,25,32,47,48,70,120 Plants
and their components have been the subject of much
investigation for NP synthesis owing to the simplicity of
scaling up for greater production and being cost-efficient and
environmentally benign. Generally, plant or food leftovers are
subjected to a technique that extracts particular chemical
components from them. The plant or food waste is typically
dried, powdered, or fragmented and then subjected to an
aqueous extraction process, often involving immersion in hot
water, followed by filtration. The extract is then stored at
temperatures below 5 °C.20,32,120 This filtering reagent may
include a variety of bioactive compounds depending on the
plant or plant matter from which they were extracted. Plant
extracts often include various bioactive compounds, such as
flavonoids and phenols, although proteins and polysaccharides
are also involved in the creation of NPs. These bioactive
compounds have functional sections that operate as NP
precursor, reducing and stabilizing agents.25,121

Use of microbes is another preferred method of generating
NPs due to the simplicity of managing biomass and economic
feasibility and because they are effective secretors of
extracellular enzymes, which leads to large-scale enzyme

Figure 3. Different methods for NP synthesis.
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production.25,32,82,84,116,122 Many algae species have been
found for their ability to catalyze the production of NMs.
The generalized procedure to create metallic NMs from
various algae species includes drying the samples before being
powdered. The fine powder is then mixed with water,
incubated for 24 h, and filtered. After filtration, the biomass
filtrate is mixed with the NM precursor and left to incubate at
room temperature until the color of the solution changes,
indicating NM synthesis.123

Bacteria synthesize NPs as part of their defensive
mechanism.124 The bacterial cells’ resistance to reactive ions
in the environment is what causes the formation of NPs.
Bacterial cells are often disrupted in high ion concentrations.
Their cellular machinery aids in the transformation of reactive
ions to stable atoms in order to fight cell death. That are the
ions’ NPs. This bacterial characteristic is used in the
production of NPs. To use bacteria and fungi for NM
production, the microbes are first grown aerobically to a
suitable optical density, and then the growth medium that
holds the cells is blended with the NP precursors. After an
incubation time and a perceptible change in media color, the
media is agitated at high speeds (>10000 rpm). The NMs are
suspended in the supernatant from this spin. The final
morphology and NP size are determined by various strains
and precursors and interactions with the stabilizing agent
present in the bacteria.26

The NP synthesis technique from biomass avoids the need
for harsh chemicals, which are hazardous to both the user and
the environment. Moreover, since the bioactive compounds are
extracted using simply hot water, the requirement for high-
energy-consuming procedures is avoided. Due to the absence
of harsh reagents, the bulk of the NPs produced may be used
in biological applications.20,22,26,32

■ USE OF BIOBASED NMS AS POTENTIAL
MATERIALS FOR WASTEWATER TREATMENTS

The NPs extracted from the biomass can be divided into 6
major categories based on the different sources of waste (as
discussed above)�silica (SiO2)-based NMs, cellulose-based
NMs, graphene (carbon)-based NMs, chitosan-based NMs,
keratin-based NMs, and other metal-based NMs. This section
discusses each of these NP categories and their application in
wastewater treatment and desalination.
Cellulose-Based Nanomaterials. Cellulose is often

regarded as the most common renewable polymer in the
world.125 RH and other agricultural waste may also produce
cellulose, such as sugar cane leaves, date palm leaves, wood
pulp, jute, and maise cob.126−130 It may then be chemically
manipulated and turned into different nanocrystals, nanofibers,
and aerogels for specialized uses, including water purifica-
tion.131

Cellulose nanocrystals (CNCs) and cellulose nanofibrils
(CNFs) are rod-like NPs with lengths ranging from 100 to
2000 nm and diameters ranging from 2 to 20 nm, depending
on the cellulose manufacturing technique and origin (Table
1).132 Nanocellulose is a highly promising material for high-
performance membranes and filters that selectively remove
impurities from industrial and drinking fluids because of its
high strength, chemical inertness, hydrophilic surface chem-
istry, and large surface area. The defibrillation of cellulose fiber
into nanocellulose significantly increases the accessible surface
area.132 This increase in surface area is related to the increased
availability of hydroxyl groups on the surface of nanocellulose,

where functional groups or molecules can be grafted using
methods such as carboxylation, sulfonation, TEMPO-mediated
oxidation, phosphorylation, esterification, etherification, silyla-
tion, and amidation.133−137 Metal ions,138−140 dyes,141−143

metal,142,144,145 and microorganisms142,144 have all been shown
to be removed using nanocellulose-based membranes and
filters. Oils and cyclohexenes have also been extracted utilizing
a modified nanocellulose matrix grafted with hydrophobic or
oleophilic functionalities.146,147

Johar et al. synthesized CNCs by sulfuric acid hydrolysis of
pure rice husk fibers.53 Most NPs had diameters and aspect
ratios of 15−20 and 10−15 nm, respectively. These CNCs can
now be put into various wastewater and desalination
treatments. Jackson et al. (2021)148 were able to impart
antibacterial qualities to the surface of a commercial thin film
composite (TFC) membrane by employing CNCs collected
from the leaves of elephant grass (Pennisetum purpureum) that
were generated from sustainable sources. TFC membrane
surface modification with antimicrobial and needle-like CNC
NPs was highly hazardous to bacteria, killing 89% of adherent
E. coli cells upon contact.

Huang et al. (2019) used CNCs, to effectively manufacture
thin-film composite (TFC) nanofiltration membranes (NFMs)
(Figure 4).137 These CNCs enhance the filtering area and

Table 1. Different Biocellulose-Based NMs Which Have the
Potential for Use in Different Water Treatment and
Desalination Applications

raw material NP shape and size ref

1. algae, Cladophora
rupestris

CNC ND 149

2. pineapple leaf CNC L, 249.7 ± 51.5 nm; D ,
4.45 ± 1.41 nm

150

3. softwood pulp CNF max d, 139 nm 151
4. sugar cane bagasse CNC L, 250−480 nm; D, 20−60 nm 152
5. corn cob CNC av D, 131.4 nm 153
6. Yeast, A. xylinum
ATTC 23770

BC 154

7. A. xylinum ATCC
10245

BC 155

8. eucalyptus sawdust CNF 156
9. lime residues CNF D: 5−28 nm 157
10. Gluconacetobacter
sacchari

BC 158

11. coconut husk CNF av D, 5.6 ± 1.5 nm; L,
150−350 nm

159

12. pine needles CNF D, 30−70 nm 160

Figure 4. Typical interfacial polymerization is used in the
construction of CNCs-filled TFN NFMs, as shown in the schematic.
Reprinted with permission from ref 137. Copyright American
Chemical Society.
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improve the hydrophilic surfaces of the TFN NFMs. The
increased filter area, better hydrophilicity, and finer polyamide
(PA) selective layer boost the water penetration flux. The
hydrophilic CNCs additionally improve the chlorine resistance
of the TFN NFMs. This work shows that eco-friendly NMs are
excellent nanofillers for synthesizing TFN NFMs with
increased water penetration flux without compromising salt
rejection.
Silica (SiO2)-Based Nanomaterials. Silica, commonly

known as silicon dioxide (SiO2), is an attractive material for a
range of applications due to its variable and controllable pore
size, customizable interface, exceptional mechanical properties,
and relatively benign chemical composition.161 SiO2 NPs are
employed in several applications, including ceramics, chroma-
tography, anticorrosion agents, water purification, and
catalysis.162 The biosources of SiO2 are considered to be
waste materials which include rice husk, peanut shell, bamboo
leaves, sugar cane bagasse, algae, bacteria and fungi (Figure
5).163 During harvest time, the agricultural waste materials are
burned to release nutrients for the following growing season
and get rid of a vast number of them. During combustion,
carbon, oxygen, and hydrogen included in these waste items
are transformed into combustible gases including carbon
monoxide, hydrogen, methane, and ash. This ash is abundant
in silica and carbon, although it has not yet been used to its full
potential.

There are several publications in the scientific literature on
the use of this material to create high-quality SiO2 NPs. Using
rice husk for the first time, Jansomboon et al. produced silica
micro- and NPs.153 Sachan et al. worked on a comparative
investigation of the green synthesis of SiO2 NPs from leaf
biomass and their application to the removal of heavy metals
from synthetic wastewater.164 SiO2 NPs including adsorbent
materials are capable of removing Pb2+ and Cu2+. Fahrina et al.
developed an antimicrobial polyvinylidene fluoride (PVDF)
membrane employing ginger extract-SiO2 NPs (GE-SiO2 NPs)
for filtering of bovine serum albumin (BSA).165 GE-SiO2 NP
substances areinvolved in membrane hydrophilicity enhance-
ment and antibiofouling. The antibacterial characteristics of

the PVDF/GE-SiO2 NPs membrane was shown toward
Staphylococcus aureus and Escherichia coli. Using cross-flow
filtration, the fouling assessment of BSA content was examined.
A satisfactory flux recovery ratio (FRR) of 97.92% was
attained.

Due to newly developed technology, it is feasible to
manipulate the genetic material of diverse bacteria and yeast,
so that they can be utilized for the production of valuable
NMs. In fact, they are regarded as the most effective
environmentally friendly NM factories.166 There have been
reports of bacteria-assisted SiO2 NPs production. Using
bacterial culture solutions, Vetchinkina et al. synthesized
silicon nanospheres varying in size from 5 to 250 nm.167

Actinobacteria species were used by Singh et al. to manufacture
silicon/silica nanocomposites. In this paper, both the silica
precursors K2SiF6 and microorganisms are discussed. The
bacteria’s reductase and oxidant enzymes lead to the creation
of silica NPs.168 Zamani et al. used Saccharomyces cerevisiae
yeast for the biochemical production of silica NPs for better oil
recovery applications.169 It is seen that the majority of the
powder is composed of spherical particles, while some particles
are hazy and almost shapeless.

Recent years have seen an increase in interest in fungi as
source materials for the manufacture of many NPs. The
employment of fungi in the manufacture of NPs has the
potential to be interesting since they produce vast quantities of
enzyme and are easier to work with in the lab. Fusarium,
Aspergillus, and Penicillium offer tremendous promise for the
extracellular bioproduction of various metal NPs, whereas
Verticillium Sp. might be collected for intracellular NP
synthesis, according to studies. There are several studies in
the scientific literature about the synthesis of SiNPs utilizing
fungus. Pieła et al. produced silica NPs of specified size and
form by bioconverting corn cob husk with the Fusarium
culmorum fungus.170 Bansal et al. discovered a novel method
for producing nanosilica from rice husk. Fusarium oxysporum is
employed to bioleach silica from rice husk in this paper. This
fungus species is capable of rapidly biotransforming biosilica
from rice husk into crystalline silica NPs.171 Estevez et al.

Figure 5. Different biomass sources of silica NPs.
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generated silica NPs by the biodigestion of rice husk utilizing
the Californian red worm in intriguing research. Worms are fed
rice husk and water, which result in the production of humus.
Following various treatments, silica NPs in the range of 55−
250 nm are formed.172

Silica and hybrid silica-based NMs are the most widely used
for water filtration because of their chemical stability, low cost,
and relatively easy surface modification.52 Kumari et al.
synthesized SiO2 NPs from corn cob and mixed zerovalent
iron (nZVI) to create nanocomposites.173 The conjugation
with silica matrices inhibited nZVI aggregation, increasing
surface area, and permitting effective sorption of the Cr(VI)
species to the nZVI surface. Table 2 lists the different bio-SiO2
based NMs used in different water treatment and desalination
applications.

Carbon-Based Nanomaterials. Carbon quantum dots
(CQDs), a novel type of carbon NM, are brilliant photo-
luminescent quasi-spherical NPs with mostly graphitic sp2 or
sp3 carbon hybridization and a size of less than 10 nm (Table
3).172 They involve multiple oxygen-containing functional

groups which have attracted a great deal of interest due to their
unique properties, such as simple large-scale production,
reduced costs, robust chemical stability, simple functionaliza-
tion, fine particulate sizes, high surface area, low toxicity, and
appropriate biocompatibility. Another carbon-based material
derived from biomass is graphene. Graphene, a two-dimen-
sional 2-D lattice of sp2-hybridized carbon, has several unique
features and is used in a variety of disciplines.183,184

Unfortunately, graphene’s zero band gap restricts its uses in

the optical and photonics fields. The quantum confinement
effect might be used to improve the band gap of graphene by
reducing its lateral dimensions into quantum dots.173 Because
of its unusual photoluminescence and physicochemical
features, graphene quantum dots (GQDs) have received a lot
of interest.185−188 Wang et al. demonstrated a simple one-step
one-pot technique for producing GQDs from RH waste.183

GQDs generated have an average size of around 3.9 nm and
2−3 graphene layers. Under UV light (365 nm), the RH-
GQDs were distributed in water and displayed (Figure 6) vivid
blue PL. The RH-GQDs quenched Fe3+ ions with excellent
selectivity, making these GQDs a potential sensor for Fe3+.
Meanwhile, the GQD residue can be utilized to make
amorphous SiO2 NPs.

A carbon quantum-dot-embedded polysulfone (CQDs-PSF)
membrane for antibacterial activity in FO was synthesized by
Mahat et al.189 The incorporation of a CQDs-PSF membrane
improved the antibacterial performance and hydrophilicity of
the membrane for FO. With 1.0% CQDs loaded on a PSF
membrane, both the water flow and the reverse salt flux
increase, enhancing the membrane’s FO performance. The
CQD-modified PSF membrane has antibacterial properties
against both Gram-positive and Gram-negative microorgan-
isms. Lecaros et al. fabricated tannin-based TFC membranes
including nitrogen-doped GQDs for butanol dehydration
through pervaporation.190 The inclusion of NGQDs enhanced
the membrane’s water permselectivity. The NGQDs impeded
the movement of butanol and facilitated the passage of water at
a quicker rate. According to Amari et al. the synthesized
chitosan/nitrogen doped GQD (CS/NGQD) nanocomposite
had greater pollutant removal efficiency than its components,
CS and NGQD.191 This nanocomposite removed 60% of the
protein and 88% of the bacterial load. Pharmaceuticals (63%
for chlorothiazide, 81% for carbamazepine, and 89% for
ranitidine), dyes (82% for Azo blue, 84% for methylene blue,
and 94% for orange G), and fluoride (42%) all had a higher
removal efficiency. Notably, the CS/NGQD nanocomposite
reusability investigation was done for up to five cycles,
revealing that the percentage removal of protein, bacteria,
medicines, dyes, and fluoride was maintained at acceptable
standards with no notable decline in nanocomposite efficiency.
Chitosan-Based Nanomaterials. Chitin is the most

common natural amino polysaccharide, generating almost as
much as cellulose yearly. It is readily generated from crab or
shrimp shells, which are considered food wastes. Deacetylation
of chitin (its fully acetylated form), which is found in the cell
walls of most fungal biomass (chitosan is found in the cell wall
of Mucorales), insect cuticles, and crustacean shells, produces
chitosan (Figure 7).189 Shrimp shells are now the primary
source of chitosan for industrial manufacturing. It is
biocompatible and nontoxic, with chemical tunability and
antimicrobial and antioxidant action.200,201 It is used in various
applications, including but not limited to medicinal aids,
molecular sieves, viscosity builders, heavy metal adsorbents,
chelating agents, and desalination membranes. Because of the
presence of amino groups, this material may be employed
immediately in solid form for adsorption applications
(complexation of cations or organic molecules, electrostatic
attraction or ion exchange in acidic media).202 It may also be
employed in liquid form (dissolved in acidic media) to
neutralize charges, coagulate-flocculate anionic species (dis-
solved materials, colloids, and suspended particles), and
complex metal ions.203

Table 2. Various Biosilica-Based Nanomaterials with
Potential for Application in Diverse Water Treatment
Processes

raw material properties ref

1. stem bark extract of Syzygium
alternifolium

spherical/34−49 nm 174

2. sugar beet bagasse spheroid/38−190 nm 175
3. rice straw discs, D 172 nm and width

3.09 nm
176

4. sugar cane bagasse spherical/30 nm 177
5. fungus Fusarium oxysporum 2−5 nm 178
6. Bambusa vulgaris leaves ND 179
7. bacteria, Actinobacter species ND 168
8. Eisenia fetida av d 81 nm 180
9. bentonite clay spherical/98 ± 20 nm 181
10. weed, Carex riparia irregular 182

Table 3. Different Biographene-Based NMs Which Have the
Potential for Use in Different Water Treatment and
Desalination Applications

raw material properties ref

1. leaf extracts of neem (Azadirachta indica) GQDs/5 nm 192
2. algae, Microcystis aeruginosa GQDs 193
3. microalgae Gymnodinium GQDs/10 nm 194
4. Mangifera indica (mango leaves) GQDs/2−8 nm 195
5. microalgae, Chlorella pyrenoidosa CQDs 196
6. red algae, Gracilaria GQDs 197
7. orange peels CQDs/1.16 ± 0.1 nm 198
8. Catharanthus roseus (white flowering
plant)

CQDs/∼5 nm 199
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Chitosan, in particular, has been identified as a potential
cationic adsorbent for removing anions, heavy metals,
poisonous organic dyes, aromatic compounds, oil spills, and
pharmaceutical residues.204−210 Chitosan is an ideal option for
adsorbing harmful metal ions from aqueous solutions because
it has several chelation sites and amino and hydroxyl groups
that bind metal ions through coordination bonds or ion
exchange.211−214 Chitosan is prone to be soluble in acidic
conditions and poor mechanical strength, so chitosan is mixed
with different materials to create adsorbent materials and
membranes for its effective use in wastewater treatment.
Several studies have been conducted to assess the adsorption
properties of chitosan and its modified forms to use them to
remove different heavy metals.215−218 Omer et al. (2022)
discussed the most recent developments in chitosan-based
adsorbents and their adsorption abilities toward several
harmful heavy metal ions, including As(III), As(V), Cu(II),
Cr(VI), Pb(II), and Cd(II), in his 2021 review paper.204

The adsorption processes of chitosan and chitosan-based
nanocomposite polymeric membranes are critical in providing
greater understandings that may improve the efficiency of the
membranes for pollutant removal.219 Shafi et al. extracted
multi-ionic electrolytes and E. coli from wastewater with a
chitosan-based in situ mediated TFC NF membrane.220 The

rejections of Na+, K+, Mg2+, Cl−, and SO4
2− in the permeate of

the binary electrolyte solution were reported to be 81, 28, 87,
96, and 98%, respectively, at a maximum water flow of 214 10
L m2 h−1. The feed solution of E. coli rejected 99.9% of E. coli
after running through the membrane at a water flow of up to
220 L m2 h−1. Kayani et al. investigated the influence of
different amounts of polyethylene glycol and 3-aminopropyl-
triethoxysilane on the characteristics of chitosan-based RO
membranes.221 The flow and salt rejection values of the hybrid
composites rose to a maxima of 80% and 40.4%, respectively,
according to permeation measurements. Unlike control
membranes, modified films show antibacterial activity against
Escherichia coli. Kumar et al. discovered that chitosan surface
modification with a graphene oxide nanocomposite is an
effective adsorbent for As(V).222 The adsorbent’s regeneration
capability has been shown using NaOH. Furthermore, the
adsorbent stability and regeneration for three effective
adsorption−desorption cycles make it an intriguing adsorbent
material.

Carbon nanotubes were thought to be excellent materials
when combined with chitosan to create an adsorbent
membrane for heavy metal removal.223,224 Particular emphasis
is placed on the chitosan/biochar (BS) composite, which was
employed to improve the adsorption capacity of the produced
polymeric membrane. Biochar has been explored in adsorbent
membranes with essential applications, such as the elimination
of heavy metals, phosphates, and different antibiotics and
medicines from fluids due to its porous structure.
Keratin-Based Nanomaterials. Keratin may be found in

feathers, fingernails, hair, animal claws, horns, and wool.225,226

It is a 19 amino acid protein, and one of the most prevalent
fibrous proteins. These amino acid residues are linked by
peptide bonds, resulting in a ladder-like structure with tight
packing of -helix and -sheet structure.227 Keratin cysteine
residues feature “thiol −SH groups” that cross-link the whole

Figure 6. Synthesis process of GH-GQDS with a digital picture of a RH-GQD aqueous dispersion under the irradiation of 365 nm UV light, TEM
image, and PL 3D mapping of the RH-GQD aqueous dispersion. Reprinted with permission from ref 177. Copyright AIP.

Figure 7. Image showing sources of chitin and chemical structural
change during the deacetylation process of chitin to chitosan.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c08883
ACS Omega 2024, 9, 29088−29113

29096

https://pubs.acs.org/doi/10.1021/acsomega.3c08883?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08883?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08883?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08883?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08883?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08883?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08883?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08883?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c08883?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


matrix through strong disulfide (−S−S−) linkages. Chicken
feathers (CFs) are a natural keratin byproduct of the poultry
industry, with over 65 million tons produced yearly. The
feathers account for about 4−6% of a mature chicken’s total
weight. The poultry processing sector in the United States
alone produces more than 4 billion pounds of chicken feathers
every year. Feathers are robust and light, with a keratin
macromolecule content of 91% and an average molecular
weight of 10 kDa. They exhibit great tensile strength, structural
toughness, and thermodynamic stability with no water
solubility over a broad pH range.225 Poultry feathers are
often disposed of in landfills, adding to environmental
pressures. Researchers have modified keratin for possible use
as a biosorbent for water filtration.228,229

Sun et al. used several ways to remove Cr metal from the
CFs.230 Initially, CFs were treated with an aqueous solution of
NaOH, which caused the keratin protein on the feather surface
to exfoliate. The keratin protein was cross-linked with
epichlorohydrin before being functionally enhanced with
ethylenediamine. Metal absorption was 30.5% in raw CFs,
43.8% in NaOH-treated CFs, 44.2−81.4% in epichlorohydrin
CFs, and 90% in ethylenediamine-epichlorohydrin CFs. Khosa
et al. investigated the removal of As metal integrated into CFs
by two distinct chemical routes.231 They unfolded keratinous
protein and revealed distinct functional groups with increased
functioning (−COOH, −NH2, and −S−S−). The CF-
modified methyl alcohol proved to have the maximum arsenic
uptake in the 85−90% range. As a result, the carboxylic group
in modified CF was discovered as an excellent activator of
arsenic absorption, resulting in efficient esterification.

Ganesan et al. developed a novel carbon-based molybdenum
oxide nanocomposite (MoO3-KSC) from keratinous sludge
utilizing CF waste as a keratin source and (NH4)6Mo7O24 as a
precursor carbonization catalyst.232 The generated MoO3-KSC
nanocomposite produced possessed a significant aggregation
surface area, a high crystalline structure, and a high porosity,
suggesting a strong electrochemical reaction. The obtained
MoO3-KSC was utilized to fabricate a plated screen-printed
carbon electrode (SPE) for the detection of hydroquinone
(HQ) and catechol (CC) in ambient fluids. The electro-
catalytic capability of MoO3-KSC/SPE functionalization
surpasses that of bare SPE and KSC/SPE for HQ and CC
detection. As a result, by utilizing the differential pulse
voltammetry approach, the MoO3-KSC/SPE NM modified
electrode has good sensitivity and selectivity for determining
HQ and CC in ambient fluids. The manufactured MoO3-KSC/
SPE NM modified electrode was also used to determine
ambient water samples, and the results were satisfactory.
Metal-Based Nanomaterials. Biological systems, such as

plants, bacteria, algae, fungi, and yeasts, have been found to
manufacture a wide variety of metal and metal oxide NPs
(Table 4).233 This section highlights the importance of green
synthesis techniques for producing metal oxide NPs, such as
Au, Se, Zn, Co, Ag, Cu, Ti, and Ni, among others. Several
promising green NMs, photon nanocatalysts, metallic NMs,
and metal oxide NPs have been widely shown to have
antibacterial properties. Silver NPs (AgNPs) have an average
size of 1−40 nm and serve as antibiotics, antimicrobials, and
antifungal agents. AgNPs have a bactericidal action. They first
generate free radicals, which cling to and destroy the bacterial
cell wall. They are linked with bacterial DNA after breaking the
cell wall, changing the cell membrane characteristics, and
denature the enzymes. AgNPs play an important role in

wastewater treatment by rapidly inactivating microbial cells
and minimizing membrane biofouling.234 In general, AgNPs
have good antibacterial activities against a broad range of
pathogens, including bacteria, fungi, and viruses. Plants include
reducing and stabilizing substances that aid in the synthesis of
biocompatible AgNPs. Secondary metabolites found in the
extract, such as alkaloids, phenols, terpenoids, flavonoids,
proteins, and carbohydrates, operate as reducing agents.235

Minhas et al. investigated the antibacterial activities of
polysulfone (PS) composite membranes utilizing biogenic
silver NPs generated from Cladophora glomerata (L.) Kütz and
Ulva compressa (L.) Kütz extracts by a spin-coating
technique.236 The capacity of Ag-NPs/PS composite mem-
branes from algae to exhibit exceptional antibacterial activity
against all bacteria, including K. pneumonia, P. aeruginosa, E.
coli, E. faecium, and S. aureus, was examined. Moodley et al.
focused on the green synthesis of Ag NPs from fresh and
freeze-dried leaf Moringa oleifera extracts and their antibacterial
properties.237 In addition, X-ray diffraction examination
revealed that the size distribution of Ag NPs in both samples
had mean diameters of 9 and 11 nm, respectively.
Antimicrobial activity was shown by silver NPs against both
strains of bacteria and fungi.

Nanocatalysts including semiconductor materials, zero-
valence metals, and bimetallic NPs may degrade organic
pollutants such as PCBs, insecticides, and azo dyes. TiO2 NPs
are the most important photocatalysts for water purification.
TiO2 NPs created very reactive oxidants, such as OH radicals,
which have disinfection characteristics against harmful
microbes. Nitrogen-doped TiO2 NP catalysts and TiO2
nanocomposites containing multiwalled carbon nanotubes
reduced microbiological pollutants in water successfully.238,239

The manufacture of anatase TiO2 NPs used a low-cost
titanium oxysulfate with polyvinylpyrrolidone as a capping
agent. These green-synthesized TiO2 NPs were more effective,
degrading 94% of methyl orange in 150 min under UV light,
compared to a commonly produced TiO2 that degraded 20%
faster.240 A straightforward solvent-free green chemistry
technique using titanium tetraisopropoxide as a precursor
and soluble starch as the template was used to synthesize an
eco-friendly visible light active mesoporous anatase TiO2.

241

These TiO2 NPs outperformed methylene blue photocatalysis,
which may be attributed to their increased surface area (87.2
m2 g−1) and the self-doping of TiO2. Moreover, they are
reusable and extremely resistant to photodegradation, with the
degradation efficiency lowered by just 13.3% at the conclusion
of 10 cycles (87.3%). Shen et al. showed photocatalytic activity
of biologically synthesized cerium-doped TiO2 NPs mounted

Table 4. Different Bio-Metal-Based NMs Which Have the
Potential for Use in Different Water Treatments

raw material metal NP rroperties ref

1. algae, Gracilaria corticata Ag spherical/18−46 nm 255
2. peel, Punica granatum ZnO 118 nm 256
3. algae, Padina gymnospora Au spherical/53−67 257
4. fruits, Vitis rotundifolia CoO ND 258
5. seed, Lactuca serriols NiO ND 259
6. fungus, Yarrowia lipolytica Au triangles/15 nm 260
7. bacteria, Azoarcus sp. CIB Se ND/123 ± 35 nm 261
8. seed, Terminalia chebula Fe3O4 ND 256
9. algae, Plectonema boryanum Pt spherical/30−0.3 μm 262
10. Fusarium oxysporum CdS 5−20 nm 263
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on porous glass for the degradation of methyl orange (rate
constant 0.095 min−1) and rhodamine B (0.23 min−1) under
visible light (band gap was 2.8 eV).242

ZnO NPs can also have photocatlytic properties. Corymbia
citriodora leaf extract was employed for the biosynthetic
pathway of ZnO NPs, and under visual irradiation, 84% of
methylene blue was destroyed after 90 min.243 As compared to
hydrothermally synthesized ZnO NPs, which exhibited only
60% degradation, these biosynthesized NPs had a band gap
that was lowered to 3.07 eV, resulting in better photocatalytic
activity under visible light. In another investigation, photo-
catalytic degradation of more than 56% was reported under
sunshine within 6 h using ZnO NPs biosynthesized using
grapefruit peel extract Citrus paradisi.244 Darroudi et al. studied
the sol−gel synthesis, characterization, and neurotoxicity of
NPs of ZnO utilizing gum tragacanth.245 At varying calcination
temperatures, spherical ZnO NPs were produced.

Magnesium oxide embedded nitrogen self-doped biochar
composites (MgO@Nbiochar) for rapid and high-efficiency
heavy metal adsorption in an aqueous solution were developed
by Ling et al.246 The research found that MgO@Nbiochar had
a good adsorption performance toward Pb, which might be due
to interactions between multiple functional groups on MgO@
N-biochar and Pb or Cd ions. Surface adsorption and ion-
exchange interactions were also crucial in Pb adsorption. These
findings imply that designing surface functional groups might
be a more viable strategy for high performance adsorbents
against heavy metals.

As compared with bulk materials, iron oxide NPs (FeNPs)
have superior characteristics for the elimination of organic
pollutants. Notably, their magnetic or ferromagnetic capa-
bilities render them particularly valuable in separation
procedures.247 Certain FeNPs, especially those exhibiting a
core−shell configuration, offer the potential to improve their
magnetic characteristics to a greater extent.248,249 FeNPs
(Fe2O3 and Fe3O4) are capable of removing heavy elements
like arsenic. The colored humic acids in wastewater were
successfully removed by Fe2O3 NPs.250 The polymer-grafted
Fe2O3 nanocomposite efficiently removes divalent heavy metal
ions such as copper, nickel, and cobalt across a wide pH range
of 3−7. Cai et al. investigated the adsorption of Cu2+ ions in
aqueous solution by a composite of montmorillonite and
biochar.251 The adsorption of Cu2+ ions from an aqueous
solution by the composite was thoroughly investigated. The
composite was shown to be a mesoporous material. The
surface of the montmorillonite-biochar composite is rough, and
the layer structure is uneven. Adsorption was also confirmed to
be accomplished in comparatively brief time periods.

Zerovalent iron NPs effectively convert chlorinated organic
molecules and PCBs. Wang et al. investigated the activation of
persulfate by green nanozerovalent iron-loaded biochar (nZVI-
BC) for p-nitrophenol elimination.252 In comparison to C-
nZVI-BC, G-nZVI-BC included tea polyphenols, which
enhanced Fe0 dispersibility on BC, inhibited nZVI agglomer-
ation on BC, and accelerated PNP degradation significantly.
The G-nZVI-BC/PDS system effectively removed PNP in the
pH range of 3.06−9.23. The reusability of G-nZVI-BC and the
PNP elimination impact in real water bodies suggested that G-
nZVI-BC has a promising future in water treatment. The Cu/
sodium borosilicate nanocomposite was created by Nasrollah-
zadeh et al. utilizing Acalypha indica L. leaf extract.253 The
research demonstrated a decrease in the concentrations of
nitroarenes and organic dyes in water. Parial and Pal reported

extracellular production of Au NPs from Lyngbya majuscula
and Spirulina subsalsa, where progressive development of color
provided a handy time-dependent visual signal showing large
bioconversion of Au3+ to Au0 resulting in a steady synthesis of
Au-NPs.254

■ APPLICATION OF BIONANOMATERIALS FOR
WASTEWATER TREATMENT TECHNOLOGIES

Green NMs such as nanowires, nanotubes, films, particles,
quantum dots, and colloids are used in wastewater treatment
systems. Pollutants are eliminated from industrial effluents,
surface water, groundwater, and drinking water using NMs in
environmentally benign and cost-effective ways.

When examining the use of biobased NMs in wastewater
treatment systems, it is important to recognize their distinct
advantages and disadvantages. These NPs are very effective in
effectively eliminating a broad spectrum of pollutants because
of their high reactivity and large surface area. As a result, they
are very efficient in processing complex industrial waste and
improving the filtration of drinking water. Nevertheless, the
implementation of NPs faces challenges such as the possibility
of environmental hazards due to NP discharge, the complex-
ities in managing and retrieving these materials, and the need
for more investigation to fully understand their enduring
effects on ecosystems and the well-being of people.

Originally, three kinds of membrane separation systems were
used in water purification systems: RO, UF, and MF. The
membrane filtration system is widely used to purify drinking
water from wastewater, ocean, and surface water. The use of
NPs in filter membranes is now quite common in the area of
water treatment systems. In the water treatment system, the
NPs performed a variety of functions, such as pollutant
material degradation, inorganic material remediation, anti-
bacterial activity, and disinfection. A variety of well-known
NPs, including silver NPs, gold NPs, zinc oxide NPs, titanium
dioxide NPs, magnesium oxide, and carbon nanotubes, are
effectively used in water and wastewater disinfection.264,265

The zinc oxide NPs have a high potential to destroy harmful
microorganisms and may be used instead of UV disinfection to
enhance water quality. Pd NPs and silver-based nanocatalysts
have improved halogenated organic compound biodegradation
and degraded organic dyes.266−268 Magnetic NPs, carbon
nanotubes, metal NPs, quantum dots, and dye-doped NPs are
widely used in pathogen tracking. NMs are distinguished by
their tiny size and vast surface area, as well as their superior
adsorption qualities and strong reduction capacity; these
distinguishing traits help to the removal of toxins from
wastewater.269 The use of green NMs for water and wastewater
treatment is divided into three categories: (1) nanoscale
filtration, (2) pollutant adsorption on NPs, and (3)
contaminant breakdown by the NP catalyst.
Nanoscale Filtration Technique. The nanomembranes

are composed of nanofibers that are used to remove
nanomicrosized contaminants from water bodies in order to
prevent fouling.270 NMs are used to create multifunctional
advance membranes, and an inorganic membrane is referred to
as a nanocomposite.271 In UF or RO, nanomembranes are
used as a pretreatment measure. NPs such as alumina, silica,
zeolite, and TiO2 are introduced into polymeric UF
membranes, where they improve the membrane performance
in terms of surface hydrophilicity, water permeability, and
fouling resistance. For the reductive degradation of chlorinated
chemicals, titanium dioxide NPs with inorganic membranes are
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used.272 Silver NPs comprising polymeric membranes
significantly prevented the growth of bacterial biofilms on
the membrane, which is widely used for water disinfection.
Adsorption of Pollutants on NPs. NMs have the

capacity to adsorb contaminants from water, with the surface
of the adsorbing material possessing certain functional groups
that interact with the contaminant’s ionic groups. Adsorbents
are composed of NMs or nanostructured materials with
extremely high specific surface areas, which may be paired with
functional groups, short diffusion distances, specified pore
sizes, and surface chemistry.273 Manganese oxide, zinc oxide,
magnesium oxide, titanium oxide, ferric oxides, and carbon
nanotubes are extensively utilized NPs for pollutant
adsorption.274 However, it is important to acknowledge that
the efficiency of these NP-based solutions is not only defined
by their remediation percentage. The cost, recoverability, and
reusability of NPs are essential factors for evaluating their
efficacy and long-term viability.
Breakdown of Contaminants by NP Catalysts. The

nanocatalysts are efficient in the elimination of a pollutant from
wastewater due to certain specific properties. Not only may
catalytic NPs remove pollutants but they may also break down
chemically.275 Catalytic NPs quickly break down water
pollutants such as organochlorine-based pesticides, halogen-
ated herbicides, Azo dyes, polychlorinated biphenyls, and
nitro-aromatic compounds. In wastewater treatment systems,
nanocatalytic materials, such as zerovalent metallic NPs,
semiconductor NPs, and bimetallic NPs, are often employed.
Magnetic NPs are specifically used to remove metallic salts,
heavy metals, and other organic pollutants from bodies of
water.276 Moreover, the addition of a magnetic core in these
NPs offers an additional benefit of facilitating their retrieval
from liquid media, hence elevating the practicality of their
reutilization in water treatment.

Using the aforementioned categories of wastewater treat-
ment by green NPs, they can used for disinfection, heavy metal
removal, removal of organic contaminants, and desalination.
Microorganisms, natural organic debris, and biological toxins
are regarded as pollutants in excess amounts in water.
Application of Bio-NMs in Wastewater Pretreatment.

Wastewater is first treated by multiple pretreatments to make it
ready for specific application treatments.7 The primary
challenge associated with wastewater treatment is the
accumulation of pollutants in water or wastewater technology.
The treatment requires an understanding of the pollutants
present and their effects on the environment. Multiple
processes are involved in the wastewater pretreatment like
pumping, screening, pH adjustments, coagulation and
flocculation, sedimentation, dissolved air flotation (DAF),
filtration, and prechlorination. Among the methods mentioned
above, coagulation and flocculation are the most commonly
employed processes that make use of NMs.
Coagulation and Flocculation. Coagulation neutralizes the

charges on the particles, and flocculants help them bind
together, making them aggregate so they can easily be
separated from the liquid.277 These processes involve the
addition of specific chemicals to eliminate the suspended
contaminants in water. The contaminants may be organic, like
algae, bacteria, viruses, or other organic matter, or inorganic,
such as clay and silt. These contaminants contribute to the
water’s turbidity and should be reduced. Inorganic coagulants
such as aluminum and iron salts are considered excellent
coagulant and flocculation agents. They are known to

neutralize the contaminant particles in seconds, precipitating
as metal hydroxides when reacting with water.277−280

NMs are becoming more popular as flocculants because of
their large surface area, high porosity, mechanical strength,
chemical reactivity, and large capacity for adsorption.281 Sun
and colleagues synthesized pure CNCs from cotton pulp.
Heavily charged CNCs shown considerable promise as a
revolutionary microalgal flocculant.282 Between pH 4 and 11,
the functionalized CNCs exhibited a positive surface charge.
The dosage-dependent flocculation effectiveness was depend-
ent on the degree of substitution of the pyridinium moieties. At
a dose of 0.1 g, the flocculation effectiveness of cationic CNCs
was more than 95%. The CNCs were largely immune to algal
organic matter influence. Pb adsorption with sulfonated CNC
(bleached birch chemical wood pulp) was investigated by
Suopajar̈vi et al.283 Comparable to commercial adsorbent
capabilities, the adsorption capacity of the NM (in municipal
wastewater) was 1.2 mmol/g at pH 5. The increasing lignin
concentration boosted the sulfonated adsorbent’s adsorption
effectiveness. It was able to remove 80% of the solution’s
turbidity and 60% of its COD content. Liu et al. investigated
the flocculation performance of CNC, GO, and polyacrylamide
(PAM) on methylene blue in aqueous phase.284 They observed
that GO was the most effective in removing MB, followed by
PAM and SWCNTs. According to their findings, electrostatic
and also other noncovalent interactions between MB and GO
are weak. This proposal contradicted the notion that
electrostatic attraction may be responsible for the interaction
between GO and MB molecules, which had been the subject of
previous speculation. SWCNTs were found to be the poorest
flocculation agent to remove MB from aqueous solution, as no
apparent floc developed at any pH value. This was due to the
limited solubility of SWCNTs in water, which resulted in a
weak contact between SWCNTs and the MB.

■ ADVANTAGES AND DISADVANTAGES
Biowaste-based nanomaterials represent a groundbreaking shift
toward sustainable wastewater treatment methodologies,
intertwining the goals of environmental conservation with
technological innovation.285 Leveraging abundant and often
underutilized organic waste from agricultural, industrial, and
municipal sources, these nanomaterials offer a cost-effective
and environmentally friendly alternative to traditional treat-
ment options. Their nanoscale dimensions afford them a high
surface area-to-volume ratio,285 significantly enhancing their
reactivity and efficiency in removing a wide array of pollutants,
from heavy metals to organic contaminants.286 Furthermore,
the utilization of biowaste not only diverts it from landfills,
thereby reducing environmental burden, but also aligns with
circular economy principles by transforming waste into
valuable resources. This approach not only addresses pressing
waste management issues but also propels wastewater
treatment into a new era of efficiency and sustainability,
promising cleaner water bodies and a healthier environ-
ment.287

While biowaste-based nanomaterials present a promising
avenue for sustainable wastewater treatment, they are not
without their disadvantages.288 Environmental concerns top
the list, as the long-term impacts of these nanomaterials are
still largely unknown, raising questions about their potential
toxicity to aquatic life and broader ecosystems.288,289 The
challenges extend to the recovery and recycling of these
materials after treatment, which can be both complex and
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costly, potentially offsetting their initial cost-effectiveness.
Scalability is another critical issue, as producing these
nanomaterials in quantities sufficient for industrial applications
may face hurdles related to feedstock variability and the need
for specialized processing equipment.290 Furthermore, regu-
latory and safety concerns for workers and the environment
necessitate comprehensive risk assessments and the develop-
ment of new safety protocols, adding layers of complexity and
expense. Technical limitations also exist; biowaste-based
nanomaterials might not be effective against all pollutants,
and their performance can be influenced by factors, such as
water chemistry. Lastly, the disposal of these nanomaterials
poses its own set of environmental risks, necessitating the
development of responsible end-of-life management strategies
to ensure that the benefits of these innovative materials do not
come at too great an environmental cost.291

Application of Bio-NMs in Desalination Technology.
Desalination removes salts from water to make it usable for
various applications, including industries, drinking, and
agriculture. Desalination can be done by various processes,
the majority of which are membrane processes. They are
subdivided into equilibrium- or nonequilibrium-based techni-
ques (Figure 8). This section discusses all of the available
membrane desalination processes and the recent advances in
the field using green NMs.
Membrane Distillation (MD). Membrane distillation (MD)

is a temperature-driven separation method that can contribute
to lowering our society’s water-energy stress.292 MD is a liquid
separation process where a microporous hydrophobic mem-
brane separates the two aqueous solutions at different
temperatures�the temperature gradient on the membrane
results in a vapor pressure difference.292,293 The process may
be powered by low-grade heat and/or waste at the same time,
such as solar energy,294 geothermal energy,295 wind, tidal, and
nuclear energy, or low-temperature industrial streams.296 In
comparison to other traditional membrane separation systems,
the MD separation process offers numerous advantages,
including low operating temperatures, cost-effectiveness
through the use of waste heat and renewable energy sources,
the capacity to process wastewater with an elevated level of
purity, and a lower likelihood of membrane fouling.297−299 As a
result of these outstanding characteristics, MD is an appealing
technology for wastewater treatment, saltwater desalination,
and a variety of other industrial applications such as

environmental purification, the food industry,300 medi-
cine,301,302 and acid manufacturing, among others.

Much research has been performed to solve the problems
related with membrane flow, fouling, wetting, and porosity by
modifying MD membranes using NPs such as CNTs, Ag, SiO2,
and TiO2.

303 Yan et al. developed a highly hydrophobic
electrospun NF membrane covered with a network of CNTs
for membrane distillation using a spraying approach.304 The
CNT network greatly improved the membrane hydrophobicity
and liquid entry pressure. The vacuum membrane distillation
(VMD) findings show that CNT-covered membranes
performed better in antiwetting and water flux in the
desalination process. Hubadillah and colleagues conducted a
study wherein they synthesized a ceramic hollow fiber
membrane made from green silica for the purpose of seawater
desalination using a direct contact membrane distillation
(DCMD) technique.305 The source material for the membrane
was rice husk. The permeate flux of DCMD was found to be
38.2 kg/(m2 h), which is high. The green ceramic membranes
were able to achieve a salt rejection rate of up to 99.9%.
Nthunya et al. conducted a study wherein they produced an
increased flux in DCMD through the utilization of super-
hydrophobic PVDF nanofiber membranes that were incorpo-
rated with SiO2 NPs that were organically modified with excess
apple extract.306 The membranes that were integrated with
SiO2 NPs modified with ODTS exhibited the highest level of
efficiency. They were able to reject salts at a rate exceeding
99.9% with water fluxes of approximately 34.2 LMH at a
temperature of 60 °C. This suggests that they have the
potential to be utilized as an energy-efficient method for
generating water of high purity.
Forward Osmosis (FO). FO, another membrane technology,

has the ability to clean wastewater and provide high-quality
water. FO is a technical word for the natural process of
osmosis, which involves the movement of water molecules
through a semipermeable membrane.307 In contrast to
pressure-driven membrane activities, the osmotic pressure
differential drives water transport. This might be the most
significant advantage of FO over existing pressure-driven
membrane technologies: the elimination of high hydraulic
pressure and low fouling tendency. It, therefore, provides an
opportunity to reduce energy consumption and membrane
replacement cost.307

Figure 8. Different membrane-based desalination techniques.
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The use of a FO-NF hybrid process instead of a standalone
RO unit in brackish water desalination resulted in reduced
contamination in the NF and a high water recovery (>90%)
owing to the inclusion of the FO phase. Wu et al. created a
functional TFC-FO membrane by integrating biogenic silver
NPs (BioAg) into a FO membrane’s polysulfone (PSf)
substrate utilizing Lactobacillus fermentum LMG 8900 as the
reducing agent.308 Prior to the phase inversion procedure, the
BioAg was inserted in the PSf casting solution. The results
showed that BioAg-FO nanocomposite membranes had
increased porosity, enhanced surface hydrophilicity, and
reduced internalized concentration polarization, resulting in
2.5−4.4 times higher water flow than virgin FO membranes.
The antifouling and antibacterial properties of the BioAg-FO
membrane were also dramatically enhanced.

Doshi et al. conducted research on the bioroute production
of carbon quantum dots (CQDs) from tulsi leaves and their
use as a draw solution in FO.309 In this study, the authors
prepared a 5% concentration solution using one-pot hydro-
thermally synthesized CQDs from tulsi leaves. In FO
operation, this innovative draw solution resulted in increased
water flow (10.72 L m−2 h−1) and reduced RSF (0.03 g−2 h−1)
using DI water as input compared with 1 M NaCl. In addition,
using synthetic wastewater, TCQD-G provided the highest
water flow, 5.34 L m−2 h−1. DashtArzhandi et al. sought to
improve the FO membrane’s desalination performance by
using green nanocrystalline cellulose (NCC) and halloysite
nanofillers.310 In terms of FO test findings, TFN membranes
containing NCC performed better than TFN membranes
without NPs, independent of membrane orientations and feed/
draw solution concentration. The membranes’ solute reverse
diffusional fluxes similarly exhibited insignificant variation, and
TFN 0.05 was the membrane with the highest performance for
both the FO water flow and low solute flux. This was most
likely due to the membranes’ very hydrophilic surface after
inclusion of NCC NPs. Zufia-Rivas et al. investigated the
impact of sodium polyacrylate (PAANa) on magnetite NPs
generated by green chemistry approaches and their use in
FO.311 In this study, the optimum compromise option for the
system Fe3O4/PAANa was determined to be the nano-
composite, which exhibits an excellent magnetic response,
>25 A m2/kg, superparamagnetic and hence reversible
behavior, and a reasonably high osmotic pressure of 11 bar
at high concentration.
Reverse Osmosis (RO). RO is one of the most common and

effective processes of membrane desalination technology to
purify seawater and brackish water.312 It has been employed as
an alternate source for creating clean water in order to reduce
desalination-related expenditures.313−315 Pressure is applied to
a saline solution, which drives the pure water through a
semipermeable membrane, leaving the unwanted salts or
contaminants passed in the reject stream. The final product or
permeate is much purer than the original feedwater. It can also
reject proteins, particles, bacteria, sugar, and dyes with a
molecular weight greater than a range of 150−250 kDa. The
only thing to remember with the RO process is that the
pressure applied on the saline solution should be higher than
the osmotic pressure of the feedwater to prevent the pure
water from moving into the saline solution.316−319

While it is true that RO is a well-known and commonly
utilized water desalination method, substantial research and
innovation are presently underway to overcome the primary
issues that the desalination process faces. The most difficult

obstacles are RO membrane fouling and salt rejection capacity.
Recent work on new membrane fabrication and membrane
modification have attempted to improve membrane fouling
resistance.316−318,320 Nevertheless, the use of such membranes
outside of the laboratory has to be investigated.

Very significant progress has been made in the development
of ultrapermeable and antifouling membranes. Most of the
exciting development is being driven by the recent discovery of
potential new desalination materials.321 Among these are
aquaporin proteins322,323 and carbon-based NMs such as
carbon nanotubes324 and graphene-based NMs.325,326 These
innovative materials provide new possibilities for developing
next-generation RO membranes. Water molecules are trans-
ferred through biological cells by a set of transmembrane
proteins called aquaporins (APQs), which offer a suitable
solution for desalination. AQPs, which have water transport
channels shaped like an hourglass, are very effective at
transporting water molecules with excellent selectivity.327

Aquaporin Z (AqpZ, an AQP present in Escherichia coli
cells) is more widely employed for membrane production,
owing to its ease of harvesting and extraction. Carbon-based
materials (CBMs), such as carbon nanotubes (CNTs),328−331

nanoporous graphene (NPG),332,333 and graphene oxide
(GO),334,335 have also emerged as potential membrane
materials due to their outstanding water transport capabilities.
The current body of research on the convergence of biogenic
NPs and their application in RO is severely restricted. Thus,
further research and investigation are required on the matter.
Nanofiltration (NF). NF is another pressure-driven

membrane liquid-separation technology. This process lies
between UF and RO. The term NF means the predicted
pore size of a membrane that has been defined by molecular
weight removal. The intake stream is separated into two parts:
permeate, that is the filtered component, and retentate, which
is the discarded nonfiltered part. NF has shown good organic
material removal.336,337 NF provides high rejection of multi-
valent ions like Ca2+ and low rejection of monovalent ions, like
Cl−, reducing the water’s hardness. The pore size of NF
membranes is slightly larger than that of RO membranes,
ranging from 1 to 10 nm and operating pressures of 5−35
bar.338 The membranes are made from polymers, ceramics, and
hybrids of polymers and ceramics.339 The enhanced flux, the
wider membrane pores, and less retention are some advantages
of NP membranes. Nevertheless, chlorine disinfection is crucial
for the elimination of microbial growth that has been recorded
in NF distribution networks. To limit microbial development,
NF membranes with low inorganic material retention and high
organic material removal may create high-quality water.

A study conducted by Deepa et al. investigated the impact of
diverse shapes of alumina NPs on the integrated polysulfone
membrane’s performance for the extraction of lignin from
wood-based biomass and salt rejection.340 The membrane was
synthesized utilizing alumina NPs of spindle, cubic, and
spherical shapes. The PSf/A3 membrane, which had a cubic
shape, exhibited a notable lignin rejection rate of 98.6%. The
PSf/A3 membrane’s inner pores alongside narrow channels
exhibit a high degree of selectivity, effectively impeding the
movement of lignin via the membrane and resulting in a high
degree of lignin rejection. Another study by Liu et al.
investigated the antibiofouling properties of TFC NF
membranes grafted with biogenic silver NPs.341 The process
of synthesizing biogenic silver NPs (Bio-Ag0-6) involved the
utilization of L. fermentum LMG 8900. The hydrophilicity and
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water flux of TFC NF membranes were improved by the
incorporation of biogenic AgNPs. The grafting of biogenic
AgNPs resulted in superior membrane stability compared to
chemical AgNPs. The biogenic silver NPs (AgNP) grafted
onto the nanofiber (NF) membrane exhibit superior
antibacterial efficacy.
Pervaporation. Pervaporation (PV) dates back to the

1910s, when Kober coined the word “pervaporation” from
“permeation” and “evaporation” of selective water transfer
through parchment or collodion.342 Pervaporation is an
effective method for separating liquid solutions comprising
tiny molecules, such as water and organic solvents. The bulk of
both academic and industry research on pervaporation
processes has focused on solvent dehydration, which may
break azeotropes (alcohol/water) based on the water affinity
and size discrimination impact of a hydrophilic membrane
rather than the inclusion of an entrainer. Pervaporation has
been extensively explored in the last two decades for the
separation of tiny quantities of volatile organic compounds
(VOCs) from water. This aspect’s main emphasis is the
recovery of bioalcohol (e.g., ethanol, butanol) from aqueous
solution utilizing hydrophobic pervaporation membranes.
Despite significant challenges in membrane stability and
selectivity, pervaporation has been used to separate organic/
organic mixtures with similar physicochemical features
(aromatic/aliphatic), which is a critical and energy-intensive
process in the chemical industry. Pervaporation membrane
materials’ design strategy, manufacturing technique, physico-
chemical attributes, pore structures, separation performance,
and transport mechanism are all important in effectively being
used in water treatment. The membranes are divided into 4
categories based on the material used to design them:
polymeric membrane, inorganic, 2-D membranes, and mix-
matrix membranes.

Extensive research has been conducted on the integration of
NMs into pervaporation (PV) membranes, while the
exploration of incorporating biogenic NPs into PV membranes
remains relatively scarce. The study conducted by Kamtsikakis
et al. examined the potential of CNCs as a modifiable NM for
pervaporation membranes that exhibit asymmetrical transport
characteristics.343 The present study reports on the develop-
ment of compositionally graded membranes utilizing a
hydrophobic matrix and CNCs. The CNCs underwent surface
alteration with oleic acid to achieve hydrophobicity as an
optional step. The direction-dependent transport of mem-
branes is attributed to their asymmetric structure. The
utilization of hydrophobized CNCs in membrane fabrication
has been observed to result in enhanced ethanol permeability.
Another study conducted by Prihatiningtyas et al. explored the
utilization of CNC as organic nanofillers in cellulose triacetate
membranes for the purpose of desalination through pervapora-
tion.344 The introduction of CNCs resulted in a transformation
of the membrane structure from a spongelike configuration to
a self-assembled structure. The results of the PV experiments
indicate that the inclusion of 3% CNCs in a CTA membrane
led to a significant improvement in water flux, increasing it by a
factor of 3 from 2.16 to 5.76 kg m−2 h−1. The optimization
process involved a reduction in the height of the casting blade
from 200 to 100 μm, resulting in a flux of 11.68 kg m−2 h−1 and
maintaining a NaCl rejection rate of 99.9%.
Electrodialysis (ED). ED is part of membrane desalination

technology. ED is similar to ion exchange but differs in
utilizing cation- and anion-selective membranes to separate

charged ions.345 It passes the saline solution through a
membrane setup with two chambers. The chambers are
separated by the membrane, which is selective toward allowing
ions but not the molecules. One chamber has an anode,
another one has a cathode, and the electric current is applied
to aid in the migration of ions from one electrode to the other.
The migration of ions results in separation of salt ions from the
solution by creating a concentration difference. The desali-
nated water is discharged from the system, and the ions are
collected in the chamber. Regular automatic polarity reversal
has introduced an improvement in the ED process. This helps
in decreasing the fouling process.346 Many industrial
operations produce salty wastewater, which must be
desalinated before reuse or disposal. To that end, the use of
ED has been investigated for the following major types of
industrial wastewater: produced water from oil and gas
extraction, sewage from refineries and petrochemical indus-
tries, drainage wastewaters from coal mining, and wastewater
from power plants. ED treatments for industrial wastewater
may be categorized in the separation of heavy metal ions,
regeneration of acid/base, and desalination. Researchers
globally are diligently endeavoring to enhance the efficacy of
ED membranes’ efficacy by incorporating NPs into the mix.
Despite the potential benefits, integrating biobased NMs into
ED membranes has yet to be fully realized, as indicated by the
limited number of research articles currently available on this
subject.

■ CONCLUSION
This review highlights the significant role bio-NMs can play in
effectively resolving the immediate challenges associated with
water purification. The potential of bio-NMs is extensive and
varied, stemming from a wide range of biomass sources,
including agricultural waste and microorganisms such as algae
and fungi, as well as various NP synthesis processes. The paper
extensively examines the diverse range of NMs, including
cellulose and metal-based variants, while emphasizing their
distinct characteristics and practical uses. The uses of these
materials showcase their flexibility, as they are used in several
areas such as nanoscale filtration and pollutant adsorption for
wastewater treatment as well as their potential contribution to
desalination technology. The many instances documented in
the literature effectively highlight the increasing attention and
progress within this particular sector. In conclusion, it is
apparent that bio-NMs not only provide a viable and
environmentally friendly substitute for conventional ap-
proaches but also have the potential to significantly transform
water treatment and desalination procedures.

■ FUTURE DIRECTIONS AND PERSPECTIVES
The investigation of bio-NMs in the field of water purification
signifies the beginning of a new age of sustainable approaches,
leveraging abundant resources provided by nature. This study
provides a comprehensive analysis of the recent advancements
in the synthesis of NMs using environmentally sustainable
approaches, with a particular focus on the use of biomass as a
crucial precursor. The increasing threat posed by environ-
mental toxins highlights the need to enhance and strengthen
the current cleanup procedures. The use of bio-NMs has
undeniable ecological advantages, providing a sustainable
alternative to conventional approaches. The use of many
sources, ranging from algae to agricultural waste, to produce
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these materials highlights the rich and diversified resources
available in nature for the sake of environmental restoration.

However, despite the seeming promise of bio-NMs, there
are still some persistent difficulties that need to be addressed.
The need for transitioning laboratory-scale findings to
industrial applications, particularly with regard to scalability,
remains of utmost importance. Further investigation is
required to examine the endurance and robustness of bio-
NMs, particularly in comparison to their synthetic equivalents.
It is crucial to acknowledge that while a technique may include
environmental friendliness, it should not lack effectiveness.
Further investigation is required in order to comprehend the
intricate relationship between sustainability and performance.

The economic feasibility of implementing large-scale bio-
NM deployment is a subject of ongoing discussion and
analysis. Although the initial investments required may be
large, the possible long-term advantages, such as decreased
expenses for environmental remediation and potential
regulatory incentives, have the ability to shift the balance in
favor of a positive economic projection. In the past few years,
there has been a notable rise in the development of novel
methodologies. These methodologies include the use of
various NMs, the integration of NMs with sophisticated
substrates, and the application of botanical extracts for the
synthesis of new NMs. Several other sources, including
microalgae, chitosan, and bacteria, have shown significant
promise in advancing the development of bio-NPs.

Although there have been several studies conducted on the
use of bio-NMs for adsorption applications, there is a
noticeable lack of research exploring their potential application
in desalination technologies. This discrepancy highlights a
relevant research opportunity. As the worldwide need to
mitigate the freshwater shortage becomes more pressing, the
incorporation of environmentally friendly NMs into desalina-
tion methods is a viable and economically viable approach. The
process of transitioning from controlled conditions to practical,
real-world applications has significant importance. The full
potential of bio-NMs can be fully understood and harnessed
only via rigorous testing in many uncontrolled environments.
This underscores the need to conduct extensive studies that
thoroughly assess both the efficacy of bio-NMs and their long-
term ecological consequences.
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Ghoreyshi, A. A.; Anbia, M. Preparation and Characterization of
Highly Pure Silica from Sedge as Agricultural Waste and Its
Utilization in the Synthesis of Mesoporous Silica MCM-41. J. Taiwan
Inst. Chem. Eng. 2013, 44 (5), 821−828.
(183) One-Pot Facile Synthesis of Graphene Quantum Dots from

Rice Husks for Fe3+ SensingIndustrial & Engineering Chemistry
Research. https://pubs-acs-org.inc.bib.cnrs.fr/doi/10.1021/acs.iecr.
8b00913 (accessed 2023-04-15).

(184) Versatile Nanostructures from Rice Husk Biomass for Energy
ApplicationsAngewandte Chemie International Edition. https://
onlinelibrary-wiley-com.inc.bib.cnrs.fr/doi/10.1002/anie.201802050
(accessed 2023-04-15).
(185) Liu, T.; Yu, K.; Gao, L.; Chen, H.; Wang, N.; Hao, L.; Li, T.;

He, H.; Guo, Z. A Graphene Quantum Dot Decorated SrRuO3Me-
soporous Film as an Efficient Counter Electrode for High-Perform-
ance Dye-Sensitized Solar Cells. J. Mater. Chem. A 2017, 5 (34),
17848−17855.
(186) Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene Quantum Dots:

Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photo-
voltaic Devices. Chem. Commun. 2012, 48 (31), 3686−3699.
(187) Wang, Z.; Zeng, H.; Sun, L. Graphene Quantum Dots:

Versatile Photoluminescence for Energy, Biomedical, and Environ-
mental Applications. J. Mater. Chem. C 2015, 3 (6), 1157−1165.
(188) Graphene Quantum Dots - Bacon - 2014 - Particle & Particle
Systems Characterization - Wiley Online Library. https://onlinelibrary-
wiley-com.inc.bib.cnrs.fr/doi/10.1002/ppsc.201300252 (accessed
2023-04-15).
(189) Mahat, N. A.; Shamsudin, S. A.; Jullok, N.; Ma’Radzi, A. H.

Carbon Quantum Dots Embedded Polysulfone Membranes for
Antibacterial Performance in the Process of Forward Osmosis.
Desalination 2020, 493, No. 114618.
(190) Lecaros, R. L. G.; Valbuena, R. E.; Tayo, L. L.; Hung, W.-S.;

Hu, C.-C.; Tsai, H.-A.; Huang, S.-H.; Lee, K.-R.; Lai, J.-Y. Tannin-
Based Thin-Film Composite Membranes Integrated with Nitrogen-
Doped Graphene Quantum Dots for Butanol Dehydration through
Pervaporation. J. Membr. Sci. 2021, 623, No. 119077.
(191) Amari, A.; Elboughdiri, N.; Ghernaout, D.; Lajimi, R. H.;

Alshahrani, A. M.; Tahoon, M. A.; Rebah, F. B. Multifunctional
Crosslinked Chitosan/Nitrogen-Doped Graphene Quantum Dot for
Wastewater Treatment. Ain Shams Eng. J. 2021, 12 (4), 4007−4014.
(192) Roy, P.; Periasamy, A. P.; Chuang, C.; Liou, Y.-R.; Chen, Y.-

F.; Joly, J.; Liang, C.-T.; Chang, H.-T. Plant Leaf-Derived Graphene
Quantum Dots and Applications for White LEDs. New J. Chem. 2014,
38 (10), 4946−4951.
(193) Yan, Z.; Yang, X.; Lynch, I.; Cui, F. Comparative Evaluation of

the Mechanisms of Toxicity of Graphene Oxide and Graphene Oxide
Quantum Dots to Blue-Green Algae Microcystis Aeruginosa in the
Aquatic Environment. J. Hazard. Mater. 2022, 425, No. 127898.
(194) Alone and combined toxicity of ZnO nanoparticles and graphene
quantum dots on microalgae Gymnodinium | SpringerLink. https://link.
springer.com/article/10.1007/s11356-022-19267-y (accessed 2023-
04-15).
(195) Kumawat, M. K.; Thakur, M.; Gurung, R. B.; Srivastava, R.

Graphene Quantum Dots from Mangifera Indica: Application in
Near-Infrared Bioimaging and Intracellular Nanothermometry. ACS
Sustain. Chem. Eng. 2017, 5 (2), 1382−1391.
(196) Xiao, A.; Wang, C.; Chen, J.; Guo, R.; Yan, Z.; Chen, J.

Carbon and Metal Quantum Dots Toxicity on the Microalgae
Chlorella Pyrenoidosa. Ecotoxicol. Environ. Saf. 2016, 133, 211−217.
(197) Saedi, A.; Moradi, A. M.; Kimiagar, S.; Panahi, H. A. Efficiency

Enhancement of Dye-Sensitized Solar Cells Based on Gracilaria/Ulva
Using Graphene Quantum Dot. Int. J. Environ. Res. 2020, 14 (4),
393−402.
(198) Olmos-Moya, P. M.; Velazquez-Martinez, S.; Pineda-Arellano,

C.; Rangel-Mendez, J. R.; Chazaro-Ruiz, L. F. High Added Value
Functionalized Carbon Quantum Dots Synthetized from Orange
Peels by Assisted Microwave Solvothermal Method and Their
Performance as Photosensitizer of Mesoporous TiO2 Photoelectr-
odes. Carbon 2022, 187, 216−229.
(199) Arumugham, T.; Alagumuthu, M.; Amimodu, R. G.;

Munusamy, S.; Iyer, S. K. A Sustainable Synthesis of Green Carbon
Quantum Dot (CQD) from Catharanthus Roseus (White Flowering
Plant) Leaves and Investigation of Its Dual Fluorescence Responsive
Behavior in Multi-Ion Detection and Biological Applications. Sustain.
Mater. Technol. 2020, 23, No. e00138.
(200) Varun, T. K.; Senani, S.; Jayapal, N.; Chikkerur, J.; Roy, S.;

Tekulapally, V. B.; Gautam, M.; Kumar, N. Extraction of Chitosan

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c08883
ACS Omega 2024, 9, 29088−29113

29108

https://doi.org/10.1007/s11051-009-9621-2
https://doi.org/10.1007/s11051-009-9621-2
https://doi.org/10.1021/acs.iecr.9b03345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.9b03345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.9b03345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/b719528a
https://doi.org/10.1039/b719528a
https://doi.org/10.1016/j.petrol.2020.107002
https://doi.org/10.1016/j.petrol.2020.107002
https://doi.org/10.1016/j.bioorg.2020.103773
https://doi.org/10.1016/j.bioorg.2020.103773
https://doi.org/10.1016/j.bioorg.2020.103773
https://doi.org/10.1021/ja062113+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja062113+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja062113+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jnoncrysol.2009.04.011
https://doi.org/10.1016/j.jnoncrysol.2009.04.011
https://doi.org/10.1016/j.jnoncrysol.2009.04.011
https://doi.org/10.1016/j.gsd.2017.12.007
https://doi.org/10.1016/j.gsd.2017.12.007
https://doi.org/10.1016/j.gsd.2017.12.007
https://doi.org/10.1007/s13205-015-0307-4
https://doi.org/10.1007/s13205-015-0307-4
https://doi.org/10.1007/s13205-015-0307-4
https://doi.org/10.1007/s13205-015-0307-4
https://doi.org/10.1016/j.partic.2013.11.003
https://doi.org/10.1016/j.partic.2013.11.003
https://doi.org/10.1016/j.partic.2013.11.003
https://doi.org/10.1016/j.powtec.2012.04.002
https://doi.org/10.1016/j.powtec.2012.04.002
https://doi.org/10.1063/1.5002317
https://doi.org/10.1063/1.5002317
https://doi.org/10.1002/adma.200401176
https://doi.org/10.1002/adma.200401176
https://doi.org/10.1007/s10971-019-04922-7
https://doi.org/10.1007/s10971-019-04922-7
https://doi.org/10.1007/s10971-019-04922-7
https://doi.org/10.1007/s11671-010-9654-6
https://doi.org/10.1007/s11671-010-9654-6
https://doi.org/10.1016/j.jascer.2015.12.001
https://doi.org/10.1016/j.jascer.2015.12.001
https://doi.org/10.1016/j.jtice.2013.01.019
https://doi.org/10.1016/j.jtice.2013.01.019
https://doi.org/10.1016/j.jtice.2013.01.019
https://pubs-acs-org.inc.bib.cnrs.fr/doi/10.1021/acs.iecr.8b00913
https://pubs-acs-org.inc.bib.cnrs.fr/doi/10.1021/acs.iecr.8b00913
https://onlinelibrary-wiley-com.inc.bib.cnrs.fr/doi/10.1002/anie.201802050
https://onlinelibrary-wiley-com.inc.bib.cnrs.fr/doi/10.1002/anie.201802050
https://doi.org/10.1039/C7TA05123A
https://doi.org/10.1039/C7TA05123A
https://doi.org/10.1039/C7TA05123A
https://doi.org/10.1039/c2cc00110a
https://doi.org/10.1039/c2cc00110a
https://doi.org/10.1039/c2cc00110a
https://doi.org/10.1039/C4TC02536A
https://doi.org/10.1039/C4TC02536A
https://doi.org/10.1039/C4TC02536A
https://onlinelibrary-wiley-com.inc.bib.cnrs.fr/doi/10.1002/ppsc.201300252
https://onlinelibrary-wiley-com.inc.bib.cnrs.fr/doi/10.1002/ppsc.201300252
https://doi.org/10.1016/j.desal.2020.114618
https://doi.org/10.1016/j.desal.2020.114618
https://doi.org/10.1016/j.memsci.2021.119077
https://doi.org/10.1016/j.memsci.2021.119077
https://doi.org/10.1016/j.memsci.2021.119077
https://doi.org/10.1016/j.memsci.2021.119077
https://doi.org/10.1016/j.asej.2021.02.024
https://doi.org/10.1016/j.asej.2021.02.024
https://doi.org/10.1016/j.asej.2021.02.024
https://doi.org/10.1039/C4NJ01185F
https://doi.org/10.1039/C4NJ01185F
https://doi.org/10.1016/j.jhazmat.2021.127898
https://doi.org/10.1016/j.jhazmat.2021.127898
https://doi.org/10.1016/j.jhazmat.2021.127898
https://doi.org/10.1016/j.jhazmat.2021.127898
https://link.springer.com/article/10.1007/s11356-022-19267-y
https://link.springer.com/article/10.1007/s11356-022-19267-y
https://doi.org/10.1021/acssuschemeng.6b01893?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.6b01893?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ecoenv.2016.07.026
https://doi.org/10.1016/j.ecoenv.2016.07.026
https://doi.org/10.1007/s41742-020-00265-2
https://doi.org/10.1007/s41742-020-00265-2
https://doi.org/10.1007/s41742-020-00265-2
https://doi.org/10.1016/j.carbon.2021.11.003
https://doi.org/10.1016/j.carbon.2021.11.003
https://doi.org/10.1016/j.carbon.2021.11.003
https://doi.org/10.1016/j.carbon.2021.11.003
https://doi.org/10.1016/j.carbon.2021.11.003
https://doi.org/10.1016/j.susmat.2019.e00138
https://doi.org/10.1016/j.susmat.2019.e00138
https://doi.org/10.1016/j.susmat.2019.e00138
https://doi.org/10.1016/j.susmat.2019.e00138
https://doi.org/10.14202/vetworld.2017.170-175
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c08883?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and Its Oligomers from Shrimp Shell Waste, Their Characterization
and Antimicrobial Effect. Vet. World 2017, 10 (2), 170−175.
(201) Pakizeh, M.; Moradi, A.; Ghassemi, T. Chemical Extraction

and Modification of Chitin and Chitosan from Shrimp Shells. Eur.
Polym. J. 2021, 159, No. 110709.
(202) Islam, A.; Islam, M. S.; Zakaria, M. U. M. A.; Paul, S. C.;

Mamun, A. A. Extraction and Worth Evaluation of Chitosan from
Shrimp and Prawn Co-Products. Am. J. Food Technol. 2019, 15 (1),
43−48.
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S.; Marsá̌lek, B. Iron and Iron Oxide Nanoparticles Synthesized with
Green Tea Extract: Differences in Ecotoxicological Profile and Ability
to Degrade Malachite Green. ACS Sustain. Chem. Eng. 2018, 6 (7),
8679−8687.
(248) Darwish, M. S. A.; Kim, H.; Lee, H.; Ryu, C.; Young Lee, J.;

Yoon, J. Engineering Core-Shell Structures of Magnetic Ferrite
Nanoparticles for High Hyperthermia Performance. Nanomaterials
2020, 10 (5), 991.
(249) Khurshid, H.; Hadjipanayis, C. G.; Chen, H.; Li, W.; Mao, H.;

Machaidze, R.; Tzitzios, V.; Hadjipanayis, G. C. Core/Shell
Structured Iron/Iron-Oxide Nanoparticles as Excellent MRI Contrast
Enhancement Agents. J. Magn. Magn. Mater. 2013, 331, 17−20.
(250) Zhou, Y.; Gao, B.; Zimmerman, A. R.; Chen, H.; Zhang, M.;

Cao, X. Biochar-Supported Zerovalent Iron for Removal of Various
Contaminants from Aqueous Solutions. Bioresour. Technol. 2014, 152,
538−542.
(251) Cai, Y.; Du, Y.; Wang, Y.; Song, J.; Liu, B.; Zhang, C.; Qiu, M.

Adsorption of Copper Ions in Aqueous Solution by Montmorillonite-
Biochar Composite. Nat. Environ. Pollut. Technol. 2019, 18 (4).1
(252) Wang, B.; Zhu, C.; Ai, D.; Fan, Z. Activation of Persulfate by

Green Nano-Zero-Valent Iron-Loaded Biochar for the Removal of p-
Nitrophenol: Performance, Mechanism and Variables Effects. J.
Hazard. Mater. 2021, 417, No. 126106.
(253) Nasrollahzadeh, M.; Sajjadi, M.; Dasmeh, H. R.; Sajadi, S. M.

Green Synthesis of the Cu/Sodium Borosilicate Nanocomposite and
Investigation of Its Catalytic Activity. J. Alloys Compd. 2018, 763,
1024−1034.

(254) Parial, D.; Pal, R. Green Synthesis of Gold Nanoparticles
Using Cyanobacteria and Their Characterization. Indian J. Appl. Res.
2011, 4 (1), 69−72.
(255) Kumar, P.; Selvi, S. S.; Prabha, A. L.; Kumar, K. P.;

Ganeshkumar, R. S.; Govindaraju, M. Synthesis of Silver Nano-
particles from Sargassum Tenerrimum and Screening Phytochemicals
for Its Antibacterial Activity. Nano Biomed. Eng. 2012, 4 (1), 12−16.
(256) Singh, P.; Singh, K. R.; Verma, R.; Singh, J.; Singh, R. P.

Efficient Electro-Optical Characteristics of Bioinspired Iron Oxide
Nanoparticles Synthesized by Terminalia Chebula Dried Seed Extract.
Mater. Lett. 2022, 307, No. 131053.
(257) Singaravelu, G.; Arockiamary, J. S.; Kumar, V. G.;

Govindaraju, K. A Novel Extracellular Synthesis of Monodisperse
Gold Nanoparticles Using Marine Alga, Sargassum Wightii Greville.
Colloids Surf. B Biointerfaces 2007, 57 (1), 97−101.
(258) Samuel, M. S.; Selvarajan, E.; Mathimani, T.; Santhanam, N.;

Phuong, T. N.; Brindhadevi, K.; Pugazhendhi, A. Green Synthesis of
Cobalt-Oxide Nanoparticle Using Jumbo Muscadine (Vitis Rotundi-
folia): Characterization and Photo-Catalytic Activity of Acid Blue-74.
J. Photochem. Photobiol., B 2020, 211, No. 112011.
(259) Ali, T.; Warsi, M. F.; Zulfiqar, S.; Sami, A.; Ullah, S.; Rasheed,

A.; Alsafari, I. A.; Agboola, P. O.; Shakir, I.; Baig, M. M. Green
Nickel/Nickel Oxide Nanoparticles for Prospective Antibacterial and
Environmental Remediation Applications. Ceram. Int. 2022, 48 (6),
8331−8340.
(260) Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Ramani, R.;

Srinivas, V.; Sastry, M. Intracellular Synthesis of Gold Nanoparticles
by a Novel Alkalotolerant Actinomycete, Rhodococcus Species.
Nanotechnology 2003, 14 (7), 824−828.
(261) Fernández-Llamosas, H.; Castro, L.; Blázquez, M. L.; Díaz, E.;

Carmona, M. Biosynthesis of Selenium Nanoparticles by Azoarcus Sp.
CIB. Microb. Cell Factories 2016, 15 (1), 109.
(262) Lengke, M. F.; Fleet, M. E.; Southam, G. Synthesis of

Platinum Nanoparticles by Reaction of Filamentous Cyanobacteria
with Platinum(IV)−Chloride Complex. Langmuir 2006, 22 (17),
7318−7323.
(263) Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M.

I.; Kumar, R.; Sastry, M. Enzyme Mediated Extracellular Synthesis of
CdS Nanoparticles by the Fungus, Fusarium Oxysporum. J. Am.
Chem. Soc. 2002, 124 (41), 12108−12109.
(264) Li, D.; Lyon, D. Y.; Li, Q.; Alvarez, P. J. J. Effect of Soil

Sorption and Aquatic Natural Organic Matter on the Antibacterial
Activity of a Fullerene Water Suspension. Environ. Toxicol. Chem.
2008, 27 (9), 1888−1894.
(265) Elmi, F.; Alinezhad, H.; Moulana, Z.; Salehian, F.; Mohseni

Tavakkoli, S.; Asgharpour, F.; Fallah, H.; Elmi, M. M. The Use of
Antibacterial Activity of ZnO Nanoparticles in the Treatment of
Municipal Wastewater. Water Sci. Technol. J. Int. Assoc. Water Pollut.
Res. 2014, 70 (5), 763−770.
(266) Wu, Z.-C.; Zhang, Y.; Tao, T.-X.; Zhang, L.; Fong, H. Silver

Nanoparticles on Amidoxime Fibers for Photo-Catalytic Degradation
of Organic Dyes in Waste Water. Appl. Surf. Sci. 2010, 257 (3),
1092−1097.
(267) Zhang, K.; Kemp, K. C.; Chandra, V. Homogeneous

Anchoring of TiO2 Nanoparticles on Graphene Sheets for Waste
Water Treatment. Mater. Lett. 2012, 81, 127−130.
(268) Zhang, C.; Sui, J.; Li, J.; Tang, Y.; Cai, W. Efficient Removal of

Heavy Metal Ions by Thiol-Functionalized Superparamagnetic
Carbon Nanotubes. Chem. Eng. J. 2012, 210, 45−52.
(269) Theron, J.; Walker, J. A.; Cloete, T. E. Nanotechnology and

Water Treatment: Applications and Emerging Opportunities. Crit.
Rev. Microbiol. 2008, 34 (1), 43−69.
(270) Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.;

Ajayan, P. M. Carbon Nanotube Filters. Nat. Mater. 2004, 3 (9),
610−614.
(271) Catalytic Membranes Prepared Using Layer-by-Layer Adsorption
of Polyelectrolyte/Metal Nanoparticle Films in Porous Supports | Nano
Letters. https://pubs-acs-org.inc.bib.cnrs.fr/doi/10.1021/nl061700q
(accessed 2023-04-15).

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c08883
ACS Omega 2024, 9, 29088−29113

29110

https://doi.org/10.1088/2043-6254/aaabb2
https://doi.org/10.1088/2043-6254/aaabb2
https://doi.org/10.1016/B978-0-08-102579-6.00010-1
https://doi.org/10.1016/B978-0-08-102579-6.00010-1
https://doi.org/10.1016/B978-0-08-102579-6.00010-1
https://doi.org/10.1016/B978-0-08-102579-6.00010-1?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.mne.2021.100100
https://doi.org/10.1016/j.mne.2021.100100
https://doi.org/10.1016/j.mne.2021.100100
https://doi.org/10.1016/B978-0-12-819051-7.00002-6
https://doi.org/10.1016/B978-0-12-819051-7.00002-6
https://doi.org/10.1016/B978-0-12-819051-7.00002-6?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C7RA08187A
https://doi.org/10.1039/C7RA08187A
https://doi.org/10.1016/j.partic.2017.01.007
https://doi.org/10.1016/j.partic.2017.01.007
https://doi.org/10.1016/j.partic.2017.01.007
https://doi.org/10.1080/17518253.2015.1075069
https://doi.org/10.1080/17518253.2015.1075069
https://doi.org/10.1080/17518253.2015.1075069
https://doi.org/10.1155/2014/523869
https://doi.org/10.1155/2014/523869
https://doi.org/10.1016/j.ceramint.2013.05.021
https://doi.org/10.1016/j.ceramint.2013.05.021
https://doi.org/10.1016/j.ceramint.2013.05.021
https://doi.org/10.1021/acs.est.7b02382?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.7b02382?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.7b02382?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.8b00986?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.8b00986?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.8b00986?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/nano10050991
https://doi.org/10.3390/nano10050991
https://doi.org/10.1016/j.jmmm.2012.10.049
https://doi.org/10.1016/j.jmmm.2012.10.049
https://doi.org/10.1016/j.jmmm.2012.10.049
https://doi.org/10.1016/j.biortech.2013.11.021
https://doi.org/10.1016/j.biortech.2013.11.021
https://doi.org/10.1016/j.jhazmat.2021.126106
https://doi.org/10.1016/j.jhazmat.2021.126106
https://doi.org/10.1016/j.jhazmat.2021.126106
https://doi.org/10.1016/j.jallcom.2018.05.012
https://doi.org/10.1016/j.jallcom.2018.05.012
https://doi.org/10.15373/2249555X/JAN2014/22
https://doi.org/10.15373/2249555X/JAN2014/22
https://doi.org/10.5101/nbe.v4i1.p12-16
https://doi.org/10.5101/nbe.v4i1.p12-16
https://doi.org/10.5101/nbe.v4i1.p12-16
https://doi.org/10.1016/j.matlet.2021.131053
https://doi.org/10.1016/j.matlet.2021.131053
https://doi.org/10.1016/j.colsurfb.2007.01.010
https://doi.org/10.1016/j.colsurfb.2007.01.010
https://doi.org/10.1016/j.jphotobiol.2020.112011
https://doi.org/10.1016/j.jphotobiol.2020.112011
https://doi.org/10.1016/j.jphotobiol.2020.112011
https://doi.org/10.1016/j.ceramint.2021.12.039
https://doi.org/10.1016/j.ceramint.2021.12.039
https://doi.org/10.1016/j.ceramint.2021.12.039
https://doi.org/10.1088/0957-4484/14/7/323
https://doi.org/10.1088/0957-4484/14/7/323
https://doi.org/10.1186/s12934-016-0510-y
https://doi.org/10.1186/s12934-016-0510-y
https://doi.org/10.1021/la060873s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la060873s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la060873s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja027296o?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja027296o?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1897/07-548.1
https://doi.org/10.1897/07-548.1
https://doi.org/10.1897/07-548.1
https://doi.org/10.2166/wst.2014.232
https://doi.org/10.2166/wst.2014.232
https://doi.org/10.2166/wst.2014.232
https://doi.org/10.1016/j.apsusc.2010.08.022
https://doi.org/10.1016/j.apsusc.2010.08.022
https://doi.org/10.1016/j.apsusc.2010.08.022
https://doi.org/10.1016/j.matlet.2012.05.002
https://doi.org/10.1016/j.matlet.2012.05.002
https://doi.org/10.1016/j.matlet.2012.05.002
https://doi.org/10.1016/j.cej.2012.08.062
https://doi.org/10.1016/j.cej.2012.08.062
https://doi.org/10.1016/j.cej.2012.08.062
https://doi.org/10.1080/10408410701710442
https://doi.org/10.1080/10408410701710442
https://doi.org/10.1038/nmat1192
https://pubs-acs-org.inc.bib.cnrs.fr/doi/10.1021/nl061700q
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c08883?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(272) Zhang, X.; Du, A. J.; Lee, P.; Sun, D. D.; Leckie, J. O. TiO2
Nanowire Membrane for Concurrent Filtration and Photocatalytic
Oxidation of Humic Acid in Water. J. Membr. Sci. 2008, 313 (1), 44−
51.
(273) Gubin, S. P.; Koksharov, Y. A.; Khomutov, G. B.; Yurkov, G.

Y. Magnetic Nanoparticles: Preparation, Structure and Properties.
Russ. Chem. Rev. 2005, 74 (6), 489.
(274) Tyagi, I.; Gupta, V. K.; Sadegh, H.; Ghoshekandi, R. S.;

Makhlouf, A. S. H. Nanoparticles as Adsorbent; a Positive Approach
for Removal of Noxious Metal Ions: A Review. Sci. Technol. Dev.
2017, 34 (3), 195−214.
(275) Dutta, A. K.; Maji, S. K.; Adhikary, B. γ-Fe2O3 Nanoparticles:

An Easily Recoverable Effective Photo-Catalyst for the Degradation of
Rose Bengal and Methylene Blue Dyes in the Waste-Water Treatment
Plant. Mater. Res. Bull. 2014, 49, 28−34.
(276) Ma, H.; Wang, H.; Na, C. Microwave-Assisted Optimization

of Platinum-Nickel Nanoalloys for Catalytic Water Treatment. Appl.
Catal. B Environ. 2015, 163, 198−204.
(277) Altmann, J.; Zietzschmann, F.; Geiling, E.-L.; Ruhl, A. S.;

Sperlich, A.; Jekel, M. Impacts of Coagulation on the Adsorption of
Organic Micropollutants onto Powdered Activated Carbon in Treated
Domestic Wastewater. Chemosphere 2015, 125, 198−204.
(278) Katrivesis, F. K.; Karela, A. D.; Papadakis, V. G.; Paraskeva, C.

A. Revisiting of Coagulation-Flocculation Processes in the Production
of Potable Water. J. Water Process Eng. 2019, 27, 193−204.
(279) Liu, F.; Zhang, C.; Zhao, T.; Zu, Y.; Wu, X.; Li, B.; Xing, X.;

Niu, J.; Chen, X.; Qin, C. Effects of Phosphate on the Dispersion
Stability and Coagulation/Flocculation/Sedimentation Removal
Efficiency of Anatase Nanoparticles. Chemosphere 2019, 224, 580−
587.
(280) Guo, D.; Wang, H.; Fu, P.; Huang, Y.; Liu, Y.; Lv, W.; Wang,

F. Diatomite Precoat Filtration for Wastewater Treatment: Filtration
Performance and Pollution Mechanisms. Chem. Eng. Res. Des. 2018,
137, 403−411.
(281) A review of nano-based materials used as flocculants for water
treatment | SpringerLink. https://link.springer.com/article/10.1007/
s13762-020-02723-y (accessed 2023-04-15).
(282) Sun, B.; Zhang, M.; Hou, Q.; Liu, R.; Wu, T.; Si, C. Further

Characterization of Cellulose Nanocrystal (CNC) Preparation from
Sulfuric Acid Hydrolysis of Cotton Fibers. Cellulose 2016, 23 (1),
439−450.
(283) Suopajärvi, T.; Liimatainen, H.; Karjalainen, M.; Upola, H.;

Niinimäki, J. Lead Adsorption with Sulfonated Wheat Pulp Nano-
celluloses. J. Water Process Eng. 2015, 5, 136−142.
(284) Liu, J.; Li, P.; Xiao, H.; Zhang, Y.; Shi, X.; Lü, X.; Chen, X.
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