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Abstract Uncovering conserved 3D protein–ligand binding patterns on the basis of functional

groups (FGs) shared by a variety of small molecules can greatly expand our knowledge of

protein–ligand interactions. Despite that conserved binding patterns for a few commonly used

FGs have been reported in the literature, large-scale identification and evaluation of FG-based

3D binding motifs are still lacking. Here, we propose a computational method, Automatic

FG-based Three-dimensional Motif Extractor (AFTME), for automatic mapping of 3D motifs

to different FGs of a specific ligand. Applying our method to 233 naturally-occurring ligands, we

define 481 FG-binding motifs that are highly conserved across different ligand-binding pockets.

Systematic analysis further reveals four main classes of binding motifs corresponding to distinct sets

of FGs. Combinations of FG-binding motifs facilitate the binding of proteins to a wide spectrum of

ligands with various binding affinities. Finally, we show that our FG–motif map can be used to

nominate FGs that potentially bind to specific drug targets, thus providing useful insights and

guidance for rational design of small-molecule drugs.
Introduction

Protein–ligand interactions play fundamental roles in many
important cellular functions, including small molecule metabo-
lism, enzymatic catalysis, and signal transduction and regula-

tion. Comprehensive knowledge of protein–ligand
interactions can not only provide important insights into
ciences /
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biological functions of ligand-binding proteins but also be
greatly benefit to drug discovery and development [1,2]. Many
proteins that don’t display overall sequence or structure simi-

larities may share similar local 3D structures and can bind to
same or similar ligands, thus identifying conserved binding
patterns across different ligand-binding proteins at 3D level

could facilitate a better understanding of protein–ligand recog-
nition [3–5].

With the rapid accumulation of experimentally determined

structures of protein–ligand complexes, it became possible for
large-scale identification of conserved 3D binding motifs using
computational approaches [6,7]. Current methods based on
structural comparison or alignment of protein pockets have

identified many well-defined 3D motifs that are conserved
across different protein pockets and widely used for protein
function annotation, pocket classification, and ligand-binding

prediction [8–13]. However, these ligand-based 3D binding
patterns are not applicable to large fraction of ligands espe-
cially small-molecule drugs due to the lack of reference 3D

protein–ligand structures.
Despite the functional and structural diversity of differ-

ent protein-binding ligands, many of them share same or

similar functional groups (FGs) that mediate the interac-
tions with the target proteins. Therefore, identification of
conserved 3D binding motifs for FGs shared by different
small molecules may extend our understanding of protein–

ligand interactions to higher resolution and broader scope
[14]. Previous studies have shown that conserved 3D motifs
do exist in proteins binding different ligands with the same

FG. For example, the phosphate-binding loop (P-loop)
motif [15,16], in which the residues are highly conserved
in terms of amino acid types as well as spatial positions

among diverse phosphate-binding proteins. Conserved 3D
motifs were also reported for other FGs such as adenine
ring [17–19], heme group [20,21], and prosthetic groups

[22]. However, these motifs were either uncovered through
manual analysis of a small set of protein structures by an
expert (e.g., a crystallographer) or through structural align-
ment of proteins that bind FGs with rigid structures, which

are subjected to limited FG types and/or biased datasets of
3D structures. Computational methods for automatic
extraction of 3D binding motifs for a variety of FGs in

large scale are still lacking.
To systematically identify and evaluate 3D binding motifs

at FG level, we developed Automatic FG-based Three-

dimensional Motif Extractor (AFTME), a computational
method that automatically extract 3D FG-binding motifs.
Our approach adopts commonly used strategy to describe
3D ligand-binding patterns [8,13,23], which quantitatively

presents functional atoms (FAs) within certain distance of a
specific ligand in 3D space. Explicit mapping of FAs to dif-
ferent FGs of the ligand is then achieved through two-

dimensional clustering of the distance matrix. We applied
our method to 233 natural ligands with abundant 3D
protein–ligand structures and built an encyclopedia of 481

binding motifs for 160 different FGs, providing valuable
resources for elucidating the mechanism of protein–ligand
interactions as well as uncovering new rules for structure-

based drug design.
Results

AFTME enables automatic extraction of FG-based 3D binding

motifs

We have developed AFTME, a computational method to

dissect protein pockets binding a specific ligand into sectors
that interact with different functional groups (FGs). The
basic assumption of this method is simple: if conserved bind-
ing pattern for a specific FG exists, the pattern-forming

atoms should be spatially proximal to the corresponding
FG and frequently co-appear, thus can be detected through
clustering analysis of FAs from diverse protein pockets bind-

ing the same ligand. Figure 1A outlines the major steps of
the method. 1) Given a set of protein pockets binding the
same ligand, AFTME first parses all the FAs [24] that are

considered to interact with the ligand atoms (LAs). 2) Then
a distance matrix is constructed that evaluates the spatial
distances between FAs and LAs. 3) Based on the distance

matrix, a two-dimensional clustering algorithm is performed,
through which LAs are clustered into different FGs at the
first dimension and FAs are clustered into corresponding
FG-binding motifs. 4) Each identified binding motif can be

represented as a vector according to its chemical composi-
tion, which facilitates further analysis. The detailed descrip-
tion of each step is presented in the Materials and methods

section.
Considering the abundance of studies on ATP-binding

proteins, we first applied AFTME to a set of ATP-binding

proteins as a proof of concept. As shown in Figure 1B,
our method identified three FA clusters or binding motifs
corresponding to triphosphate group, ribose, and adenine,

respectively. The triphosphate-binding motif (M1) mainly
consists of hydrophilic atoms from polar amino acids like
Arg, Lys, Ser, etc., and the adenine-binding motif (M2) is
enriched by atoms from hydrophobic and aromatic amino

acids including Leu, Val, and Phe, whereas the ribose-
binding motif (M3) contains both hydrophobic and hydro-
philic amino acids (Figure 1C). Further investigation of

these binding motifs indicated that the AFTME-identified
FG-binding motifs are biological meaningful units. For
instance, among the hydrophilic residues (rendered in red

in Figure 1D and Figure S1) interacting with the triphos-
phate group, Lys and Ser are both well-known conserved
residues in the P-loop, a common motif for phosphate-
binding in ATP- and GTP-binding proteins, which is typi-

cally composed of a glycine-rich sequence followed by a con-
served lysine and a serine or threonine [15]. It was found
that the hydrophobic and/or aromatic residues (rendered in

green in Figure 1D and Figure S1) making up the
adenine-binding motif interact with adenine ring through
C–H–p and/or p–p interactions. Notably, Moodie et al.

described the recognition of adenine by proteins in terms
of a fuzzy recognition template based on a sandwich-like
structure formed by hydrophobic residues [25]. Denessiouk

et al. also found that bulky hydrophobic residues can form
a hydrophobic area by interacting with the adenine base
[26]. The A-loop motif, which includes aromatic residues



Figure 1 Workflow of AFTME and its application to ATP-binding proteins

A. A schematic view of major steps of the AFTME method. B. Two-dimensional clustering of the distance matrix for ATP-binding

pockets. The vertical and horizontal axes correspond to FAs and LAs, respectively. The color encodes the distance between an FA and an

LA. Three LA clusters corresponding to the triphosphate group, ribose, and adenine ring of ATP were identified, respectively. Three FA

clusters or binding motifs (M1, M2, and M3) corresponding to the aforementioned three FGs were also obtained simultaneously. C.

Distribution of amino acids and atom properties for M1 (top), M2 (middle), and M3 (bottom). D. An example (PDB: 1VJC) showing the

spatial distribution of amino acids within each identified FG-binding motif. E. Different ATP-binding proteins use different combinations

of FG-binding motifs M1, M2, and M3. F. Boxplot comparing the number of FAs within ATP-binding pockets with high affinity and

those with low affinity. n refers to the number of pockets. G. Comparison of the FA numbers in FG-binding motifs of ATP-binding

pockets with high and low affinities. The center line, bounds of box, and whiskers represent the median, interquartile range, and

median ± 1.5 times interquartile range, respectively. The significant differences were calculated using Manney-Whitney test (**, P< 0.01;

N.S., not significant). FA, functional atom; LA, ligand atom; FG, functional group; AA, amino acid; MFAD, functional atom distance

matrix.
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forming p–p interactions with adenine ring was also reported
[27]. These findings are largely consistent with the AFTME-

identified adenine-binding motif. Although no well-defined
motifs corresponding to the ribose-binding motif have been
reported yet, it makes sense that hydrophobic/aromatic resi-

dues of the ribose-binding motif interact with five-carbon
ring while hydrophilic residues interact with the extended
hydroxyl groups through polar interactions.

We then set out to explore different roles played by the
three identified motifs in the ATP-binding process. As we
can see from the Venn diagram in Figure 1E, among the 492
ATP-binding pockets in the dataset, a majority (388, 75.9%)

contain all the three binding motifs. Nevertheless, 86
(16.8%) pockets get two of them, among which 57 (66.3%)
carry the M1 and M2 motifs, indicating that combination of

two motifs, especially M1 and M2, is sufficient for ATP bind-
ing. Besides, we also noticed some cases in which only one
binding motif together with one or more metal ions exists (Fig-

ure S2), indicating that metal ions may greatly affect the global
binding profile. Next, we asked how different FG-binding
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motifs contribute to the binding affinity. All the ATP-binding
proteins with experimental affinity data available were col-
lected and sorted from high to low affinities (Table S1). In gen-

eral, protein pockets in high-affinity (top 1/3) group contain
more FAs than those in low-affinity (bottom 1/3) group (Fig-
ure 1F, P = 7.4E�03, Mann-Whitney test). Interestingly,

when looking into an individual binding motif, only M2 shows
significant increment of FA numbers in high-affinity pockets
(Figure 1G, P = 4.2E�03, Mann-Whitney test), suggesting

that increase of hydrophobic interactions with the adenine ring
makes major contributions to higher ATP binding affinity.

Taken together, the above results demonstrate the ability of
AFTME to decompose ligand-binding sites into biological

meaningful motifs, which are spatially well-defined to interact
with different FGs and contribute unequally to protein–ligand
binding affinity.

FG-based binding motifs are reused among different ligand-

binding proteins

To see whether FG-based 3D binding motifs identified by our
method are reused across different ligand-binding proteins,
we applied AFTME to a few ligands sharing the same FGs with

ATP including ADP, AMP, GTP, and UTP. Fine-mapped
binding motifs for adenine and ribose were obtained from
ADP- and AMP-binding proteins, and that for triphosphate
was from GTP- and UTP-binding proteins (Figure S3A–D).

We found that the chemical compositions of motifs binding
the same FG are highly consistent although they were extracted
from proteins binding different ligands (Figure 2A–C). For

adenine and ribose, the binding motifs are universal among
ATP-, ADP-, and AMP-binding pockets and have very similar
distribution of amino acid types and atom categories (Figure 2A

and B). Similarly, triphosphate-binding motifs extracted from
GTP- and UTP-binding proteins also show consistent makeup
with ATP-derived motifs (Figure 2C).

We then extended our evaluation to a wider range of
ligands, among which 25 are adenine-containing, 38 are
ribose-containing and 9 are triphosphate-containing. We
described each FG-binding motif using a 26-dimensional vec-

tor representing the proportion of 20 types of amino acids
and 6 categories of atoms, respectively (see Materials and
methods). The vector representation of the FG-binding motifs

enables correlation analysis of chemical composition for any
pair of motifs. It was found that adenine-binding motif pairs
showed significantly higher correlations than random FG-

binding motif pairs (Figure 2D). Similar observations were
obtained for ribose-binding (Figure 2E) and triphosphate-
binding (Figure 2F) motif pairs, respectively. These results sug-
gest high conservation of FG-binding motifs across a diversity

of ligand-binding proteins.
Next, we performed a large-scale analysis of 3D FG-

binding motifs for all the ligands with abundant 3D structures

available. As shown in Figure 2G, we first derived all the 3D
protein–ligand structures from BioLiP database [28]. Redun-
dant proteins binding the same ligand that show over 50%

sequence similarity were eliminated using CD-HIT [29]. 233
ligands with more than 5 structures available were kept for
the following analysis. 481 FG-binding motifs corresponding

to 160 unique FGs were identified using AFTME (Table S2),
among which 39 FGs appeared in multiple (at least three)
ligands. For each FG present in multiple ligands, a conserva-
tion score (CS) of the corresponding FG-binding motif was
calculated as the average of pairwise Pearson’s correlation

coefficients among all the identified motifs binding this specific
FG. And a corresponding P value was also calculated using
permutation test (see Materials and methods). Most FG-

binding motifs corresponding to FGs appeared in multiple
ligands are highly conserved across different ligand-binding
proteins (CS > 0.6, P < 0.05) (Table 1; Figure S4). Overall,

two motifs binding the same FG show significantly higher
composition correlations compared with two randomly
selected motifs (Figure 2H), confirming the high conservation
of FG-binding motifs. These lines of evidences showed that

AFTME can be applied to detect binding motifs for a diversity
of FGs. Importantly, the identified binding motifs are highly
conserved among different ligand-binding pockets, laying the

foundations for expanding limited 3D motifs to a broader
range of ligands that are not suitable for AFTME analysis
(e.g., due to lack of structure data) but sharing same or similar

FGs with applicable ligands.

Toward an encyclopedia of 3D binding motifs for a diversity of

FGs

Given that 481 binding motifs for 160 different FGs have been
identified using our method, we asked whether there are gen-
eral interaction patterns between the identified motifs and

the FGs they bind. We found that all the binding motifs could
be clustered into 4 classes based on their physicochemical
properties using k-means (Figure S4; see Materials and meth-

ods), which are well separated in the t-SNE plot shown in Fig-

ure 3A. Notably, the FG-binding motifs in different classes are
featured with distinct physicochemical properties. The first

class (red dots), denoted as the aromatic motif class, is
enriched with atoms from aromatic amino acids like Trp,
Tyr, and Phe. The second class (green dots), named the hydro-

philic motif class, is mainly composed of hydrophilic, donor,
and acceptor atoms from polar amino acids such as Arg,
Lys, Asp, and Glu. The third class (blue dots), the mixed motif
class, consists of both aromatic and hydrophilic atoms. The

fourth class (purple dots), named the hydrophobic motif class,
is dominated by atoms from hydrophobic amino acids includ-
ing Leu, Ile, and Val (Figure 3A). We then sought to see the

variability of data points within different clusters. We ranked
all data points within each cluster based on their Euclidean dis-
tances to the k-center and calculated the Pearson’s correlation

between the mean of data points in top 10% (close to the k-
center) and the bottom 10% (far away from the k-center).
The results showed high correlation between marginal points
and centered points in all the clusters: hydrophilic class

(r = 0.824, P = 6.96E�08), hydrophobic class (r = 0.957,
P = 9.89E�16), mixed class (r = 0.900, P = 6.87E�11),
and aromatic class (r = 0.694, P = 4.20E05), suggesting that

the data points are highly consistent within different clusters.
Next, we looked into the correspondence between different

motif classes and the FGs they bind. As shown in Figure 3B,

most of the FGs are uniquely mapped to a single motif class,
indicating that different classes of motifs have their specific
binding preference for FGs. Although a variety of FGs are

involved, we found some dominating FGs in each motif class
(Table S3).



Figure 2 Conservation of FG-based 3D binding motifs

A.–C. The chemical compositions of adenine- (A), ribose- (B), and triphosphate-binding (C) motifs identified from proteins binding

different ligands are similar. Adenine- and ribose-binding motifs are extracted from ATP-, ADP- and AMP-binding proteins, and

triphosphate-binding motifs are obtained from proteins binding ATP, GTP, and UTP, respectively. D.–F. Pairs of adenine- (D), ribose-

(E), and triphosphate-binding (F) motifs show significantly higher composition correlation than motif pairs binding random FGs. G. A

schematic view of large-scale identification of FG-based binding motifs using AFTME. L, G, and M represent ligand FG, and motif,

respectively. H. Correlation analysis of the 481 identified FG-binding motifs indicates that motifs binding the same FG are highly

consistent in their composition. The center line, bounds of box, and whiskers represent the median, interquartile range, and median ± 1.5

times interquartile range, respectively. The significant differences were calculated using two-tailed Student’s t-test (***, P < 0.001).
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Table 1 Conservation evaluation of binding motifs for multi-ligand

FGs

FG name Frequency Conservation score P value

Ribose 38 0.665 1.00E�06

Phosphate 37 0.714 1.00E�06

Carboxyl 31 0.784 1.00E�06

Glucose 28 0.842 1.00E�06

Adenine 25 0.848 1.00E�06

Pyrophosphate 21 0.669 3.70E�05

Guanine 11 0.723 8.00E�06

Uracil 10 0.853 1.00E�06

Acetic acid 10 0.752 1.00E�06

Triphosphate 9 0.857 1.00E�06

Propylamine 8 0.713 4.46E�03

Alanine 8 0.856 1.00E�06

2-Deoxyribose 8 0.718 2.17E�03

Hydroxyethyl 7 0.678 7.78E�02

Acetamido group 6 0.776 2.90E�04

Glutamic acid 6 0.7 4.36E�02

Hexane group 6 0.907 1.00E�06

Hydroxymethyl 6 0.74 4.55E�03

Cytosine 5 0.646 3.16E�01

Pteridine rings 5 0.773 3.26E�03

Phenol 5 0.88 1.00E�06

Butyric acid 5 0.723 4.05E�02

Adenosine 5 0.845 3.00E�06

Glycine 4 0.748 4.27E�02

Ethylamine 4 0.756 3.70E�02

Para-amino benzoic acid 4 0.692 1.73E�01

Galactose 4 0.92 1.00E�06

Thymine 4 0.959 1.00E�06

Phenyl 4 0.726 1.27E�01

Glycolic acid 4 0.741 5.21E�02

Fructose 4 0.759 4.16E�02

Maltose 4 0.819 2.14E�03

Sulfo 4 0.636 4.11E�01

Glycerol 3 0.869 3.77E�03

Nicotinamide 3 0.817 2.63E�02

Propyl 3 0.748 1.38E�01

Ribose-3-phosphate 3 0.933 4.30E�05

Pyruvic acid 3 0.821 2.35E�02

Dimethylallyl 3 0.799 4.41E�02

Note: The frequency reported the number of ligands containing the FG

in the dataset; the conservation score was calculated as the average of

pairwise Pearson’s correlations among all the FG-binding motifs for

the specific FG; and P value was calculated using permutation test.

FG, functional group.
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Among FGs that interact with the aromatic motifs, two
types of FGs are in the majority, one is with aromatic ring
and the other is with non-aromatic ring. The former type,
exemplified with the cytosine ring of cytidine-50-
monphosphate (C5P), interacts with the aromatic ring of Phe
and Tyr through p-stacking (Figure 3C, left panel). The latter
type, for example, the glucose ring in N-acetyl-D-glucosamine

(NAG), of which the carbon atoms form hydrophobic interac-
tions with the aromatic atoms of Tyr/Trp (Figure 3C, right
panel).

In contrast, the hydrophilic motif class prefers to bind polar
FGs through hydrogen bonds, among which carboxyl and
phosphorus are the most prevalent ones. For instance, the car-

boxyl group in citric acid (CIT), forms N–H� � �O and O–H� � �O
hydrogen bonds with N atom from imidazole of a HIS and O
atom from hydroxyl of a Thr, respectively (Figure 3D,
left panel). Four N–H� � �O hydrogen bonds are formed
between O atoms of the phosphate group in adenosine-30-50-
diphosphate (A3P) and N atoms of two basic amino acids
(Lys and Arg) in the binding motif (Figure 3D, right panel).

There are over 10 FGs engaged in both the mixed and the

aromatic motif classes, most of which are non-aromatic sugar
rings. In addition to hydrophobic interactions between the
sugar ring and the aromatic ring which are frequently used

in the aromatic motif class, the mixed motif class also contains
hydrophilic amino acids that form hydrogen bonds with the
extended-out hydroxyl groups (Figure 3E, right panel).
Besides, the mixed motif class is of high propensity to recog-

nize carboxyl-amine, of which the amine group interacts with
the aromatic ring through amide-p stacking and the carboxyl
group interacts with hydrophilic amino acids via hydrogen

bonds, respectively (Figure 3E, left panel).
The hydrophobic motif class also shares a major type of

FG, the aromatic hetero ring, with the aromatic motif class.

Instead of p–p interactions, the C–H–p interactions are the
main driving force for hydrophobic-aromatic contacts.
Another two major types of FGs involved in the hydrophobic

motif class are alkene and alkane chains. As two examples
showed in Figure 3F, the alkane (left) and the alkene (right)
chains are well accommodated in protein pockets composed
of hydrophobic residues.

Altogether, our systematic analysis suggested the existence
of four classes of FG-binding motifs and their favored FGs.
Deep investigations further revealed general interaction pat-

terns between these functional motifs and the FGs they bind,
thus build up a global map of 3D motif–FG interactions.

Motif combinations facilitate different modes of ligand binding

Having identified the corresponding relations between motif
classes and FGs, we then asked how different motifs are com-

bined to facilitate the binding of ligands that consist of differ-
ent FGs. We found that the aforementioned four FG-binding
motif classes are almost evenly distributed in protein pockets
investigated in our analysis (Figure 4A), suggesting that all

the identified motif classes are commonly used and important
for protein–ligand recognition.

After careful inspection of the identified binding motifs and

their host ligand-binding pockets, we found three distinct com-
bination modes for motif classes in protein pockets (Figure 4B).
1) The single-class mode, which applies to nearly a quarter of

investigated ligand-binding cases, combines only FG-binding
motifs of the same class. 2) The double-class mode, which goes
for more than 60% of the cases, integrates two different classes
of FG-binding motifs. 3) The triple-class mode, which recog-

nizes a smaller fraction of ligands, assembles three different
classes of FG-binding motifs.

For the single-class mode, combinations of two mixed-class

motifs are mostly observed, followed by hydrophobic-,
aromatic-, and hydrophilic-class motif combinations
(Figure 4C). For the double-class mode, there are 6 possible

class-class combinations, among which the hydrophobic-
hydrophilic combination applies to the greatest number of
ligands, indicating a commonly used protein–ligand binding

pattern in which the hydrophobic FG of the ligand interacts
with a hydrophobic motif while another polar FG is oriented



Figure 3 Systematic mapping of motif classes to different FG types

A. FG-binding motifs can be clustered into four well-separated classes, each of which has distinct distribution of amino acids (bar plot

with the major amino acid types marked in red rectangular box) and atom types (pie plot, referring to the FA property proportion).

B. Venn plot showing different FG-binding preferences for different motif classes. The numbers refer to the counts of FGs within each

category. Dominant FG types for each motif class are denoted beside the plot. C.–F. Examples of 2D interaction map between FGs and

identified motifs. The aromatic motifs identified for cytosine ring of cytidine-50-monphosphate (PDB: 4G5T, left) and glucose ring in

N-acetyl-D-glucosamine (PDB: 6EN3, right) (C). The hydrophilic motifs identified for the carboxyl group of citric acid (PDB: 6FXI, left)

and the phosphate group of adenosine-30-50-diphosphate (PDB: 1KAI, right) (D). The mixed motifs identified for amino acid isoleucine

(PDB: 1Z17, left) and two glucose rings in maltose (PDB: 1AHP, right) (E). The hydrophobic motifs identified for the hexane group of

lauric acid (PDB: 2OVD, left) and the farnesyl group in farnesyl diphosphate (PDB: 2E90, right) (F). The 2D ligand–protein interactions

were generated by LigPlot [49].

Yang L et al / Systematic Analysis of Functional Group Binding Motifs 771
to a hydrophilic motif (Figure 4D, Figure S5). The triple-class
mode also includes four different class–class combinations that

are almost equally present for ligands they bind (Figure 4E).
To gain further insights, we investigated in greater detail of

the ligands involved in different combination modes

(Table S4). Notably, combinations of different classes of
FG-binding motifs facilitate the binding of a vast diversity of
ligands composed of FGs that are well mapped to the corre-

sponding FG-binding motif classes.
Among ligands involved in the single-class mode, we

outlined three for examples (Figure 4C, Figure S6A).

2-acetamido-2-deoxy-alpha-D-glucopyranose (NDG) is



Figure 4 Combinations of FG-binding motif classes in a ligand-binding pocket

A. Distribution of the four classes of FG-binding motifs in ligands. The number above the blue rectangular box represents the counts of

ligands in the corresponding FG-binding motif class. B. Proportion of the three different combination modes for motif classes. C.–E.

Distribution of different FG-binding motif combinations and examples of ligands involved in single-class (C), double-class (D), and triple-

class (E) modes. The ligand name and its 2D diagram are indicated above the corresponding blue rectangular box. F.–H. Ligand-binding

affinity is affected by the combination of FG-binding motif classes for the single-class (F), double-class (G), and triple-class (H)

combination modes. The center line, bounds of box, and whiskers represent the median, interquartile range, median ± 1.5 times

interquartile range, respectively. The significant differences were calculated using Manney-Whitney test (**, P < 0.01; ***, P < 0.001).

Mix, mixed-class; Hpho, hydrophobic-class; Aro, aromatic-class; Hphi, hydrophilic-class.
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composed of two mixed-motif favored FGs including an acet-
amide group and a glucose ring, both being bound by FG-

binding motifs of the mixed class. Cellobiose (CBI) is a disac-
charide consisting of two glucoses and binds to proteins with
two aromatic motifs. 3-phosphoglyceric acid (3PG) has two

polar FGs, a phosphate group and a glyceric acid group, which
are recognized by two hydrophilic motifs.

A greater number and higher variety of ligands were wit-

nessed in the double-class mode (Figure 4D, Figure S6B).
For instances, geranyl diphosphate (GPP) which is com-
plexed with proteins comprising a hydrophobic and a hydro-

philic motif, contains a hydrophobic-preferred alkene and a
hydrophilic-preferred diphosphate group. For fructose-6-
phospahte (F6P) proteins achieve ligand-binding with an

aromatic motif to the sugar ring and a hydrophilic motif
to the phosphate group, respectively. Other ligands such as
tryptophan (TRP, with an aromatic motif to indole and a

mixed motif to alanine), B-octyl glucoside (BOG, with a
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hydrophobic motif to octyl and a mixed motif to glucose),
3-pyridinium-1-ylpropane-1-sulfonate (1PS, with an aromatic
motif to pyridinium and a hydrophilic motif to sulfonate) all

follow the general FG–motif interaction patterns we
identified.

In the triple-class mode, the ligands have at least three FGs

and thus are in relatively larger size (Figure 4E, Figure S6C).
For examples, to bind 7N-methyl-8-hydroguanosine-50-
diphosphate (M7G), proteins adopt a binding pattern with

an aromatic motif to dihydroguanine, a mixed motif to ribose,
and a hydrophilic motif to diphosphate. Similarly, folic acid
(FOL) contains a pteridine ring, a benzoic group, and a glu-
tamic acid that are recognized by a hydrophobic, an aromatic,

and a mixed motif, respectively.
In the example of ATP, we already showed the unequal

contribution of different FG-binding motifs to the binding

affinity. Here, we sought to explore how combinations of dif-
ferent classes of FG-binding motifs will affect the ligand-
binding affinity. Experimental binding affinity for all the

protein–ligand pairs in our analysis were retrieved from the
PDBbind database (Table S5) [30]. In the single-class mode,
both the aromatic and hydrophobic combinations show signif-

icantly higher affinity than the mixed and hydrophilic combi-
nations, suggesting that general hydrophobic interactions
including p–stacking, C-H–p interactions and interactions
between two aliphatic carbons contribute more to high binding

affinity than polar interactions such as hydrogen bonds and
salt bridge (Figure 4F). Consistently, in the other two combi-
nation modes, the more hydrophobic interactions are involved,

the higher affinity the ligand-binding achieve. For example,
combination of the hydrophobic and aromatic motifs is the
most efficient binding pattern in the double-class mode, and

the hydrophobic motif involved modes get significantly higher
affinity compared to combinations with non-hydrophobic
motifs (Figure 4G). Moreover, non-hydrophilic combinations

get significantly higher affinity compared to combinations with
hydrophilic motifs for the triple-class modes (Figure 4H). The
results further supplemented our observation from the ATP-
binding motifs (Figure 1G) and confirmed the findings in the

previous studies that hydrophobic interactions are a driving
factor for the increased ligand efficiency [31,32].

Together, these evidences showed that FG-binding motifs

are building blocks of ligand-binding sites, and combinations
of different classes of FG-binding motifs facilitate the binding
of proteins to a wide spectrum of ligands with various binding

affinities.

Motif–FG binding can be used for drug design

We next asked whether the motif–FG map derived from

naturally-occurring protein–ligand complexes can be used for
the rational design of small-molecule drugs for given protein
targets. To nominate FGs that potentially bind to a specific

drug target, we adopted the following procedure. 1) We iden-
tified all the FA clusters from the ligand-binding pockets of the
target protein. 2) For each FA cluster, we measured its similar-

ity with each of the 481 FG-binding motifs obtained above by
defining an FG-matching (FM) score. 3) The corresponding
FGs were then ranked according to their FM scores from high

to low and the enrichment of an FG or FG type in the top hits
was evaluated by calculating a P value. FGs with higher FM
scores are more likely to bind the specific target, FGs signifi-
cantly enriched in the top hits are expected to be potential can-
didates (see Materials and methods).

We first applied this approach to DOT1L, which is the tar-
get of EPZ-5676, a small-molecule drug in clinical trial for the
treatment of adult acute leukemia [33]. Three clusters of FAs

were identified from the ligand-binding sites of DOT1L, which
correspond to three different FGs of EPZ-5676, i.e., adenine,
ribose, and methionine, respectively (Figure 5A). We then

computed the FM scores between the three FA clusters and
all the 481 FG-binding motifs in the database and looked into
the top 20% hits with the highest FM scores. For the first FA
cluster (C1) which interacts with the adenine group of EPZ-

5676, we found that adenine is also the most significantly
enriched FG (Figure 5A and B, P = 8.47E�10). Consistent
with the ribose group, 16 pentose groups from different ligands

are among the top hits for the second FA cluster (C2)
(Figure 5A and C, P = 1.22E�05). Although no specific
FGs are enriched in the top hits for the third FA cluster

(C3), 10 different amino acid groups (Figure 5A and D,
P = 3.78E�03), including glutamic acid, glyoxylic acid,
alanine, etc., are ranked in the top, suggesting that FGs

sharing partial similarities can also be used for prediction.
Next, we tried to nominate FGs that bind to the main pro-

tease (Mpro) of COVID-19 using the same strategy. We
extracted three well-separated FA clusters in the ligand-

binding sites (Figure 5E), which are located proximal to the
indole-carboxamide, fluorophenyl, and Ala((2-oxopyrrolidin-
3-yl))-al groups of 11b, a potent inhibitor of the protein [34].

Despite that the three FGs of the inhibitor are not included
in the database, we observed similar FGs and/or same FG
types enriched in the top hits regarding different FA clusters.

For instances, hetero aromatic rings and sulfurs are enriched
for the FA clusters binding indole-carboxamide (C1)
(Figure 5E and F, P = 4.48E�06) and fluorophenyl (C2)

(Figure 5E and G, P = 6.40E�03), respectively. Similar to
the C3 of DOT1L, amino acid groups are among top hits
for FA cluster binding Ala((2-oxopyrrolidin-3-yl))-al (C3)
(Figure 5E and H, P = 4.30E�06).

Together, these examples showed that the global map of
FG-binding motifs can be used to nominate specific FG
and/or FG types that potentially bind to specific drug targets,

thus providing important insights and guidance for rational
design of small-molecule drugs.

Discussion

A classical assumption in structural biology is that the 3D
structure of a protein determines its molecular function.

However, many proteins that don’t display overall sequence
or structure similarities may share similar local 3D binding
sites and can bind to same or similar ligands [35]. Thus, iden-

tifying conserved 3D patterns/motifs across different ligand-
binding proteins serve as an efficient way to learn and predict
protein–ligand interactions. Computational methods that rely

on multiple structure alignments or pairwise pocket compar-
isons have identified many conserved 3D binding patterns
across different protein pockets binding same or similar
ligands [36]. Despite the validity and usefulness of these

ligand-based binding patterns, they mainly go for naturally-
occurring ligands with abundant protein–ligand 3D



Figure 5 FG–motif map can be used for rational drug design

A. 3D map showing the distribution of FG-binding motifs relative to different FGs of small-molecule drugs (left) and the corresponding

2D ligand–protein interaction map (right) for DOT1L-EPZ5676 complex (PDB: 3SR4). C1, C2, and C3 refer to three FA clusters

interacting with adenine, ribose, and methionine of EPZ5676, respectively. B.–D. Nomination of potential FG candidates that bind to C1

(B), C2 (C), and C3 (D) of DOT1L. E. 3D map showing the distribution of FG-binding motifs relative to different FGs of small-

molecule drugs (left) and the corresponding 2D ligand–protein interaction map (right) for Mpro of COVID-19 in complex with 11b (PDB:

6M0K). C1, C2, and C3 refer to three FA clusters interacting with indole-carboxamide, fluorophenyl, and Ala((2-oxopyrrolidin-3-yl))-al

of 11b, respectively. F.–H. Nomination of potential FG candidates that bind to C1 (F), C2 (G), and C3 (H) of Mpro. In (A) and (E),

atoms with different physicochemical property are rendered in different colors: hydrophobic (green), polar (purple), and aromatic

(yellow), and the 2D ligand–protein interaction maps are generated by LigPlot [49]. In (B–D) and (F–H), FGs are ranked based on the FM

score; the dash line indicates the top 20% hits with highest probabilities to bind the specific target; and the red dots are specific FGs or FG

types that significantly enriched in the top. The name of specific FG or FG type together with the frequency of its appearance in the top

and the corresponding P value are displayed in the corner. The significant differences were calculated using Fisher’s exact test. FM,

FG-matching.
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structures, thus limiting their application scope. Here, we pro-
posed AFTME, a computational method for automatic iden-
tification of 3D binding motifs on the basis of FGs shared by

different small molecules, which permits studying protein–
ligand interactions in a wider scope and higher resolution.
The application to ATP showed the feasibility and validity

of our method to detect FG-based 3D binding motifs and
confirmed the reusability of the motifs in different ligand-
binding proteins. We further applied our method to 233

natural ligands and obtained 481 binding motifs for 160
unique FGs, providing useful resources for deep exploration
of protein–ligand recognition.

Systematic investigation of FG-binding motifs identified by

our method provides several important insights into protein–
ligand interactions. First, ligand-binding sites of a protein
can be dissected into independent sectors corresponding to dif-

ferent FGs of the binding ligand. These FG-based binding
motifs are highly conserved among different ligand-binding
pockets at both amino acid and atom level. Second, we found

four classes of FG-binding motifs with distinct physicochemi-
cal properties and their own preference for FG binding. More-
over, the interactions between 3D motifs and FGs follow some

general rules. For example, a hydrophobic motif is more likely
to interact with a hydrophobic FG and a hydrophilic motif
usually recognizes a polar FG. Third, following the general
motif–FG recognition map, protein pockets consisting of dif-

ferent FG-binding motifs can bind to a wide spectrum of
ligands through different motif combination modes. Of note
is that protein pockets with more hydrophobic motifs tend

to gain higher binding affinity.
Rapid development of high-throughput screening using

CRISPR/Cas9 system has greatly accelerated the discovery

of new cancer drug targets in recent years [37,38]. CRISPR
screening with tiling-sgRNA designs can further infer essential
protein domains that are suitable for drug targeting [39–41].

However, identifying effective small-molecule drugs for a
specific target through high-throughput experimental screens
is still expensive and inefficient [42]. Virtual screening using
computational approaches has emerged as a starting point

for identifying hit molecules for a given drug target [43]. 3D-
based predictions of small molecules for a specific protein tar-
get with machine or deep learning approaches are of higher

accuracy compared to sequence-based predictors. However,
these ligand-based methods rely on multiple 3D structures
binding to the ligands to learn the features, thus are limited

to a small fraction of ligands. Our study showed that con-
served 3D binding patterns can be obtained at FG level, which
may expand the scope for ligand-binding prediction since
many different ligands share same or similar FGs.

Although the FG-binding motifs are mainly derived from
protein structures binding to natural ligands, we showed
that our FG–motif map can also be used to infer FG can-

didates that potentially bind to specific protein targets, sug-
gesting potential application in rational drug design.
Meanwhile, we’d like to mention that it is still challenging

to accurately predict the FGs bind to a specific drug target
with current FG–motif datasets. First, the number of FG-
binding motifs revealed in this study is still very limited

due to the lack of protein–ligand structures. In most cases,
we can only infer FG type(s) rather than a specific FG using
our top hits enrichment analysis. Second, our current repre-
sentations of FG-binding motifs are relatively simple and
rough, a more refined and comprehensive description of
the motifs may further improve the prediction. For example,
the FEATURE framework proposed by Altman et al. repre-

sents local protein structures with more comprehensive fea-
ture sets regarding the number and types of physics-
inspired quantities [44,45]. Third, protein–ligand interactions

can be altered with even slight change of binding environ-
ment. For instance, it is frequently occurred in a protein
family that similar pockets can bind to different ligands.

Therefore, it’s not enough to just predict common FG-
binding patterns shared by the same or similar ligands. A
comprehensive understanding of how slight differences can
affect ligand binding is also required, which can be achieved

through FG-based motif analysis at single protein pocket
level instead of a group of similar pockets.

Materials and methods

Construction of the datasets

We collected all the protein–ligand complexes from the BioLiP

database, a semi-manually curated database for biologically
relevant ligand–protein interactions [28]. Proteins that only
bind to metal ions were excluded. For each ligand, we removed
the redundant proteins with more than 50% sequence similar-

ity using CD-HIT [29]. Only ligands with at least 5 protein
structures were kept for further analysis, producing a dataset
containing 11,570 protein structures in complex with 233

ligands. The PDB codes for all the protein structures, as well
as the information of all 233 ligands are available at https://
github.com/MDhewei/AFTME.

We retrieved experimentally determined binding affinities
of protein–ligand complexes from the latest version of the
PDBbind database [30], resulting in binding affinity data for
599 complexes covering 158 out of the above 233 ligands.

The affinity values of each complex used in the binding affinity
analysis were pKd, pKi, and pIC50, which were obtained by
transforming raw affinity Kd, Ki, and IC50 as follows:

pX ¼ �log10 raw affinityXð Þ
A higher value of pX indicates a stronger binding affinity

for the protein–ligand complex.

Ligand FG definition and classification

According to the knowledge of biochemistry, we manually
defined the FGs of each ligand based on their shape, size,

and physicochemical property. Given a ligand in the dataset,
we firstly downloaded its 2D structure from PDB database
[46], then scanned its structure and search for FGs in the fol-
lowing order: 1) ring structures with consistent physicochemi-

cal property, for instance adenine; 2) ring structures together
with other polar groups, for instance ribose; 3) chain structures
at the terminial or in the middle of the ligand, for instance

alkane chain; 4) well-defined polar groups such as phosphate,
carboxyl, and hydroxyl; and 5) other fragments that are close
in size and composition with well-defined FGs. In general, we

followed a basic principle that intra-ligand FGs should be dif-
ferent with each other in shape and physicochemical property
but close in size, thus ensure their independency when interact-

ing with the protein partner. For all the FGs, we further clas-

https://github.com/MDhewei/AFTME
https://github.com/MDhewei/AFTME
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sified them into 21 major types referring to the classification in
the previous study [47].

AFTME algorithm description

AFTME takes four major steps to extract FG-binding motifs:
1) extraction of ligand binding pockets, 2) construction of

functional atom distance matrix, 3) two-dimensional clustering
based on the distance matrix, and 4) identification and charac-
terization of FG-binding motifs. Details of each step are

described below.

Extraction of ligand binding pockets

A protein pocket is described as a set functional atoms situated

around the bound ligand in 3D space [8]. Specifically, for each
LA, we iterate to search for non-backbone heavy atoms that
are within 5 Å in 3D space, all the atoms that meet the criteria

are defined as FAs. For each FA, we defined an N-dimensional
row vector (F) that describes its distance to each LA as:

F ¼ d1; d2; :::; dNð Þ ð1Þ
where dl represents the distance between the FA and the l-th

atom of the ligand and N is the number of atoms of the ligand.
For a pocket composed of M FAs, we stacked the correspond-
ing FA vectors to generate an M�N dimensional pocket
matrix (P) that represents the geometrical configuration

between the pocket and the ligand.

P ¼

F1

F2

:

:

:

FM

0
BBBBBBBB@

1
CCCCCCCCA

¼

d1;1; d1;2; :::; d1;N

d2;1; d2;2; :::; d2;N

:

:

:

dM;1; dM;2; :::; dM;N

0
BBBBBBBB@

1
CCCCCCCCA

ð2Þ

where Ff denotes the FA vector for the f-th FA and df;l repre-

sents the distance between the f-th FA and the l-th LA.

Construction of functional atom distance matrix

Given K pockets that bind to the same ligand, we calculate the
pocket matrix for each pocket and stack them to form a func-
tional atom distance matrix MFAD.

MFAD ¼

P1

P2

:

:

:

PK

0
BBBBBBBB@

1
CCCCCCCCA

¼

F1;1

:::

F1;M1

���
F2;1

:::

F2;M2

���
:

:

:

���
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:::

FK;MK

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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d1;1;1; :::; d1;1;N

:::

d1;M1 ;1; :::; d1;M1 ;N

������
d2;1;1; :::; d2;1;N

:::

d2;M2 ;1; :::; d2;M2 ;N

������
:

:

:

������
dK;1;1; :::; dK;1;N

:::

dK;MK;1; :::; dK;MK ;N

2
66666666666666666666666666666664

3
77777777777777777777777777777775

ð3Þ
where Pp denotes the pocket matrix of the p-th pocket, Fp;f is

the FA vector for the f-th FA in the p-th pocket, Mp is the

number of FAs in the p-th pocket and dp;f;l represents the dis-

tance between the f-th FA of the p-th pocket and the l-th LA.
Note that despite of the same ligand, the number of FAs in dif-

ferent binding pockets may not be equal. Therefore, MFAD is a
matrix with ðM1 þM2 þ :::þMKÞ rows and N columns.

Two-dimensional clustering based on the distance matrix

Given a functional atom distance matrix (MFAD) calculated for
a specific ligand, we performed a two-dimensional hierarchical
clustering on both the rows and columns, which represented

the FAs and the LAs, respectively. Prior to this analysis, the
matrix was element-wisely standardized by subtracting the
minimum and dividing the maximum. The clustering ran by

first considering each FA/LA as an individual cluster and cal-
culating the Euclidean distances between any two FA/LA clus-
ters. Then two clusters with the closest distance were merged,
and the linkages were created using the Ward method to min-

imize the total within-cluster variance. The clustering was per-
formed using ‘‘AgglomerativeClustering” module from the
scikit-learn package in python [48]. We set the ‘‘n_clusters”

parameter as the number of predefined FGs of the ligand.

Visualization and identification of FG-binding motifs

We used a heatmap with a row-oriented and a column-

oriented dendrograms to visualize the hierarchical clustering
results. Based on the heatmap, we could find explicit corre-
spondence between different clusters of FAs and LAs. Specif-

ically, the close connection between an FA cluster and its
proximal LA cluster builds up a mapping between FA and
LA clusters, where the LA clusters correspond to the FGs

within the ligand, and the FA clusters correspond to the bind-
ing motifs for the specific FG matched. Following this step, we
obtained different binding motifs for different FGs of the
ligand they interact with. We filtered out clusters that are

thought to be noises based on the following two criteria.
1) We reasoned that biological meaningful LA clusters should
be largely consistent with manually defined FGs based on bio-

chemical knowledge. Here, using a simple majority vote strat-
egy, only LA clusters with more than half of its atoms
overlapped with a predefined FG is thought to be biological

meaningful. 90.6% (481 out of 531) of LA clusters aligned well
with FGs in the predefined set, suggesting that most automat-
ically extracted LA clusters are biological meaningful. 47 LA
clusters have been removed in this step. 2) Since we only per-

formed analysis to ligand with at least 5 protein structures, we
considered a motif with less than 5 atoms (less than one atom
per structure) to be meaningless. 3 motifs have been discarded

in this step.

Quantitative representation of FG-binding motifs

To gain further insight of an identified FG-binding motif, we

made a deep insight into its composition from both amino acid
level and atom level. In terms of amino acid level, we counted
the number of binding pockets for all motifs interacting with

specific FGs of the ligand, and the presence of each type of
20 amino acids inside a binding motif. In particular, atoms
were classified into 6 categories according to their biochemical

properties [24], i.e., hydrophilic, acceptor, donor, hydropho-
bic, aromatic, and neutral. By calculating frequency of
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occurrence for each atom category within the motif, the motif
could be expressed from the perspective of atom level. To
make a quantitative evaluation of the binding motif, we

expressed it using a 26-dimensional vector.

M ¼ X1;X2;X3; � � � ;X19;X20;X21; � � � ;X26ð Þ ð4Þ
where the first 20 dimensions are used to compute the propor-
tion of occurrence of the amino acid aa in a specific motif for

each of the 20 types of amino acids, and the last 6 dimensions
are used for the calculation of the proportion of occurrence of
the atom properties pp of each category in the same motif for

each of the 6 categories defined above. Particularly, the value
in each dimension could be defined as follows:

Xi ¼
naa;i
nresi

; if 1 � i � 20
npp;i
nprop

; if 21 � i � 26

(
ð5Þ

naa;i and nresi are the number of residues of type i amino acid

aa observed in the motif and total number of residues in that
motif, respectively. And the 20 types amino acids are assigned

to a fixed order from 1 to 20. Similarly, npp;i and nprop are the

number of properties of category i atom property pp and total

number of properties, and the i ranging from 21 to 26 denotes
the atom properties corresponding to the above 6 biochemical
categories.

Conservation evaluation of FG-binding motifs

To quantitatively assess the reusability of two FG-binding

motifs, we calculated the Pearson correlation coefficient
(PCC) between two corresponding motif vectors as:

PCC Mu;Mvð Þ ¼
P26

i¼1½ cu;i � cuð Þ � cv;i � cvð Þ�=26ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
cu;i�cuð Þ2
26

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
cv;i�cvð Þ2
26

r ð6Þ

where Mu and Mv denote the 26-dimensional vectors of the
two motifs, cu;i and cu are the elementwise and average physic-

ochemical composition of motif u and v. Higher PCC value
indicates stronger correlation between two binding motifs,
indicating high reproducibility.

To systematically measure the conservation of motifs bind-

ing to the same FG, we calculated the pair-wise PCC among all
the motifs binding to a specific FG, and evaluated the overall
conservation score (CS) as the average of all the pair-wise PCC

values:

CS ¼
PN

u¼1

PN
v¼1;u–vPCC Mu;Mvð Þ
N N� 1ð Þ ð7Þ

In addition, a permutation test was used to evaluate the sta-
tistical significance of the CS. Specifically, for each FG-binding
motif appeared in multiple ligands, we randomly selected same
number of motifs from all the identified motifs 1,000,000 times

and calculated their corresponding CS value, the P value was
calculated as follows:

P ¼
P1e�06

i¼1 CSi > CS0ð Þ þ 1

1000000þ 1
ð8Þ

where CSi is the CS value of randomly selected motifs, CS0 is
the CS value of motifs binding to the same FG.
Clustering on the 3D binding motifs

FG-binding motifs were classified based on their physicochem-
ical properties, specifically, we performed k-means clustering
on the 26-dimension vectors representing all the motifs. To

determine the optimal number of clusters, we used elbow
method which follows the basic idea to minimize the total
intra-cluster variation as much as possible. Concretely, we first
computed the k-means clustering on the data consisting of 481

vectors for different numbers of clusters k, which is ranging
from 1 to 20. Next the total intra-cluster variation was calcu-
lated for each k value, and the formula is defined as follows:XNC

i¼1

X
x2Ci

dðx; x�Ci
Þ2 ð9Þ

where NC is cluster number, Ci is the i-th cluster, x
�
Ci
is the clus-

ter centroid of Ci. Based on the computed variation under dif-

ferent values of k, a curve of the variation according to the
number of clusters k could be plotted. Finally, the location
of a bend (k = 4) in the plot was selected as the optimal num-

ber of clusters in our approach.

Nomination of FGs for a specific protein target

Given a FA cluster extracted from the ligand-binding pocket
of a target protein and a reference FG-binding motif in the
database constructed in this study, we defined the FM score

as the Pearson’s correlation coefficient between the 26-
dimensional vectors of the FA cluster (Cu) and the reference
motif (MvÞ:

FM ¼
P26

i¼1

cu;i�cuð Þ� mv;i�mvð Þ½ �
26ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

cu;i�cuð Þ2
26

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
mv;i�mvð Þ2
26

r ð10Þ

where cu;i and cu are the elementwise and average physico-

chemical composition of the FA cluster Cu, and mv;i and mv

are the elementwise and average physicochemical composition
of the reference motif Mv. Higher FM score indicate higher

similarity between the FA cluster and the reference motif.
For any given FA cluster in the ligand-binding sites of a

target protein, we calculated the FM scores against all the
481 FG-binding motifs identified with AFTME and ranked

the corresponding FGs by their FM scores from high to low.
Since we have multiple same or similar FGs in the dataset,
we reasoned that FGs or FG types that are significantly

enriched in the top hits should be potential candidates. Specif-
ically, we looked into the top 20% hits and calculated a p value
for each FG or FG type using hypergeometric test:

p k;M; n;Nð Þ ¼
n

k

� �
M� n

N� k

� �
M

N

� � ð11Þ

where k is the number of specific FG or FG types that appear
in the top 20%, M is the total number of FGs in the dataset, n
is the total number of a specific FG or FG types, and N is the
number of FGs ranked in the top 20%. The value was calcu-

lated using ‘‘hypergeom” module in the SciPy package in
python.
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