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ABSTRACT

Microarrays are an effective tool for monitoring
genome-wide gene expression levels. In current
microarray analyses, the majority of genes on arrays
are frequently eliminated for further analysis because
the changes in their expression levels (ratios) are
considered to be not significant. This strategy risks
failure to discover whole sets of genes related to
a quantitative trait of interest, which is generally con-
trolled by several loci that make various contribu-
tions. Here, we describe a high-throughput gene
discovery method based on correspondence analysis
withanew index for expression ratios [arctan (1/ratio)]
and three artificial marker genes. This method allows
us to quickly analyze the whole microarray dataset
and discover up-/down-regulated genes related to
a trait of interest. We employed an example dataset
to show the theoretical advantage of this method. We
then used the method to identify 88 cancer-related
genes from a published microarray data from patients
with breast cancer. This method also allows us to
predict the phenotype of a given sample from the
gene expression profile. This method can be easily
performed and the result is also visible in 3D viewing
software that we have developed.

INTRODUCTION

Microarray experiments are widely used to simultaneously
monitor the expression levels of thousands to tens of thousands
of genes in many organisms (1–3). In microarray data anal-
yses, genes showing 2-fold relative expression levels at least

or >2 SDs away from the mean among expression levels
are often considered to show precise measurement or signifi-
cantly different expression from the control. These genes are
selected for further analysis (4–6). This approach usually
eliminates the majority of genes on the array for further
analysis.

The expression levels of many genes show wide natural
variation (7,8). There is no firm theoretical basis for defining
a significant expression level (9). The considerable elimination
of microarray data poses a serious problem for the analyses
of quantitative traits. The quantitative traits are affected by
several or more loci. The effects of each loci on the phenotype
are different (10). The current approach with threshold values
for expression levels could eliminate genes which affect the
phenotypes with small changes of expression levels.

We suspected that there is a practical reason for the ten-
dency to over-reduce the number of genes for further analysis.
Analyses of microarray data are commonly performed by
hierarchical clustering methods (11–13). However, the hier-
archical clustering for a large microarray dataset with >10 000
genes is too much time consuming and not practical. The
detection of a clear cut-off point in large dendrograms is
also difficult. Eliminating genes with small fold changes in
expression levels for further analysis allows us to perform
hierarchical clustering analyses in a short time and easily
detect clusters with differerent gene expression profiles.

Recently, principal component analysis (PCA) has been
used to process microarray data (14–16). PCA calculations
for the whole microarray dataset are not time consuming.
PCA reduces the high dimensionality of a large microarray
dataset (matrix). The scores (coordinates) of the first three
principal components allow visual assessment of associations
between genes and phenotypes in a 3D subspace. However,
correspondence analysis (CA) (17) is more effective than PCA
for discovering genes related to phenotypes of interest.
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As with PCA, CA allows us to summarize an originally
high-dimensional data matrix (row [gene] and column
[sample]) with a low-dimensional projection. In CA, genes
and samples (phenotypes) are projected into a 2- or more-
dimensional subspace at the same time (bi-plot). This bi-plot
reveals associations across genes and samples. Kishino and
Waddell (18) applied CA to a matrix of normalized fluores-
cence intensities. To apply CA for log-transformed intensity
ratios, Fellenberg et al. (19) additively shifted the log-ratios to
a positive range. However, minimum values of log-ratios are
not same among experiments. Differences of logarithmic
bases (e.g. 2, 10 and e) also provide different values of log-
ratios. Consequently, even though many expression datasets
are available from public databases, care must be taken in
the logarithmic bases prior to analyses. Ranking is another
transformation method for expression data (20), but it causes
a loss of information in gene expression levels. These two
current indices, additively shifted log-ratios and ranks, for
gene expression profiles are unsuitable in CA.

We describe here a high-throughput gene discovery method
based on CA with a new index for expression ratios and three
artificial marker genes. This method also allows prediction
of phenotypes from the gene expression profiles.

MATERIALS AND METHODS

CA and PCA for microarray data

CA and PCA were performed using the statistical software
package R (http://cran.r-project.org/) and its library ‘multiv’
on a 2.60 GHz Intel Pentium4 personal computer with 2 GB of
random access memory. CA with a new index was also per-
formed with our developed software mentioned below. PCA
and CA provide scores (coordinates) for genes and samples.

Preparation of an example dataset

An example dataset contains gene expression ratios for
516 genes and 100 samples (Supplementary Table 1). Of the
100 samples, 50 were phenotype A and 50 were phenotype B.
There are five down-regulated genes (D1 to D5) and five
up-regulated genes (U1 to U5) in phenotype A. Among the
same phenotype, these 10geneshave thesameexpression ratios.
In addition, three housekeeping genes (HK1, HK2 and HK3)
have the same expression ratios among all samples. There are
500 genes unrelated to phenotypes (Unrelated1 to Unrelated
500). The expression ratios for the unrelated genes were
randomly selected from the published microarray data (21).
This example dataset includes three artificial marker genes.

Preparation of breast cancer expression data

The published microarray data (21) includes 24 481 genes and
117 samples. Two samples and 457 genes that had more than
two missing values were eliminated from the dataset. For
the remainder, the missing values, at most two, were replaced
by the average expression ratio for the same phenotype. Out
of 115 samples, 62 samples were from patients that deve-
loped metastases within 5 years after their initial diagnosis
(poor prognoses), and 53 samples were from patients that
remained free of disease for at least 5 years after diagnosis
(good prognoses). The dataset for 24 024 genes and 115
samples is shown in Supplementary Table 2.

Significant distances in a low-dimensional projection

We used a confidence area for a location of a point (plot) of
genes in a low-dimensional projection obtained by CA to
identify up-/down-regulated and housekeeping genes. For
an ith row (gene) in a contingency table, a 95% confidence
area is defined as a confidence circle centered at the location of
the gene in the 2D subspace (22), where the radius is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=Ki�

p
,

the value of the statistic c2 with two degrees of freedom (d.f.)
is 5.99 at a 0.05 significance level, and Ki� is the total of the
elements in the i-th row. The d.f. of c2 are equal to the number
of dimensions in the subspace.

Detection of gene ontology terms

We performed statistical analyses of gene ontology (GO)
terms for the candidate cancer-related genes with the web-
based tool GOTM (http://genereg.ornl.gov/gotm/) (23). The
GOTM provides GO terms and their significant probabilities
(P-values). GO terms with P-values <0.05 were retrieved.

Identification of MeSH terms for genes

We identified ‘Disease’ MeSH terms related to genes using
BioCompass (NEC Corporation), which searches for MeSH
terms significantly related to genes using a supervised classi-
fication method. The reliability of the assignment is shown as
a score. MeSH terms with scores over 0.05 were selected as
highly significant.

Hierarchical clustering

Hierarchical clustering (complete linkage clustering with
Spearman rank correlation) was performed using Cluster
(Stanford University). Dendrograms and expression maps
were generated by Treeview (Stanford University).

Prediction ratio of phenotypes in CA

A Monte-Carlo simulation with 10 000 runs was performed
to investigate the distribution of the prediction ratios. In each
run, the 115 samples were randomly divided into 95 ‘super-
vised’ and 20 ‘query’ samples. Although the phenotypes of
the supervised samples were available, the phenotypes of the
query samples were not. The 7D distances between each query
sample and each supervised sample were calculated. The
reciprocal distance was used as the score to weight the distance
to a close supervised sample.

We compared the two total scores
P

i ð1=DPiÞ andP
j ð1=DGjÞ for each query sample, where DPi is the distance

to ith supervised poor prognosis sample and DGj is the
distance to jth supervised good prognosis sample. WhenP

i ð1=DPiÞ >
P

j ð1=DGjÞ, the query sample was predicted
to be from a patient with a poor prognosis and vice versa.
The prediction ratio in each run was computed from 20 query
samples.

RESULTS

A new index for gene expression ratios

The new index for gene expression ratios is the arctangent
(inverse tangent) of the reciprocal intensity ratio (arctan[1/
ratio]). The reciprocal ratio is equivalent to the differential
coefficient of the natural logarithm of the ratio. Consequently,

Nucleic Acids Research, 2006, Vol. 34, No. 5 1533

http://cran.r-project.org/
http://genereg.ornl.gov/gotm/


this index ranges from 0 to 90�. When the ratio is equal to
one, the index is 45�. As the gene is repressed or induced,
this index increases or decreases from 45�, respectively. This
index changes more substantially than conventional indices
(log[ratio]) when the ratio is between 0.1 and 10 (Supplemen-
tary Figure 1). When the ratio is <0.1 or >10, the new index
changes less than the current indices. Nonetheless, the power
of gene discovery is maintained because the new index
still allows heavily repressed or induced genes to be easily
identified.

Three artificial marker genes to identify genes
associated with a trait

We added three artificial genes (ExtraGenes) to the dataset to
classify all genes on the array. Assuming that there are two
phenotypes (A and B) of a quantitative trait, genes on the array
can be classified into the following four categories: (i) genes
specifically expressed in either phenotype, (ii) genes up- or
down-regulated between the two phenotypes, (iii) genes up- or
down-regulated that are unrelated to the phenotypes, and (iv)
housekeeping genes that show constant levels of expression in
all samples. The genes related to the phenotypes are included
in categories (i) and (ii). To classify all genes, we used three
ExtraGenes (ExtraGene1, ExtraGene2 and ExtraGene3) to the
dataset. The expression ratio of ExtraGene1 is zero in pheno-
type A samples, and the maximum expression ratio is given to
phenotype B samples. ExtraGene2 has the inverse gene expres-
sion pattern as ExtraGene1. ExtraGene1 and ExtraGene2
assist in the discovery of genes related to the phenotypes
and housekeeping genes [categories (i), (ii) and (iv)] as
described below. ExtraGene3 shows the same ratio (1.0) in
all samples and also aids in the identification of housekeeping
genes [category (iv)]. Consequently, genes related to the phe-
notypes can be obtained. The ExtraGenes introduced here
are different from the ‘virtual genes’ employed by Fellenberg
et al. (19) to directly interpret a distance between a gene and
a sample.

A line segment to identify up-/down-regulated genes

We performed CA and PCA using the new index (arctan[1/
ratio]) and current indices (additively shifted log2[ratio] and
rank) using an example dataset. This example dataset includes
three ExtraGenes (ExtraGene1 to ExtraGene3). In ExtraGene1,
the ratios in phenotypes A and B are 0 and 100, respectively.
ExtraGene2 has the inverse profile as ExtraGene1, and Extra-
Gene3 has the same ratio (1.0) for all samples. As expected,
regardless of the index, CA separates the samples into positive
and negative scores along the first axis (Factor1) according to
phenotypes A and B (data not shown). However, projections
of genes into the first 2D subspaces show different patterns
among the indices (Figure 1). The cumulative contribution
ratios in Figure 1a–c are 60.0, 63.9 and 40.3%, respectively.
From CA using the new index (Figure 1a and d), up- and
down-regulated genes have negative and positive scores in
Factor1, respectively, and lie on a line segment between
ExtraGene1 and ExtraGene2. We call this line segment the
UDL (up/down line). As expected from CA, all housekeeping
genes and ExtraGene3 lie in the center of the UDL, which is
the origin of the subspace. Locations of genes unrelated to
phenotypes are random and independent of the UDL.

CA with an additively shifted log2(ratio) index does not
give a UDL (Figure 1b and e) because genes D1 and U1 lie
outside of the line segment between ExtraGene1 and Extra-
Gene2. This is due to the fact that the expression ratios
between the two phenotypes are the largest for these two
genes. As in Figure 1d, housekeeping genes and ExtraGene3
are plotted in the middle between ExtraGene1 and Extra-
Gene2. CA with a rank index cannot create a UDL (Figure 1c
and f). Both the up-/down-regulated and housekeeping genes
are randomly placed away from the line segments obtained
from the ExtraGenes. Only CA with the new index can define
a UDL that allow us to predict up-/down-regulated genes
among phenotypes. The UDL defined here is not identical
to the line to ‘standard coordinates’ with mean 0 and variance
1 (24). Fellenberg et al. (19) used standard coordinates to
classify genes and samples in a bi-plot.

The results of PCA with the three indices are shown in
Supplementary Figure 2. The cumulative contribution ratios
in Supplementary Figure 2a–c are 71.1, 85.1 and 43.5%,
respectively. Regardless of the index, PCA did not generate
a UDL. The genes were all randomly located with the
ExtraGenes in the subspace. This result shows that, regardless
of the index, PCA is not appropriate for the clustering of genes
according to their expression patterns.

Analysis of breast cancer data

We next applied CA with the new index to published human
breast cancer microarray data (21). This available data
contains 24 024 gene expression ratios from 115 samples
(Supplementary Table 2). The three ExtraGenes were also
added to the dataset. We calculated 7D scores to 24 027
genes and the 115 samples. This process takes only �10 s.
Thus, like PCA, CA requires considerably less time for
calculation than hierarchical clustering.

Up-/down-regulated genes in significant regions

As shown in Figure 1d, a UDL was determined as a line
segment between ExtraGene1 and ExtraGene2 (Figure 2a
and Supplementary Figure 3a). Genes up- or down-regulated
between good and poor prognosis samples and housekeeping
genes are expected to lie on the UDL. However, the locations
of these genes can statistically deviate from the UDL as well as
biometric data generally deviate from the expected value.

For the breast cancer data, we applied the confidence areas
to a 7D space. The value of the statistic c2 with seven d.f. at
a significance level of 0.05 is 14.0671. The significant distance
from an ExtraGene becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=

Pn
i¼1

p
f i, where n is the

number of samples and fi is the new index (arctan[1/ratio])
for the ExtraGene of the ith sample. Consequently, the
significant distance from ExtraGene1 is 0.0502 becausePn

i¼1 f i ¼ 90 · 62. Similarly, the significant distances
from ExtraGene2 and ExtraGene3 are 0.0543 and 0.0521,
respectively.

The significant distance from ExtraGene1 was used as the
significant distance from the UDL because they are nearly
equal. Up-/down-regulated and housekeeping genes were
located inside the confidence area of UDL with a 95% proba-
bility. We call this confidence area the up/down region (UDR).
In the first 3D subspace, the UDR is visualized as a cylindrical
shape (Figure 2a and Supplementary Figure 3a). Using this
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UDR, we estimated that 544 genes are up-/down-regulated or
housekeeping genes.

Detection of 88 genes related to breast cancer

It is expected that housekeeping genes cluster around the
position of ExtraGene3. Housekeeping genes were defined
as those that have less than the significant distance from
ExtraGene3. A statistical test with a 95% significant distance
from ExtraGene3 is also available. This significant region
forms as a spherical space in the 3D subspace (Figure 2b
and Supplementary Figure 3b). Here, we call this region the
HKR (housekeeping region). Consequently, we detected 88
genes associated with the diagnosis of breast cancer (Supple-
mentary Table 3). Out of the 88 genes, 45 and 43 genes had
positive and negative first-axis coordinates, respectively.

Functions of the detected genes

The set of 88 genes does not include any marker genes
identified in the previous report (21). To compare the biologi-
cal functions of the two gene sets, we investigated GO anno-
tations. The result shows that GO terms related to cell cycle
(e.g. cell cycle and division) and apoptosis (e.g. I-kappaB
kinase/NF-kappaB cascade and induction of programmed
cell death) are highly significant for the 88 genes detected

here (Supplementary Table 4a). These biological processes
are well known to be affected by the activities of oncogenes.
As shown in Supplementary Table 4b, the majority of GO
terms for the previously reported 70 genes are related to cel-
lular development (e.g. cellular growth and morphogenesis)
and DNA metabolism (e.g. DNA metabolism and strand
elongation). We also investigated MeSH terms assigned
for the 88 genes shown here (Supplementary Table 5). The
14 MeSH terms are significantly related to neoplasms.
Together with the GO terms, these MeSH terms suggested
that the 88 genes detected here are related to cancer.

The biological functions of 35 of the 88 genes identified
here have been investigated in previous studies. There is no
detailed information on the function of the other 53 genes in
public databases or published reports. Based on the published
reports on the 35 previously studied genes, 18 of them are
oncogenes, candidate target genes for tumor therapy, or genes
with known carcinogenic functions (Table 1).

Sample and gene classification in CA

We used the new method on the 88 detected genes from
the 115 samples to evaluate the power of sample and gene
classification. The majority of poor and good prognosis
samples separate into positive and negative first-axis scores,

(a) (b) (c)

(d) (e) (f)

Figure 1. CA with three indices. Factor1 and Factor2, the first two axes obtained from CA, respectively; U, genes up-regulated (U1 to U5) in phenotype A samples; D,
down-regulated genes (D1 to D5) in phenotype A samples; H, housekeeping genes (HK1 to HK3); E, ExtraGenes (ExtraGene1 to ExtraGene3); dots, unrelated genes
(Unrelated1 to Unrelated500). (a) CA with the new index. (b) CA with an additively shifted logarithmic ratio. (c) CA with a rank index. (d–f) Plots of only U, D, H and
E for (a–c), respectively.
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respectively (Figure 3). This incomplete classification is due
to the low cumulative explained percentage (63.1%) in the
first 3D subspace. However, even if the cumulative explained
percentage is not low, the classification of the phenotypes of
a quantitative trait (disease outcome) would be still difficult
because heritability of a quantitative trait is generally not high.
Quantitative traits are influenced not only by gene expression
(genetic) but also by environmental (non-genetic) factors. This
raises the possibility that gene expression patterns alone can-
not adequately account for differences between phenotypes
of a quantitative trait.

We performed hierarchical clustering for the 115 samples
and 88 genes detected here to verify the gene and sample

classifications obtained from CA. Both genes and samples
divided into two subclusters (Supplementary Figure 4).
Most of the samples were correctly classified into poor and
good prognosis groups. The incomplete classification of
samples again is likely due to the same reasons as in the
CA results (Figure 3). In the two gene subclusters, 41 and
47 genes are up- or down-regulated in the poor prognosis
samples. Except for only four genes, the two gene sets in
the subclusters are consistent with the two gene sets separated
by the positive and negative scores of the first axis in CA
(Figure 2b and Supplementary Table 3).

Predictions of phenotypes by the new method

van’t Veer et al. (21) suggested that gene expression profiles
could correctly predict phenotypes of samples (83% prediction
rate). This conclusion was based on a single population. The
predictability is expected to change according to the popula-
tion sets used. The predictability of phenotypes from gene
expression profile alone is one of the most important issues.
A Monte-Carlo simulation with 10 000 runs was performed to
obtain the distribution of prediction rates. The average of the
prediction rates across all runs was �73%. The SD was 9%.
The range was from 35 to 100%, and 7325 runs showed
prediction rates over 70%.

Development of tools for the new method

Finally, as part of the current studies, we developed a software
GuCAL that can easily carry out our method of analysis
(Supplementary Data). The results can be visualized as
a 3D image using Java3D software, which was developed
with the J2SE Software Development Kit (SDK). This viewing
software allows rotation, zooming in and out, and panning
of the image. The 3D subspace for any analyzed data can
be created using GuCAL and another Perl script, CAView
(Supplementary Data).

DISCUSSION

We describe here a method for gene discovery from microar-
ray data. Our method, CA with a new index for expression
ratios coupled with the inclusion of ExtraGenes, allows us to
define a UDL, UDR and HKR, which assist in the detection of
genes related to the phenotype of interest. Although the con-
fidence regions used here for UDR and HKR are defined for
a contingency table, the application shows good classifications
of genes. Our method also dramatically reduces the calculation
time, and it is effective at predicting the phenotype based on
the gene expression profile.

Using this method, we detected 88 prognostic marker genes
from a published human breast cancer dataset (21). van’t Veer
et al. (21) selected 4968 genes from the 24 481 genes on this
array, from which 70 marker genes were identified using
a three-step supervised classification method. Both the 70
candidate genes identified in this previous report and the
88 genes detected here show up-/down-regulation between
poor and good prognosis samples. The 88 genes identified
here do not include any of 70 previously identified genes,
but it does include known cancer-related genes (Table 1).
Especially, gene associated with breast cancer, such as

(a)

(b)

Figure 2. CA plots for 24 024 genes in the first 3D subspace. Factor1, Factor2
and Factor3 show the first three axes obtained from CA, respectively. (a) CA
plot for all of the analyzed 24 024 genes. The cylinder indicates the UDR. The
blue line inside the UDR is the UDL. The 23 480 genes (small blue dots)
unrelated to cancer are outside the UDR. The black dots out of the UDR
correspond to 70 candidate genes identified by van’t Veer et al. (21).
(b) CA plot for the 544 genes inside the UDR. The 456 yellow spheres indicate
significant housekeeping genes. Of the remaining 88 genes, the 43 red and
45 green spheres indicate statistically significant up- and down-regulated genes,
respectively.
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tumor suppressers, NF-kB activators and genes associated
with estrogen receptor-a (ERa) were identified.

RASSF1 and CST3 are tumor suppresser genes in breast
cancer (Table 1). RASSF1 regulates cell cycle progression
and apoptosis (43). Müller et al. (34) suggested that the aber-
rant DNA methylation of RASSF1 is a powerful prognostic
factor in breast cancer. CST3 is an antagonist of oncogenic
TGF-b signaling, which promotes invasion in malignant
human breast cancer cells (37). Our result shows the down-
regulations of the above two tumor suppresser genes in
poor prognosis samples (Table 1). It supports the previous
reports.

NF-kB activators, BCL10, ERN1 and DHX9, were also
identified (Table 1). NF-kB, which is general carcinogenesis
including breast cancer, functions as a cancer-related
transcription factor involved in cell proliferation and anti-
apoptosis (44). For example, NF-kB cascade induces the
proliferation of mammary epithelial cells through cyclin D1
expression in healthy subjects (45). In breast cancer cell, the
constitutive activation of NF-kB was observed prior to malig-
nant transformation (46). It raises the possibility of NF-kB
as a candidate prognostic factor. Moreover, the NF-kB acti-
vators, BCL10, ERN1 and DHX9, are up-regulated in poor
prognosis samples (Table 1). This is consistent with the
previous reports on breast cancer.

Strong correlation between down-regulation of ERa-
related genes and poor prognosis in breast cancer was reported
by van’t Veer et al. (21). Fujita et al. (47) reported that the
probability of invasion and metastasis of breast cancer is
increased by aberrant regulation of cell adhesion-related path-
way including MTA3, Snail and E-cadherin in ER-negative
breast epithelial cells. Our results also indicate that ERa
can be down-regulated by up-regulation of SAFB and down-
regulation of SRA1 and EGR3 (Table 1).

We also identified other genes which are involved in cancer-
related biological processes such as cell cycle and apoptosis.
Uncontrolled cell cycle, or abnormal cell proliferation is
closely related with general carcinogenesis (48). Our detected
MTCP1 (Table 1) plays a key role in T-cell prolymphocytic
leukaemia (28) and its higher expression is correlated with
T-cell malignancies (49). Up-regulation of this oncogene can
be correlated with malignancy of other cancer including breast
cancer. Apoptosis is also an important mechanism to control
normal cell proliferation and anti-apoptosis is a hallmark of
various carcinogenesis (50). In our experiment two apoptosis-
related factors were detected as TNFSF12 and CCNL2
(Table 1). TNFSF12 induces cell death in several cancer
cells (36). Overexpression of CCNL2 suppresses the growth
of human hepatocellular carcinoma cell (39). Down-regulation
of these apoptosis regulators might be involved in breast can-
cer development. Finally, detected SYNPO2 is a homolog of

Table 1. Biological functions of representative genes detected in this work

Gene symbol Aliases Regulation Description Reference

ALK – Up Having oncogenetic roles of haematopoietic and non-haematopoietic tumors Pulford et al. (25)
BCL10 Bcl10 Up Activation of NF-kB cascade through ubiquitination of NEMO Zhou et al. (26)
ERN1 IRE1 Up Mediating endoplasmic reticulum stress-induced NF-kB activation Kaneko et al. (27)
MTCP1 MTCP-1 Up A candidate gene potentially involved in the leukemogenic process of mature T cell proliferations Stern et al. (28)
SAFB SAFB1 Up A repressor of ERa activity via indirect association with histone deacetylation Townson et al. (29)
ASRGL1 hALP Up A transactivator of telomerase activity Lv et al. (30)
DHX9 RHA Up A component of the transactivation complex for the transcriptional activity of NF-kB Tetsuka et al. (31)
STAG1 – Up A transcriptional target for p53 and a mediator of p53-dependent apoptosis Anazawa et al. (32)
CDK5R1 p35, p25 Up A mediator of apoptosis in digoxin-triggered prostate cancer cell Lin et al. (33)
RASSF1 RASSF1A Down DNA methylation of RASSF1 promortor is associated with poor outcome of breast cancer Müller et al. (34)
SRA1 SRA Down A coactivator of ERa transcriptional activity Cavarretta et al. (35)
TNFSF12 TWEAK Down Inducing multiple pathways of cell death Nakayama et al. (36)
CST3 CystC Down Inhibiting the invasion of breast cancer cell Sokol et al. (37)
EGR3 – Down A target for transcriptional factor ERa Inoue et al. (38)
CCNL2 Cyclin L2 Down A regulator of the transcription and RNA processing of certain apoptosis-related factors Yang et al. (39)
SEPW1 – Down Allelic loss of the chromosome 19q arm is a frequent event in human diffuse gliomas Smith et al. (40)
SYNPO2 Myopodin Down A tumor suppressor gene to limit the growth and to inhibit the metastasis of cancer cells Jing et al. (41)
ZDHHC13 FLJ10852 Down Forced expression of ZDHHC13 activates the NF-kB signaling pathway Matsuda et al. (42)

Gene symbol, representative gene symbol of the candidate gene; aliases, other names of the gene or its product in references; regulation, ‘up’ or ‘down’ indicates
the gene regulation detected in poor prognosis patient group by our method.

Figure 3. CA plot for the 115 samples. Factor1, Factor2 and Factor3 show
the first three axes obtained from CA, respectively. Green and red spheres
indicate samples from patients with poor and good prognoses, respectively.
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myopodin which suppresses tumor growth and metastasis in
prostate cancer (41). In our result, the down-regulation of
SYNPO2 in poor prognosis was observed. It suggests that
the regulation of SYNPO2 is also involved in breast cancer.

We suspect that the discrepancy between this work and
the previous report (21) arises from the current tendency to
over-reduce the number of genes for further analyses. Genes
that do not have >2-fold differences in expression ratios and
P-values <0.01 are commonly excluded. The threshold in the
previous work would have eliminated 84 of the 88 genes
detected here. Furthermore, the candidate genes identified
in the previous report are located outside the UDR, although
some are close. This result implies that the candidate genes
that were identified from the 4968 threshold-selected genes
include those that are the closest to the UDR (Figure 2a).
Generally, the expression ratios show greater variation at
lower expression levels. Yang et al. (51) suggested that
even <2-fold expression levels can be significant. We also
believe that a method that assesses the expression ratios
and/or P-values of detected genes from the whole microarray
dataset would be better than the current method, which detects
candidate genes from those selected using the threshold.
Differences in the selection of genes using the UDR, which
can vary according to the significant distance (significant
level), may also explain the difference between the two sets
of candidate genes.

The two phenotypes used here (poor and good prognoses)
may be not sufficient as supervisors. Inclusion of more useful
environmental (e.g. age) and diagnostic information the
phenotyping could facilitate gene discovery using our method.

As the information for samples increases, the number of
phenotypes may increase to more than two. Our method can be
extended to more than two phenotypes. In the current study,
we prepared two ExtraGenes for the two phenotypes, wherein
the ExtraGene is specifically expressed in either phenotype.
When there are more than two phenotypes, ExtraGenes
specific to each phenotype would be created to detect the
genes related to the trait.

Our method also makes it possible to perform an accurate
supervised prediction of phenotypes. This supervised classi-
fication is based on our detected genes. This provides further
supports that our method can correctly select genes associated
with prognosis of cancer.
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