
Citation: Pasetto, M.; Baliello, A.;

Pasquini, E.; Poulikakos, L. Dry

Addition of Recycled Waste

Polyethylene in Asphalt Mixtures: A

Laboratory Study. Materials 2022, 15,

4739. https://doi.org/10.3390/

ma15144739

Academic Editor: Ana Paula Piedade

Received: 17 May 2022

Accepted: 3 July 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Dry Addition of Recycled Waste Polyethylene in Asphalt
Mixtures: A Laboratory Study
Marco Pasetto 1,* , Andrea Baliello 1 , Emiliano Pasquini 1 and Lily Poulikakos 2

1 Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9,
35131 Padova, Italy; andrea.baliello@unipd.it (A.B.); emiliano.pasquini@unipd.it (E.P.)

2 EMPA, Swiss Federal Laboratory for Material Science and Technology, Überlandstrasse 129,
8600 Dübendorf, Switzerland; lily.poulikakos@empa.ch

* Correspondence: marco.pasetto@unipd.it

Abstract: The circular use of resources (i.e., reuse and recycling of materials) aiming for zero waste
is also gaining increasing attention in pavement engineering. In this regard, the possible use of
waste plastics in asphalt materials is of strategic importance since a considerable amount of plastic
waste from construction and demolition waste and municipal solid waste is generated every year.
Given this background, this experimental study aimed to investigate the feasibility of recycling waste
polyethylene (PE) into asphalt mixtures. For this purpose, the dry addition of plastic shreds was
evaluated to overcome the drawbacks observed in a previous interlaboratory research on PE-modified
bituminous binder (i.e., instability/inhomogeneity of blend as well as the need for PE grinding). A
comparative laboratory study was carried out on dense graded asphalt mixtures containing different
amounts of waste plastics (i.e., 0%, 0.25%, and 1.5% by weight of the mixture). The selected asphalt
mixes were investigated in terms of workability, linear visco-elastic characteristics, stiffness, strength,
resistance to permanent deformation, and moisture sensitivity. Overall, the experimental findings
show that the mixes prepared with the dry addition of plastic wastes were able to guarantee almost
the same workability and moisture resistance as the reference material while leading to enhanced
performance in terms of stiffness and permanent deformation resistance, with better responses for
the higher investigated PE dosage.

Keywords: plastic waste; circular economy; pavement engineering; workability; linear visco-elastic
characteristics; stiffness; fracture resistance; permanent deformation; moisture resistance

1. Introduction

A circular economy refers to the reuse and recycling of materials aiming for zero
waste. To this end, various types of waste and secondary materials can be candidates for
use in roads, saving natural resources such as aggregates, fillers, and binders [1]. There
is evidence that such waste and secondary materials have been used that have shown a
comparable performance to all virgin materials, however, the technology readiness level
(TRL) achieved in various parts of the world is varied [2]. The challenge is not the quantities
of such materials, but the lack of knowledge, guidelines, and incentives to name some of
the barriers for their use.

A considerable amount of plastic waste from construction and demolition waste and
municipal solid waste is generated every year. For example, in Europe, each year, 27.1 Mt is
produced, 8.4 Mt is recycled, whereas 18.7 is landfilled, incinerated, stored, or exported [2].
This pattern is typical for the fate of plastic waste worldwide.

The use of various types of waste plastics such as polyethylene (PE), polyethylene
terephthalate (PET), polyvinylchloride (PVC), and polypropylene (PP) in asphalt mixtures
have shown a similar performance as the reference materials, for example, in rutting,
moisture resistance, stiffness, and fatigue tests [2,3]. Some waste plastics have reached a
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technology readiness level of 5–7, indicating that the application is partially or completely
industrialized. PE, which is the topic of this study, can be used in asphalt mixtures using
the wet process where it is added to the binder before being added to the mixture, or
the dry process where it is added directly to the aggregates. Using the dry and the wet
processes, better rutting resistance [4–6], improved moisture resistance [7,8], stiffness and
fatigue have been reported [5,7,9] while some issues regarding low-temperature properties
due to increased brittleness have been observed [10].

2. Motivation and Research Approach

Given the above background, the RILEM Technical Committee TC-279 WMR investi-
gated the feasibility of recycling waste plastics into asphalt mixtures using interlaboratory
tests. To this aim, a specific task group (TG) was first established to assess the chemical
and physical properties of asphalt binders modified with waste PE (i.e., wet modification
of bitumen). In this framework, more than 10 laboratories worldwide participated in
the interlaboratory test program mainly aimed at evaluating the rheological and damage
properties of the PE modified binders. The results collected during the above-mentioned
comprehensive study [11,12] highlighted encouraging evidence toward the systematic use
of waste PE as an effective additive to improve the asphalt binder performance, especially
at high service temperatures, provided that waste PE is ground to small particles (around
1 mm maximum size) to enhance the blending with bitumen. However, several issues have
been identified in terms of the heterogeneity and variability of the test results. Such low
repeatability and reproducibility are likely due to an incomplete melting of the waste plas-
tic into the asphalt binder (a physical rather than a chemical modification was observed),
leading to less homogeneous and stable samples with floating plastic particles in the binder
matrix, especially at high temperature. Similar issues have also been reported by other
researchers testing different waste plastics through different test methods [13–21].

To overcome the above-mentioned drawbacks related to the wet modification of
the asphalt binder (i.e., the instability/inhomogeneity of the PE-modified binder as well
as the need for PE grinding), the dry addition of waste plastics into asphalt mixtures
(i.e., the use of waste PE as an aggregate) can be considered as a viable alternative to
the wet modification of asphalt binders. In this regard, the present paper illustrates a
comprehensive laboratory characterization study of an asphalt mixture prepared with the
dry addition of the recycled waste PE tested within the RILEM interlaboratory study cited
above. This was to assess the potentialities of the dry modification of asphalt mixtures
in overcoming the drawbacks related to the wet process while enhancing the mixture
performance. To accomplish this objective, a comparative laboratory study was carried
out on dense graded asphalt mixtures containing different amounts of waste plastics (i.e.,
0%, 0.25%, and 1.5% by weight of the mixture). A total of 0% plastic waste (i.e., no plastic
addition) was selected as a reference mixture for comparison purposes whereas 0.25%
plastic corresponded to 5.0% PE by bitumen weight (i.e., the amount used in the previous
phase of the research for wet modification of the bitumen [11]). On the other hand, 1.5% PE
by weight of mixture was chosen to reproduce a typical amount of “dry additive” into the
asphalt mixes. This higher PE content, which was selected by looking at the maximization
of waste recycling for environmental reasons, also allowed us to investigate the effect of
the plastic content on the mix performance.

The selected asphalt mixes were investigated in terms of workability, linear visco-
elastic (LVE) characteristics, stiffness, strength, resistance to permanent deformation, and
moisture sensitivity toward a comprehensive picture regarding the contribution of the
waste PE. This was to assess whether the addition of such types of waste into the asphalt
mixture allows to guarantee the same or even enhanced performance while assuring clear
environmental benefits related to its recycling. More details regarding the materials and
testing procedures are given in the following.
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3. Materials and Methods
3.1. Materials

Both the reference and the plastic-modified mixtures were prepared using the same
raw materials (i.e., aggregates and bitumen) taken from a local asphalt plant. In particular,
limestone aggregates typically used in the Italian paving industry were selected. The
gradation of available stockpiles (namely 12/20, 8/12, 4/8, 0/4 mm and filler) used to
produce the asphalt mixtures are shown in Table 1, whereas the physical properties of such
aggregates, complying with common technical specifications, are summarized in Table 2.
The physical properties of the plain (non-modified) bitumen with a nominal penetration
grade of 70/100 (EN 12591) are listed in Table 3.

Table 1. The grade compositions of the available aggregates.

Sieve Size, mm
Passing, %

12/20 8/12 4/8 0/4 Filler

25 100 100 100 100 100
20 97.9 100 100 100 100
16 82.2 100 100 100 100
12.5 52.4 97.9 100 100 100
10 24.6 70.7 100 100 100
6.3 0.6 4.8 63.8 100 100
4 0.6 0.7 6.8 95.8 100
2 0.6 0.7 0.1 72.2 100
0.5 0.6 0.7 0.1 33.3 100
0.25 0.6 0.7 0.1 23.2 97.3
0.063 0.6 0.7 0.1 9.3 57.7

Table 2. The physical properties of the selected limestone aggregates.

Property Standard Unit 12/20 8/12 4/8 0/4 Filler

Flakiness index EN 933-3 % 9 7 10 - -
Shape index EN 933-4 % - 16 11 - -
Sand equivalent EN 933-8 % - - - 82 -
LA coefficient EN 1097-2 % 21 - - - -
Particle density EN 1097-6 Mg/m3 2.71 2.72 2.69 2.66 -
Rigden voids EN 1097-4 % - - - - 32.7
Particle density EN 1097-7 Mg/m3 - - - - 2.74

Table 3. The physical properties of plain bitumen.

Property Standard Unit Value

Penetration at 25 ◦C EN 1426 0.1 mm 78
Softening point EN 1427 ◦C 42
Ductility ASTM D113 cm >100

Waste polyethylene was supplied by a Swiss recycling center and was the same ma-
terial used in the RILEM study. This is a secondary waste product obtained during the
process of the production of polyethylene pellets that come from waste PE from packaging.
This secondary waste is conventionally utilized as fuel in cement plants. Such PE waste
comes in the form of a blend of shreds of different shapes and sizes with a density equal to
0.949 Mg/m3. Thus, it can be classified as a high-density polyethylene (HDPE), which is
typically characterized by a density ranging between 0.941 and 0.965 Mg/m3. Its melting
temperature was identified in the range between 110 and 124 ◦C, in accordance with the
usual HDPE values (melting point affected by the impurities of the original packaging ma-
terial). For this reason, it would be able to substantially melt during the typical production
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processes of asphalt concrete (AC) (in this study, it was carried out at 160 ◦C) [13]. More
details about the PE waste used are illustrated in Figure 1, where a representative picture
of the PE shreds is reported along with its granulometric distribution.

Figure 1. The polyethylene waste used in this study: (a) photograph; (b) gradation of sample.

3.2. Specimen Preparation

Three different kinds of asphalt mixtures were produced to accomplish the objective of
the present research. The mix design was carried out considering the same granulometric
curve for all mixes, matching the typical Italian technical prescription for an asphalt binder
course. To this end, 12/20, 8/12, 4/8, 0/4 mm, and filler stockpiles were combined at 20%,
5%, 30%, 40%, and 5% by weight of mixture, respectively, in order to obtain a granulometric
distribution matching the target reported in Table 4. As mentioned earlier, two different PE
contents were assessed by adding the plastic shreds using the dry process, in percentages
of 0.25% and 1.5% by mix weight, hereafter labelled PEs02 and PEs15, respectively. An
unmodified mixture not containing PE shreds, hereafter coded REF, was manufactured
for comparison purposes. The different densities and dosages of all constituents were
considered to adjust the maximum theoretical density and calculate the bulk density of
each mixture with a target void content equal to 4.5%. A bitumen dosage of 5% by aggregate
weight was obtained based on a preliminary Marshall mix design of the reference mixture
(i.e., the mixture without plastic waste). The aggregate gradation and bitumen content
were not adjusted with the addition of the waste PE in order to limit the variables to be
considered. Details about the mix design are given in Table 5.

Asphalt mixtures were prepared by pre-heating the aggregates at 160◦ for 3 h, then
adding (when included) the selected quantities of PE shreds, which were stored at room
temperature, to the hot aggregates. The PE and hot aggregates were mixed for 1 min; hot
bitumen (160 ◦C) was then added and blended mechanically by stirring the mixture for
2 min to obtain an adequate mix of homogeneity as assessed visually. Finally, the filler at
ambient temperature was added to the hot batch for a 1 min long final mixing.

Table 4. The mix gradation and Italian specification limits for an AC binder course.

Sieve Size, mm 32 16 10 4 2 0.5 0.25 0.063

Passing, %

Min. envelop limit 100 90 73 45 28 16 11 4
Max. envelop limit 100 100 85 56 38 24 18 8
Mix gradation 100 96.4 83.5 45.5 34.1 18.5 14.3 6.8



Materials 2022, 15, 4739 5 of 19

Table 5. The mix design: the proportions and characteristics of the produced mixtures.

Mix Designation Aggregate Bitumen PE

REF

Content by agg. weight, % 100.00 5.00 -
Content by mix weight, % 95.24 4.76 -
Content by mix volume, % 88.18 11.82 -
Max. density, Mg/m3 2.506
Target voids, % 4.5

PEs02

Content by agg. weight, % 100.00 5.00 0.26
Content by mix weight, % 95.00 4.75 0.25
Content by mix volume, % 87.61 11.74 0.65
Max. density, Mg/m3 2.496
Target voids, % 4.5

PEs15

Content by agg. weight, % 100.00 5.00 1.60
Content by mix weight, % 93.81 4.69 1.50
Content by mix volume, % 84.77 11.36 3.87
Max. density, Mg/m3 2.446
Target voids, % 4.5

The 80 mm thick cylindrical specimens with a diameter of 150 mm were produced
using the Superpave gyratory compactor (SGC) at a fixed height by applying a rotation
speed of 30 rpm and a pressure of 600 kPa with an inclination angle of the mold equal to
1.25◦ (EN 12697-31). Then, the gyratory samples were sawed to produce the testing samples
with a height of 40 mm. It is worth highlighting that the compaction of specimens using
the SGC allowed for the construction of the compaction curves (i.e., voids vs. number of
gyrations), thus providing fundamental information regarding the workability of mixtures
containing waste plastics. Asphalt concrete slabs (400 mm long, 300 mm wide, and 50 mm
thick) were also prepared at the selected target voids through a roller compactor (EN
12697-33) to obtain, by sawing, 50 mm wide prismatic specimens for the flexural tests.

3.3. Testing Methods
3.3.1. Flexural Cyclic Tests

Prismatic samples were subjected to cyclic frequency sweep tests in the 4-point bending
(4PB) configuration (EN 12697-26/Annex B). These non-destructive tests were replicated
at different temperatures T (10, 20, 30, 40 ◦C) to achieve a comprehensive picture of
the LVE characteristics of the investigated materials (four replicates for each AC at each
temperature). A pre-conditioning time of at least 4 h was guaranteed at the selected
temperature. Tests were performed by applying strain-controlled loads in a sinusoidal
configuration (50 µstrain amplitude) at frequencies f of 0.1, 0.2, 0.5, 1, 2, 5, 10 20 Hz
(100 load repetitions for each f ). A total of 100 load cycles at 0.1 Hz were applied again at
the end of each test and compared to the corresponding findings measured at the beginning
of the tests to verify that the specimens had not experienced any damage during the
frequency sweeps. The complex modulus |E*| (stiffness) and phase angle Φ (stress–strain
lag due to viscoelasticity) were calculated through the force measured with a load cell and
the corresponding displacement using a transducer mounted at the middle section of the
beam specimen. Stiffness master curves were constructed thanks to the time–temperature
superposition principle (TTSP), shifting the data series through specific shift factors at the
reference temperature of 20 ◦C through the Williams–Landel–Ferry (WLF) equation [22]. In
the case of the PE-modified mixes, the applicability of such a principle was preliminarily
evaluated by observing the experimental data plotted in the Black diagram (|E*| vs. Φ),
considering that the validity of TTSP, which allows us to consider the material as thermo-
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rheologically simple, normally results in a uniquely aligned trend in such Black space [23]).
The well-known NCHRP rheological universal model [24] was used to produce the master
curves of |E*|, modeling the curves through the following equation:

E* = Ee* + {(Eg* − Ee*)/[(1 + fc/f’)k]me/k} (1)

where

Ee* is the equilibrium complex modulus, at f → 0;
Eg* is the glass complex modulus, at f → ∞;
fc is the location parameter, with dimensions of frequency (frequency at which Φ = 45◦);
f’ is the reduced frequency, function of both temperature and strain;
k, me are the shape dimensionless parameters.

3.3.2. Indirect Tensile Stiffness Modulus Tests

The stiffness characteristics of the mixtures were also investigated in indirect tensile
configuration on cylindrical samples (IT-CY) according to EN 12697-26/Annex C. After
a pre-conditioning time of at least 4 h at the test temperature of 25 ◦C, IT-CY tests were
carried out in strain-controlled mode, applying five haversine pulses (along the vertical
diameter). The corresponding horizontal deformation was monitored by two linear variable
displacement transducers mounted opposite one another in a rigid frame clamped to the
samples. Loads were characterized by a rise time equal to 124 ms (time to apply the load
from zero to peak) and a target peak horizontal strain of 7 µm (10 pre-conditioning pulses
were given before the test to set the loading cell). Tests were performed on twelve replicates
for each mixture, applying the pulses on two perpendicular diameters (i.e., rotating the
specimen through 90◦ about its horizontal axis between the two measurements). Stiffness
values E were calculated according to the referenced standard from the force peak values
applied (as the average of the two diameters tested for each sample).

3.3.3. Repeated Load Axial Tests

Uniaxial cyclic compression tests (CCT) with confinement (EN 12697-25/Method
A1) were executed on cylindrical specimens to determine the resistance of bituminous
mixtures to permanent deformation. Such destructive tests allowed us to assess the rutting
potential of asphalt concrete (two replicates for each mixture were tested). Cyclic axial
load pulses were applied in stress-controlled mode at the selected test temperature (after a
pre-conditioning time of at least 4 h). Two stress levels σ were investigated (i.e., 100 kPa
and 300 kPa) to assess the applied stress sensitivity whereas test temperature T was fixed
at 60 ◦C. Load was applied with a frequency of 0.5 Hz (1 s loading time at the stress level σ,
followed by 1 s rest period) up to 3600 loading cycles. The 150 mm diameter specimens
were centrally loaded in the axial direction with a circular plate having a diameter of
100 mm to reproduce the confinement of field conditions (the ring of material non-directly
loaded simulates the real-scale confining action due to surrounding pavement). Rutting
behavior was evaluated by constructing the relationship between the cumulative axial
strain εca and the number of applied cycles n (average of the two replicates); then, the creep
rate parameter (slope of the quasi-linear part of εca vs. n curve) was estimated as a key
parameter to assess the resistance to permanent deformation of the tested mix (Figure 2).
The final creep modulus Ef (i.e., the ratio between the stress level and the corresponding
cumulative strain at the end of the test) was also calculated for a better understanding of
the stress sensitivity of the studied mixes.
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Figure 2. The creep rate parameter determined through the CCT test.

3.3.4. Indirect Tensile Strength and Fracture Tests

Indirect tensile configuration was also used to investigate the fracture resistance of the
mixtures. To this end, static indirect tensile strength (ITS) tests (EN 12697-23) were carried
out at 25 ◦C on three cylindrical sample replicates (at least 4 h of pre-conditioning time
was also guaranteed in this case). According to standard test conditions, a vertical strain
rate equal to 51 mm/min was applied while recording the load evolution over time. The
ITS parameter was calculated from the peak load measured at the sample’s failure. The
dissipated energy to fracture (EITS) (i.e., the area under the force-displacement (F–s) curve
up to the peak failure) was also calculated (Figure 3).

Figure 3. Calculation of the dissipated energy to fracture through the ITS test.

In the second case, samples were subjected to pulse load repetitions to assess the
fracture potential due to dynamic phenomena. Cylindrical samples were subjected to
indirect tensile fatigue (ITF) tests performed according to the British standard BS DD ABF.
A cyclic pulse load, with a repetition period of 1.5 s and a rise time of 124 ms, was applied
in stress-controlled mode in the vertical direction (100 kPa and 200 kPa were selected as the
input stress levels σ). The temperature was set again to 25 ◦C (with pre-conditioning of at
least 4 h). One specimen for each test configuration (mixture and stress level) was tested.
The output was expressed in terms of the resilient strain amplitude (εres) over cycles N. The
energy ratio (Eratio), expressed as N × σ/εres, was then plotted to calculate the number of
cycles to failure Nf (peak of the Eratio vs. N curve), as described in Figure 4. This allowed us
to simultaneously consider the effect on both the tensile strength and the strain tolerance.
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Figure 4. The calculation of the number of cycles to failure through the ITF energy ratio.

3.3.5. Moisture Resistance Assessment

The ITS tests were also carried out on cylindrical specimens preliminarily subjected to
wet conditioning in order to investigate the AC susceptibility to moisture (three wet and
three dry replicates for each mixture) by comparing the results with those in dry conditions
(i.e., the same samples described in section above). Before the ITS tests, samples were
placed in a temperature-controlled bath at 60 ± 1 ◦C for 24 ± 1 h according to the AASHTO
283 standard. Then, they were air conditioned at 25 ◦C for 4 h before testing. The moisture
resistance was considered by calculating the indirect tensile strength ratio (ITSR) as the
percentage ratio of the ITS values of the wet conditioned samples and the non-conditioned
ones. It is worth noting that due to the limited amount of material available, the specimens
used for the assessment of ITSR were not compacted at a higher void content as required
by the standard procedure.

4. Results and Analysis
4.1. Compactability

The use of SGC allowed for the assessment of the workability of the investigated
mixtures by analyzing the experimental findings recorded during compaction (i.e., the
increase in volumetric bulk density was calculated thanks to the continuous reading of the
height). According to EN 12697-10, compactability curves were then obtained by linear
regression of the variation of the air voids v% (calculated as 100%-degree of compaction,
which is the percentage ratio between the measured bulk density and the theoretical
maximum density) against the natural logarithm of the number of gyrations ln(ng), which
represents the compaction energy. The obtained trends for each of the six specimens
compacted using SGC for each mix are shown in Figure 5a–c and were used to calculate
the compactability K, that is, the slope of the v% vs. ln(ng) regression lines.

As shown in Figure 5d, the three investigated materials were characterized by the
same average compactability with limited variability, suggesting no significant effects
of waste PE addition on the asphalt mixture workability at the investigated production
conditions, even when dosed at a high rate (1.5% by mix weight). Such an experimental
finding, also considering that the mix design was not adjusted to account for the presence
of the PE, is rather promising, since it is possible to assume no detrimental impact on the
material preparation and laying during field construction (i.e., with no need of specific
changes/expedients such as the adoption of higher construction temperatures or the use of
additives to achieve the desired workability. This fundamental outcome is in accordance
with recent research that has reported similar compactability for the AC14 asphalt mixtures
prepared by replacing part of the coarse or the fine aggregate with recycled plastic, provided
that the waste plastic is dosed at maximum 2% by mix weight [2].
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Figure 5. The compaction curves ((a) REF; (b) PEs02; (c) PEs15) and the workability (d) of the mixes.

4.2. LVE Properties

The LVE properties of the studied mixtures were investigated through frequency sweeps
tests in the 4PB configuration. The experimental findings are reported in Figures 6 and 7 and
depict the measured data in the Black space (norm of the complex modulus |E*| vs. the
corresponding phase angle Φ) and Cole–Cole plot (the viscous component E2 vs. the elastic
component E1 of the complex modulus), respectively.

Figure 6. The 4PB experimental findings: Black diagram.
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Figure 7. The 4PB experimental findings: Cole–Cole plot.

Such results clearly show the contribution of the addition of waste PE on the LVE prop-
erties of the selected asphalt mixtures. In particular, it is worth noting that the lowest dosage
of PE led to a slight change in the LVE characteristics, limited to a small stiffening at the
high-temperature/low-frequency domain, whereas a higher amount of waste plastic signif-
icantly affected the rheological properties across the whole investigated time–temperature
domain. Hence, according to recent literature [9], the PEs15 mix is characterized by a
clear shift toward a more elastic response in the whole domain along with a considerable
stiffening effect at the high-temperature/low-frequency domain. This promising effect
discloses a distinctly enhanced performance against permanent deformation and also
suggests unvaried (or even higher) properties at lower temperatures since a more elastic
response (i.e., lower phase angle) is associated with almost the same stiffness (i.e., norm
of the complex modulus). Such modification of the rheological response of the asphalt
mixture also indicates that PE does not act as a simple solid addition to the mix, but it
is likely to hypothesize a significant degree of melting of the waste plastic, which could
promote a certain chemical interaction with the asphalt binder, especially at the highest
recycling rate. Indeed, it must be advised that such modification did not alter the overall
thermos-rheological behavior of the mixtures (all mixes remained thermos-rheologically
simple in light of the continuous-aligned trends found in Black spaces [25]).

In order to evaluate the significance of the measured LVE characteristics, Table 6
reports some of the statistics about the test repeatability found in the laboratory and
evaluated according to the ASTM C670 standard. The difference between the highest and
lowest experimental data for each frequency ∆max−min was checked with respect to the
single-operator precision limits with a confidence level of 95%. In this regard, Table 6
reports, for each test frequency, the maximum difference recorded among all of the tested
temperatures. The acceptance limits indicated in Table 6 were calculated by multiplying
the standard deviation 1s of the four replicate values by the related statistical multiplier
given by ASTM C670 for a group of four samples.

It is worth noting that all values fell within the acceptance limits, therefore, the tests
can be considered as reliable and data can be consistently adopted. Moreover, similar
variabilities were found for the REF and PE-modified mixes, suggesting that PE particles
within mixtures did not cause great inhomogeneity, in contrast with the heterogenous
results observed at the binder scale [11,12].

For the sake of completeness, Figures 8–10 report the frequency sweep test results in
terms of the master curves of the complex shear modulus |E*| constructed according to the
models already described in Section 3.3.1, whereas Figure 11 summarizes all of the results in
a single graph to allow for a prompt data comparison. In this regard, the key parameters of
the master curves are reported in Table 7 whereas Figure 12 shows the comparison between
the models. Results confirmed the improvement in the high temperature properties for the
PE modified mixtures, especially in the case of PEs15. Master curves also highlighted the
lower stiffness at high reduced frequencies (i.e., low temperatures) for the mix with 1.5%
plastic shreds, while almost unaltered behavior could be observed for the lowest PE dosage.
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This is reflected in the flattening of the curve and a lower time–temperature dependence
for PEs15.

Table 6. The 4PB test repeatability: single-operator precision for the stiffness modulus and
phase angle.

Quantity
Frequency, Hz

0.1 0.2 0.5 1 2 5 10 20

REF

|E*| ∆max −min 914 1006 1261 1496 1666 1979 2204 2436
Limits 1328 1386 1774 2060 2283 2730 3180 3661

Φ ∆max −min 2.90◦ 2.70◦ 2.30◦ 2.71◦ 3.66◦ 2.81◦ 2.06◦ 2.90◦

Limits 4.21◦ 3.82◦ 3.12◦ 3.56◦ 4.85◦ 3.97◦ 2.71◦ 3.71◦

PEs02

|E*| ∆max −min 903 1094 1042 1532 1766 2077 2210 2936
Limits 1226 1540 1571 2222 2510 2924 3172 3967

Φ ∆max −min 5.66◦ 2.07◦ 2.25◦ 9.34◦ 2.25◦ 3.61◦ 1.97◦ 2.49◦

Limits 7.24◦ 2.74◦ 3.07◦ 13.18◦ 3.11◦ 4.69◦ 2.85◦ 4.26◦

PEs15

|E*| ∆max −min 786 573 655 737 831 931 1053 1120
Limits 1044 835 965 1060 1155 1272 1429 1468

Φ ∆max −min 1.87◦ 2.69◦ 2.92◦ 2.36◦ 2.22◦ 2.42◦ 3.53◦ 3.49◦

Limits 2.51◦ 3.76◦ 3.94◦ 3.30◦ 3.16◦ 3.45◦ 4.57◦ 4.77◦

Figure 8. The frequency sweep results (master curve) of the REF mixture.

Figure 9. The frequency sweep results (master curve) of the PEs02 mixture.



Materials 2022, 15, 4739 12 of 19

Figure 10. The frequency sweep results (master curve) of the PEs15 mixture.

Figure 11. A comparison of the E* master curves (all mixtures).

Table 7. The parameters of the NCHRP fitting model for the complex modulus master curves.

Mixture
Parameter Reliability

fc, Hz k me Ee, MPa Eg, MPa R2

REF 30.17 0.446 0.434 107 18,120 0.9963
PEs02 54.17 0.411 0.420 118 19,546 0.9975
PEs15 56.66 0.459 0.254 189 13,645 0.9959

Figure 12. The NCHRP models for the studied mixtures.

4.3. Stiffness

The stiffness moduli E determined through the IT-CY non-destructive tests are pre-
sented in Figure 13. The graph reports all 36 measured values (12 specimens tested for
each selected material) and highlights the corresponding average values for each mixture.
Again, according to previous studies [15,16,26], the presence of the waste PE led to a clear
increase in the stiffness moduli at intermediate service temperatures; in particular, it was
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possible to observe that the higher the PE content, the higher the stiffness modulus, with a
114% increase in the case of the PEs15 mix containing 1.5% waste plastic. Given the fact
that all three mixtures were compacted at fixed void content, the observed stiffening effect
can likely be attributed to the presence of PE and its interaction with the aggregate solid
skeleton as well as with the bituminous binder, confirming the analyses carried out based
on the LVE characteristics measured in the 4PB configuration.

Figure 13. The stiffness modulus determined through the IT-CY tests.

To evaluate the significance of the measured differences in the collected data for the
three mixtures, a statistical evaluation through a one-way Analysis of Variance (ANOVA) at
a 95% confidence level was carried out. The results of such statistical study are summarized
in Table 8, showing that the increase in stiffness due to the dry addition of waste PE is
statistically significant; moreover, a different dosage of PE in the investigated range (i.e.,
from 0.25% to 1.5% by the weight of the mix) significantly affect the stiffness properties of
asphalt mixtures.

Table 8. The results of the ANOVA performed on the measured IT-CY stiffness moduli.

Mixes Comparison Significant? F F-Crit. p-Value

REF vs. PEs02 Yes 58.116 4.300 1.30 × 10−7

REF vs. PEs15 Yes 162.558 4.300 1.23 × 10−11

PEs02 vs. PEs15 Yes 34.547 4.300 6.49 × 10−6

4.4. Permanent Deformation Resistance

The CCT results at the selected stresses are presented in Figure 14 in terms of the
cumulative axial strain (to obtain a suitable comparison, data were expressed in dimension-
less terms, dividing the punctual axial strain by the initial one εca/εca,in on the y-axis). To
quantify the accumulated deformations in absolute terms, final cumulative strains (εca,f)
are given in Table 9, together with the calculated creep rate parameters (fc) and creep
modulus (Ef).

Overall, the experimental findings show that a clear increase in permanent deformation
resistance at high-service temperature was achieved by adding the selected waste PE to the
reference asphalt mixture, according to the existing literature [5,14–16,27,28]. In particular,
about a 30% reduction in the final cumulative axial strain was measured at a 100 kPa stress
level, where the plastic mixtures demonstrated a similar performance, even if the higher
dosage of plastic shreds led to a significantly lower creep rate.

Obviously, the specimens subjected to a higher stress level (i.e., 300 kPa) suffered
higher permanent deformation levels regardless of the material; however, this more detri-
mental test condition differentiated even more the behavior of the tested mixtures demon-
strating a lower stress sensitivity for the PE mixes. Indeed, the reference material tested
at 300 kPa showed the tertiary phase of the evolution of the permanent strain (i.e., an
increasing rate of deformation with loading cycles) toward the physical failure, whereas
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the mixtures containing plastics were still in the quasi-linear phase of their εca vs. n curves.
Analogous results have been reported by other researchers who performed similar tests at
both 40 ◦C and 50 ◦C in dry and wet conditions for mixtures containing 5% plastic waste
by weight of bitumen [5].

Figure 14. The CCT results. Evolution of the cumulative axial strain at: (a) 100 kPa; (b) 300 kPa.

Table 9. The CCT results: initial and final cumulative axial strain and creep rate of the mixtures.

Mixture

100 kPa 300 kPa

εca,f
[µstrain]

fc
[µstrain/cycle]

Ef
[MPa]

εca,f
[µstrain]

fc
[µstrain/cycle]

Ef
[MPa]

REF 17068 1.483 5.86 54432 8.832 5.51
PEs02 11999 0.905 8.33 30213 2.801 9.93
PEs15 11246 0.488 8.89 23787 1.135 12.61

Moreover, the effect of PE dosage was even more evident since PEs15 was able to
guarantee about 60% and 90% lower creep rate with respect to the PEs02 and REF materials,
respectively; a significantly lower final cumulative axial strain was also observed for PEs15
(21% and 56% reduction with respect to the PEs02 and REF mixes, respectively), leading to
an even greater increase in creep stiffness modulus.

4.5. Fracture Resistance

The fracture resistance of the studied mixtures was assessed through indirect tensile
tests in both the static and dynamic loading modes. In this regard, Table 10 reports the
measured indirect tensile strength (ITS) of all of the tested specimens along with the
corresponding average values for each material, whereas Figure 15 shows the registered
force–displacement trend (F vs. s) and the related dissipated energy EITS up to the peak
failure as described in the section above. Figure 16 reports the same experimental data in a
single graph for the sake of an effective material comparison.

Table 10. The indirect tensile strength (ITS) values for each mixture.

Mixture
ITS, MPa

Rep. 1 Rep. 2 Rep. 3 Average

REF 0.67 0.58 0.62 0.62
PEs02 0.64 0.76 0.68 0.69
PEs15 0.95 0.81 1.11 0.96
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Figure 15. The force–displacement trend from the ITS tests for all mixtures: (a) REF; (b) PEs02;
(c) PEs15.

Figure 16. The comparison of the force–displacement trends from the ITS tests (all mixtures).

The experimental findings demonstrated a slight increase in strength with the addition
of 5% waste plastic by bitumen weight (i.e., PEs02 mix), whereas the higher PE amount led
to a significantly higher tensile strength of the asphalt concrete, confirming the hypothesized
strengthening of the asphalt mastic due to the chemo-physical interaction between the
asphalt binder and the plastic particles [10]. However, notwithstanding the higher peak
forces observed for the PE mixtures, very similar energy-to-failure values were found for
the tested materials, suggesting a possible decrease in ductility for higher amounts of
plastics, as already found by other researchers [2,14,28]. This fact could reflect in possible
issues against the low temperature cracking resistance of such a material, therefore, a
specific study is suggested for further analysis.
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The dynamic ITF tests carried out by applying a cyclic pulse loading in stress-controlled
mode can provide further indications. In this sense, Figure 17 presents the relationships be-
tween the resilient strain amplitude and the number of loading cycles at 25 ◦C at the selected
stress levels (i.e., 100 and 200 kPa) whereas Figure 18 plots the energy ratio (N × σ/εres)
against the number of cycles, also indicating the number of cycles to failure Nf for all of the
mixtures represented by the vertical dotted lines.

Figure 17. The ITF test results: evolution of resilient strain amplitude on the test cycles.

Figure 18. The ITF test energy ratio for the tested mixtures: (a) REF; (b) PEs02; (c) PEs15.

As can be seen, the tests conducted in dynamic mode confirmed the enhanced tensile
resistance that was achievable thanks to the dry inclusion of the selected waste plastics into
the asphalt mixtures without negative aspects related to a possible reduction in ductility.
Indeed, PEs02 was able to withstand five times higher loading cycles whereas the addition
of 1.5% plastic by mix weight led to about a 20 times higher fracture resistance; in addition,
both plastic mixtures were characterized by a rather comparable strain at failure with
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respect to the control mixture, even if a slight reduction could be detected in the case of
a high plastic content. In this sense, Giustozzi et al. [2] also highlighted the capability of
dissipating energy via deformation of the mixtures prepared by partially replacing natural
aggregates with recycled plastic. Moreover, in the investigated range of stresses, it is worth
noting that there was a very similar stress sensitivity for all of the materials investigated in
the present study.

4.6. Moisture Resistance

Figure 19 shows the ITS of the wet-conditioned samples and the corresponding ITSR
values to evaluate the effect of the waste PE shreds on the moisture resistance of the
investigated asphalt mixtures.

Figure 19. The moisture resistance: (a) ITS of wet-conditioned samples; (b) ITSR values.

First, it is interesting to note that the ITS of the wet conditioned samples depict the
same behavior observed in the dry condition, with a slightly higher strength for PEs02 and
a more significant increase in strength for the higher dosage of plastic. This fact reflects
in ITSR indices very close to 100%, indicating practically no detrimental effect of water
conditioning for both the reference mixture and the materials containing plastic. Thus, it
can be stated that, similarly to the outcomes of recent studies [15,16,27], a plastic addition
up to 1.5% by the mix weight did not negatively affect the moisture resistance under the
investigated standard test conditions. Further research subjecting the investigated materials
to more severe water conditioning can be suggested to confirm this outcome.

5. Conclusions and Prospects for Further Studies

The present research study evaluated the feasibility of producing asphalt mixtures with
the dry addition of waste polyethylene (PE). To this aim, a comprehensive experimental
program was carried out in the laboratory to analyze the effect of different dosages of
PE (i.e., 0.25% and 1.50% by the weight of the mixture). A reference material without the
addition of the plastic waste was also investigated for comparison purposes.

Based on the experimental findings, the main conclusions can be summarized as follows:

• The addition of waste PE up to 1.5% by mix weight did not affect the asphalt mixture
workability at the investigated production conditions.

• PE waste at the highest recycling rate used in this investigation significantly influenced
the rheological properties of the asphalt mixture with a clear shift toward a more
elastic response in the whole investigated time–temperature domain along with a
considerable stiffening effect at the high-temperature/low-frequency domain.

• Significantly higher stiffness and permanent deformation resistance were obtained in
the case of the mixtures containing recycled waste plastic; again, the higher the PE
dosage, the better the material response.
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• A proportional increase in the strength and fracture resistance with the corresponding
addition of plastic waste was also observed in indirect tensile tests, suggesting the
strengthening of the asphalt mastic due to the chemo-physical interaction between the
asphalt binder and the plastic particles.

• Moisture resistance of the investigated asphalt mixture was not negatively affected by
the presence of waste PE.

Thus, the experimental results achieved during this first phase of the research provide
promising evidence toward the successful use of such plastic waste into asphalt mixtures by
using the dry method. Further research is needed to better understand the chemo-physical
interaction between the plastic particles and asphalt binder at the microstructure level in
order to generalize the particular indications coming from the present study and provide
precise guidelines for mixture preparation and control. Moreover, a specific assessment
of the low-temperature properties of PE-modified asphalt mixtures is recommended in
order to exclude and/or limit the possible drawbacks related to a prospective reduction in
ductility. Round robin inter-laboratory investigations within the framework of the RILEM
TC strengthen these findings and are underway. Field trial sections should be constructed
and monitored to validate the laboratory findings.
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