

Received 7 May 2015 Accepted 23 May 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; indole; methyl methacrylate; C—H $\cdots \pi$ interactions; $\pi - \pi$ interactions

CCDC reference: 1402521 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of methyl (2*Z*)-3-(4-chlorophenyl)-2-[(3-methyl-1*H*-indol-1-yl)methyl]prop-2-enoate

S. Selvanayagam,^a* B. Sridhar,^b S. Kathiravan^c and R. Raghunathan^c

^aDepartment of Physics, Kings College of Engineering, Punalkulam 613 303, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 067, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. *Correspondence e-mail: s_selvanayagam@rediffmail.com

In the title indole derivative, $C_{20}H_{18}CINO_2$, the chlorophenyl ring is almost perpendicular to the indole moiety, making a dihedral angle of 87.6 (1)°. The molecular packing is stabilized by $C-H\cdots\pi$ interactions, which form a C(9)chain motif along [101]. In addition, there are weak $\pi-\pi$ interactions [centroid– centroid distance 3.851 (1) Å] between the chains, involving inversion-related chlorophenyl rings.

1. Chemical context

Indole derivatives inhibit hepatitis C virus replication through induction of pro-inflammatory cytokines (Lee *et al.*, 2015) and these derivatives act as a new anti-hepatitis C virus agents (Andreev *et al.*, 2015). These derivatives also act as potential mushroom tyrosinase inhibitors (Ferro *et al.*, 2015). Indole derivatives also exhibit anti-proliferative (Parrino *et al.*, 2015), anti-inflammatory (Chen *et al.*, 2015) and anti-tumor (Ma *et al.*, 2015) activities. In view of the many interesting applications of indole derivatives, we synthesized the title compound and report herein on its crystal structure.

2. Structural commentary

The molecular structure of the title compound, (I), is illustrated in Fig. 1. The geometry of the indole ring system (N1/ C1–C8) in (I) is comparable with those reported for similar structures, namely 1-vinyl-1*H*-indole-3-carbaldehyde (II) (Selvanayagam *et al.*, 2008) and methyl (2*Z*)-2-[(2-formyl-3methyl-1*H*-indol-1-yl)methyl]-3-(4-methoxyphenyl)-prop-2enoate (III) (Selvanayagam *et al.*, 2014). The superposition of the indole ring system of (I) with the related reported structures, using *Qmol* (Gans & Shalloway, 2001), gives an r.m.s.

OPEN d ACCESS

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

deviation of 0.025 Å between (I) and (II), and 0.030 Å between (I) and (III); see Fig. 2. The indole ring system is planar with an r.m.s. deviation of 0.017 Å [maximum deviation of 0.028 (2) Å for atom C3], and the methyl atom C9 deviates

Table 1	
Hydrogen-bond geometry (A, $^{\circ}$).	
Cg is the centroid of ring C1–C6.	

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C13-H13 A ··· Cg^{i}	0.96	2.69	3.581 (2)	154

Symmetry code: (i) $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$.

by 0.050 (2) Å from its mean plane. The chlorine atom, Cl1, deviates by 0.008 (1) Å from the benzene ring (C15-C20) to which it is attached. This ring is almost perpendicular to the indole ring system, making a dihedral angle of 87.59 (6)°. The sum of the angles at atom N1 of the indole ring (360°) is in accordance with sp^2 hybridization. The widening of the C16-C15-C14 bond angle to 125.2 (1)° is due to the short $H \cdots H$ contact (H10B···H16 = 2.10 Å). The mean plane of the methyl methacrylate unit [O1/O2/C10-C14; maximum deviation of 0.015 (2) Å for atom O1] is almost planar with the chlrophenyl ring, making a dihedral angle of $18.98 (17)^{\circ}$, but is normal to the indole ring system with a dihedral angle of 89.96 (5)°.

3. Supramolecular features

In the crystal, $C-H\cdots\pi$ interactions link the molecules, forming C(9) chains propagating along $[10\overline{1}]$; see Fig. 3 and Table 1. Between the chains there are weak π - π interactions

Superposition of (I) (cyan) with the similar reported structures (II) (yellow; Selvanayagam et al., 2008) and (III) (green; Selvanayagam et al., 2014).

Figure 3

The molecular packing of the title compound, viewed along the b axis. $C-H\cdots\pi$ interactions (Table 1) are shown as dashed lines. For clarity, H atoms not involved in these interactions have been omitted.

research communications

Table 2Experimental details.

Crystal data Chemical formula C₂₀H₁₈ClNO₂ 339.80 М., Crystal system, space group Monoclinic, P21/n Temperature (K) 292 9.5867 (5), 15.9077 (8), 10.8902 (6) *a*, *b*, *c* (Å) 94.787 (1) β (°) $V(Å^3)$ 1654.99 (15) Z 4 Radiation type Μο Κα $\mu \text{ (mm}^{-1}\text{)}$ 0.24 Crystal size (mm) $0.20 \times 0.18 \times 0.16$ Data collection Diffractometer Bruker SMART APEX CCD area detector No. of measured, independent and 19078, 3944, 3313 observed $[I > 2\sigma(I)]$ reflections R_{int} 0.026 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.661 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.044. 0.127. 1.02 No. of reflections 3944 No. of parameters 219 H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.30, -0.23

Computer programs: *SMART* and *SAINT* (Bruker, 2001), *SHELXS1997* (Sheldrick, 2008), *SHELXL2013* (Sheldrick, 2015), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009).

involving inversion-related chlorophenyl rings (C15–C20), stabilizing the molecular packing [centroid-to-centroid distance = 3.851 (1) Å]; see Fig. 4.

4. Synthesis and crystallization

Substituted (Z)-methyl-2-(bromomethyl)-3-phenylacrylate (1 mmol), tetra-butyl-ammonium bromide (0.5 mmol), and 50% NaOH (20 ml) were added to a solution of 3-methyl indole (1 mmol) in benzene (55 ml). The mixture was stirred vigorously at room temperature for 5–6 h. The organic layer was separated, washed with water and dried over MgSO₄. The solvent was evaporated under reduced pressure (yield: 70%). Suitable crystals were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in idealized positions and allowed to ride on their parent atoms: C-H =

Figure 4

Molecular packing of the title compound, showing the π - π interactions as dashed lines. For clarity, H atoms not involved in these interactions have been omitted.

0.93–0.97 Å, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Acknowledgements

SS thanks the Principal and Management of Kings College of Engineering, Punalkulam, for their support and encouragement.

References

- Andreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). *Eur. J. Med. Chem.* **96**, 250–258.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y. R., Tseng, C. H., Chen, Y. L., Hwang, T. L. & Tzeng, C. C. (2015). Int. J. Mol. Sci. 16, 6532–6544.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ferro, S., Certo, G., De Luca, L., Germano, M. P., Rapisarda, A. & Gitto, R. (2015). *J. Enzyme. Inhib. Med. Chem.* **31**, 1–6.
- Gans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557– 559.
- Lee, S., Jin, G., Kim, D., Son, S., Lee, K. & Lee, C. (2015). *Acta Virol.* **59**, 64–77.
- Ma, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). *Eur. J. Med. Chem.* 96, 173–186.
- Parrino, B., Carbone, A., Di Vita, G., Ciancimino, C., Attanzio, A., Spano, V., Montalbano, A., Barraja, P., Tesoriere, L., Livera, M. A., Diana, P. & Cirrincione, G. (2015). *Mar. Drugs*, **13**, 1901–1924.
- Selvanayagam, S., Sridhar, B., Kathiravan, S. & Raghunathan, R. (2014). Acta Cryst. E70, 0431-0432.
- Selvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2008). Acta Cryst. E64, o1163.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, 720-722 [doi:10.1107/S2056989015010002]

Crystal structure of methyl (2*Z*)-3-(4-chlorophenyl)-2-[(3-methyl-1*H*-indol-1-yl)methyl]prop-2-enoate

S. Selvanayagam, B. Sridhar, S. Kathiravan and R. Raghunathan

Computing details

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS1997* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Methyl (2Z)-3-(4-chlorophenyl)-2-[(3-methyl-1H-indol-1-yl)methyl]prop-2-enoate

Crystal data	
$C_{20}H_{18}CINO_2$ $M_r = 339.80$ Monoclinic, $P2_1/n$	F(000) = 712 $D_x = 1.364 \text{ Mg m}^{-3}$ Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$
a = 9.5867 (5) Å b = 15.9077 (8) Å	Cell parameters from 12437 reflections $\theta = 2.3-27.7^{\circ}$
c = 10.8902 (6) A $\beta = 94.787$ (1)° V = 1654.99 (15) Å ³	$\mu = 0.24 \text{ mm}^{-1}$ T = 292 K Block, colourless
Z = 4	$0.20 \times 0.18 \times 0.16 \text{ mm}$
Data collection	
 Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube ω scans 19078 measured reflections 3944 independent reflections 	3313 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -20 \rightarrow 20$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.127$ S = 1.02 3944 reflections 219 parameters 0 restraints	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0722P)^2 + 0.3404P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.30$ e Å ⁻³ $\Delta\rho_{min} = -0.23$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.85221 (5)	1.06092 (3)	0.06559 (4)	0.05976 (16)
01	0.23237 (16)	0.66473 (11)	-0.05769 (11)	0.0775 (4)
02	0.21544 (12)	0.62293 (7)	0.13579 (10)	0.0524 (3)
N1	0.32743 (12)	0.78373 (7)	0.30864 (10)	0.0366 (3)
C1	0.32983 (13)	0.78740 (8)	0.43477 (12)	0.0333 (3)
C2	0.40942 (15)	0.74169 (9)	0.52459 (13)	0.0405 (3)
H2	0.4756	0.7027	0.5035	0.049*
C3	0.38621 (16)	0.75652 (10)	0.64588 (13)	0.0472 (4)
H3	0.4365	0.7262	0.7077	0.057*
C4	0.28848 (17)	0.81630 (11)	0.67783 (13)	0.0487 (4)
H4	0.2759	0.8254	0.7605	0.058*
C5	0.21077 (15)	0.86187 (9)	0.58952 (13)	0.0421 (3)
Н5	0.1468	0.9018	0.6120	0.051*
C6	0.22927 (13)	0.84726 (8)	0.46513 (12)	0.0341 (3)
C7	0.16518 (14)	0.87978 (9)	0.35139 (13)	0.0384 (3)
C8	0.22748 (14)	0.83989 (9)	0.25968 (13)	0.0390 (3)
H8	0.2059	0.8491	0.1759	0.047*
C9	0.05055 (18)	0.94375 (11)	0.33648 (17)	0.0551 (4)
H9A	0.0297	0.9559	0.2506	0.083*
H9B	0.0800	0.9943	0.3792	0.083*
H9C	-0.0316	0.9221	0.3701	0.083*
C10	0.41548 (15)	0.72823 (9)	0.24128 (12)	0.0391 (3)
H10A	0.4063	0.6711	0.2708	0.047*
H10B	0.5126	0.7449	0.2578	0.047*
C11	0.37749 (15)	0.73022 (9)	0.10415 (12)	0.0395 (3)
C12	0.26941 (16)	0.67031 (10)	0.05008 (14)	0.0457 (3)
C13	0.1091 (2)	0.56359 (11)	0.0915 (2)	0.0622 (5)
H13A	0.0294	0.5934	0.0543	0.093*
H13B	0.0815	0.5306	0.1592	0.093*
H13C	0.1457	0.5272	0.0316	0.093*
C14	0.43561 (15)	0.78067 (10)	0.02431 (13)	0.0427 (3)
H14	0.4052	0.7706	-0.0577	0.051*
C15	0.53784 (15)	0.84850 (9)	0.04181 (13)	0.0418 (3)
C16	0.57356 (18)	0.89031 (11)	0.15350 (14)	0.0499 (4)
H16	0.5315	0.8742	0.2238	0.060*
C17	0.66983 (18)	0.95481 (11)	0.16082 (15)	0.0516 (4)
H17	0.6930	0.9818	0.2355	0.062*
C18	0.73146 (16)	0.97890 (9)	0.05648 (14)	0.0447 (3)
C19	0.69899 (19)	0.93986 (11)	-0.05510 (15)	0.0521 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supporting information

H19	0.7414	0.9567	-0.1248	0.063*
C20	0.60262 (18)	0.87549 (11)	-0.06176 (14)	0.0495 (4)
H20	0.5800	0.8492	-0.1371	0.059*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U ¹²	U^{13}	U ²³
C11	0.0659 (3)	0.0532 (3)	0.0606 (3)	-0.00944 (19)	0.0072 (2)	0.00371 (18)
01	0.0809 (9)	0.1119 (12)	0.0386 (7)	-0.0357 (9)	-0.0008 (6)	-0.0147 (7)
O2	0.0572 (7)	0.0500 (6)	0.0490 (6)	-0.0075 (5)	-0.0016 (5)	-0.0016 (5)
N1	0.0384 (6)	0.0420 (6)	0.0293 (5)	0.0067 (5)	0.0016 (4)	-0.0017 (4)
C1	0.0341 (6)	0.0353 (6)	0.0304 (6)	-0.0008 (5)	0.0024 (5)	-0.0030 (5)
C2	0.0428 (7)	0.0411 (7)	0.0371 (7)	0.0080 (6)	-0.0005 (6)	-0.0006 (6)
C3	0.0524 (9)	0.0538 (9)	0.0341 (7)	0.0067 (7)	-0.0031 (6)	0.0035 (6)
C4	0.0528 (9)	0.0641 (10)	0.0292 (7)	0.0029 (7)	0.0041 (6)	-0.0049 (6)
C5	0.0407 (7)	0.0468 (8)	0.0394 (7)	0.0032 (6)	0.0070 (6)	-0.0069 (6)
C6	0.0328 (6)	0.0344 (6)	0.0351 (7)	-0.0016 (5)	0.0025 (5)	-0.0014 (5)
C7	0.0360 (7)	0.0397 (7)	0.0390 (7)	0.0028 (5)	0.0013 (5)	0.0002 (6)
C8	0.0391 (7)	0.0446 (7)	0.0324 (7)	0.0043 (6)	-0.0010 (5)	0.0031 (5)
C9	0.0504 (9)	0.0552 (10)	0.0591 (10)	0.0181 (7)	0.0013 (7)	0.0038 (8)
C10	0.0403 (7)	0.0446 (7)	0.0321 (7)	0.0069 (6)	0.0016 (5)	-0.0041 (5)
C11	0.0400 (7)	0.0478 (8)	0.0306 (7)	0.0066 (6)	0.0019 (5)	-0.0069 (6)
C12	0.0450 (8)	0.0538 (9)	0.0384 (8)	0.0033 (7)	0.0034 (6)	-0.0098 (6)
C13	0.0606 (11)	0.0505 (9)	0.0739 (12)	-0.0092 (8)	-0.0043 (9)	-0.0039 (8)
C14	0.0433 (8)	0.0540 (8)	0.0305 (7)	0.0056 (6)	0.0007 (6)	-0.0064 (6)
C15	0.0441 (8)	0.0463 (8)	0.0349 (7)	0.0072 (6)	0.0024 (6)	-0.0006 (6)
C16	0.0583 (9)	0.0570 (9)	0.0357 (8)	-0.0043 (7)	0.0108 (7)	-0.0050 (7)
C17	0.0602 (10)	0.0545 (9)	0.0406 (8)	-0.0044 (7)	0.0075 (7)	-0.0088 (7)
C18	0.0456 (8)	0.0406 (8)	0.0476 (8)	0.0049 (6)	0.0024 (6)	0.0041 (6)
C19	0.0626 (10)	0.0563 (10)	0.0384 (8)	-0.0001 (7)	0.0095 (7)	0.0067 (7)
C20	0.0606 (9)	0.0555 (9)	0.0319 (7)	-0.0002 (7)	0.0015 (6)	-0.0003 (6)

Geometric parameters (Å, °)

Cl1—C18	1.7417 (16)	С9—Н9В	0.9600
O1—C12	1.2007 (19)	С9—Н9С	0.9600
O2—C12	1.3370 (19)	C10-C11	1.5077 (18)
O2—C13	1.442 (2)	C10—H10A	0.9700
N1-C1	1.3731 (16)	C10—H10B	0.9700
N1—C8	1.3839 (17)	C11—C14	1.338 (2)
N1-C10	1.4607 (17)	C11—C12	1.492 (2)
C1—C2	1.3940 (19)	C13—H13A	0.9600
C1—C6	1.4138 (18)	C13—H13B	0.9600
C2—C3	1.378 (2)	C13—H13C	0.9600
С2—Н2	0.9300	C14—C15	1.460 (2)
C3—C4	1.399 (2)	C14—H14	0.9300
С3—Н3	0.9300	C15—C20	1.400 (2)
C4—C5	1.373 (2)	C15—C16	1.403 (2)

C4—H4	0.9300	C16—C17	1.378 (2)
C5—C6	1.4001 (19)	C16—H16	0.9300
С5—Н5	0.9300	C17—C18	1.378 (2)
C6—C7	1.4327 (19)	С17—Н17	0.9300
C7—C8	1.363 (2)	C18—C19	1.377 (2)
С7—С9	1.497 (2)	C19—C20	1.377 (2)
С8—Н8	0.9300	С19—Н19	0.9300
С9—Н9А	0.9600	С20—Н20	0.9300
C12—O2—C13	116.06 (13)	N1-C10-H10B	109.1
C1—N1—C8	108.14 (11)	C11—C10—H10B	109.1
C1—N1—C10	124.46 (11)	H10A—C10—H10B	107.8
C8—N1—C10	127.39 (11)	C14—C11—C12	116.07 (13)
N1—C1—C2	129.96 (12)	C14—C11—C10	125.23 (13)
N1—C1—C6	107.92 (11)	C12—C11—C10	118.67 (13)
C2—C1—C6	122.09 (12)	O1—C12—O2	122.72 (15)
C3—C2—C1	117.42 (13)	01—C12—C11	124.88 (16)
С3—С2—Н2	121.3	O2—C12—C11	112.39 (12)
C1—C2—H2	121.3	O2—C13—H13A	109.5
C2—C3—C4	121.32 (14)	O2—C13—H13B	109.5
С2—С3—Н3	119.3	H13A—C13—H13B	109.5
С4—С3—Н3	119.3	O2—C13—H13C	109.5
C5—C4—C3	121.33 (13)	H13A—C13—H13C	109.5
C5—C4—H4	119.3	H13B—C13—H13C	109.5
C3—C4—H4	119.3	C11—C14—C15	132.06 (13)
C4—C5—C6	119.00 (13)	C11—C14—H14	114.0
С4—С5—Н5	120.5	C15—C14—H14	114.0
С6—С5—Н5	120.5	C20—C15—C16	117.42 (15)
C5—C6—C1	118.81 (12)	C20—C15—C14	117.37 (13)
C5—C6—C7	134.17 (13)	C16—C15—C14	125.19 (14)
C1—C6—C7	107.01 (11)	C17—C16—C15	121.12 (15)
C8—C7—C6	106.44 (12)	C17—C16—H16	119.4
C8—C7—C9	126.87 (14)	C15—C16—H16	119.4
С6—С7—С9	126.68 (13)	C18—C17—C16	119.37 (15)
C7—C8—N1	110.49 (12)	C18—C17—H17	120.3
С7—С8—Н8	124.8	C16—C17—H17	120.3
N1—C8—H8	124.8	C19—C18—C17	121.42 (15)
С7—С9—Н9А	109.5	C19—C18—C11	119.23 (12)
С7—С9—Н9В	109.5	C17—C18—C11	119.34 (12)
Н9А—С9—Н9В	109.5	C18—C19—C20	118.89 (15)
С7—С9—Н9С	109.5	C18—C19—H19	120.6
Н9А—С9—Н9С	109.5	С20—С19—Н19	120.6
Н9В—С9—Н9С	109.5	C19—C20—C15	121.77 (15)
N1-C10-C11	112.50 (11)	С19—С20—Н20	119.1
N1-C10-H10A	109.1	С15—С20—Н20	119.1
C11—C10—H10A	109.1		
C8—N1—C1—C2	178.13 (14)	C8—N1—C10—C11	-6.0 (2)

C_{10} N1 C_{1} C_{2}	10(2)	NI C10 C11 C14	02.47(17)
C10-N1-C1-C2	-1.0 (2)	NI-CI0-CII-CI4	92.47 (17)
C8—N1—C1—C6	-0.08 (15)	N1-C10-C11-C12	-89.24 (16)
C10—N1—C1—C6	-179.21 (12)	C13—O2—C12—O1	0.2 (2)
N1—C1—C2—C3	-177.65 (14)	C13—O2—C12—C11	179.53 (13)
C6—C1—C2—C3	0.3 (2)	C14—C11—C12—O1	0.0 (2)
C1—C2—C3—C4	-1.2 (2)	C10-C11-C12-O1	-178.46 (16)
C2—C3—C4—C5	0.7 (3)	C14—C11—C12—O2	-179.30 (13)
C3—C4—C5—C6	0.7 (2)	C10-C11-C12-O2	2.25 (19)
C4—C5—C6—C1	-1.5 (2)	C12—C11—C14—C15	176.82 (14)
C4—C5—C6—C7	177.51 (15)	C10-C11-C14-C15	-4.9 (3)
N1-C1-C6-C5	179.37 (12)	C11—C14—C15—C20	164.77 (16)
C2-C1-C6-C5	1.0 (2)	C11—C14—C15—C16	-17.0 (3)
N1-C1-C6-C7	0.14 (15)	C20-C15-C16-C17	-0.7 (2)
C2-C1-C6-C7	-178.25 (13)	C14—C15—C16—C17	-178.87 (15)
C5—C6—C7—C8	-179.20 (15)	C15—C16—C17—C18	0.3 (3)
C1—C6—C7—C8	-0.14 (15)	C16—C17—C18—C19	0.0 (3)
C5—C6—C7—C9	-0.3 (3)	C16—C17—C18—Cl1	179.55 (13)
C1—C6—C7—C9	178.81 (15)	C17—C18—C19—C20	0.1 (3)
C6—C7—C8—N1	0.09 (16)	Cl1—C18—C19—C20	-179.51 (13)
C9—C7—C8—N1	-178.86 (14)	C18—C19—C20—C15	-0.4 (3)
C1—N1—C8—C7	0.00 (16)	C16-C15-C20-C19	0.7 (2)
C10—N1—C8—C7	179.09 (13)	C14—C15—C20—C19	179.06 (15)
C1-N1-C10-C11	172.92 (13)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of ring C1–C6.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C13—H13A···Cg ⁱ	0.96	2.69	3.581 (2)	154

Symmetry code: (i) *x*-1/2, *-y*-1/2, *z*-1/2.