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Abstract

Summary: Promoters have diverse regulatory architectures and thus activate genes differently. For

example, some have a TATA-box, many others do not. Even the ones with it can differ in its pos-

ition relative to the transcription start site (TSS). No Promoter Left Behind (NPLB) is an efficient, organ-

ism-independent method for characterizing such diverse architectures directly from experimentally

identified genome-wide TSSs, without relying on known promoter elements. As a test case, we show

its application in identifying novel architectures in the fly genome.

Availability and implementation: Web-server at http://nplb.ncl.res.in. Standalone also at https://

github.com/computationalBiology/NPLB/ (Mac OSX/Linux).

Contact: l.narlikar@ncl.res.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Promoters play a key role in transcription initiation by harbouring

specific DNA elements, which act as transcription factor recognition

sites. But how these promoter elements (PEs) contribute to the diver-

sity in transcriptional regulation is not yet clear. While high-

throughput technologies are increasingly used to produce accurate

maps of transcription start sites (TSSs) (Ohler and Wassarman,

2010), the subsequent step of characterizing promoters and their

functions is still done using two rather dated approaches. The first

involves classifying them based on known PEs such as the INR motif

or TATA-box. Unfortunately, a majority of promoters and their

activities cannot be explained by the presence or absence of these

few PEs. Alternatively, de novo motif discovery methods are used to

identify overrepresented elements directly from the sequences. These

can miss PEs present only in a small fraction of promoters.

Since promoters have diverse mechanisms of activation, most PEs

fall in this category (Juven-Gershon et al., 2008). Even methods that

identify cis-regulatory modules fail here, since although they look

for motif-combinations, these are still required to be common across

the full set (Van Loo and Marynen, 2009).

No Promoter Left Behind (NPLB) is a new method modelled

along the lines of unsupervised learning with feature selection that

partitions TSS-aligned promoter sequences into distinct promoter

architectures (PAs), each characterized by its own set of PEs, all

learned de novo (Narlikar, 2014). Since it explicitly allows for diver-

sity, NPLB can be applied to the full dataset, leaving out no pro-

moter, in contrast to the standard approach of presorting/

preselecting promoters on the basis of criteria such as presence of

known PEs (Chen et al., 2014) or TSS peak characteristics (Ni et al.,

2010). In this new parallel software, the number of PAs and PEs are

determined automatically using a mix of Bayesian modelling and

cross validation.

2 Methods

2.1 Overview of NPLB
Each promoter is characterized by one PA out of a finite set of PAs.

Each PA is characterized by categorical distributions over nucleo-

tides {A,C,G,T} at specific positions relative to the TSS. These pos-

itions and their distributions are expected to be unique to that PA.
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All other positions follow a background categorical distribution,

common for all PAs. Parameters of models with various numbers of

PAs are learned using Gibbs sampling and the best model is decided

using cross validation. Key advantages of NPLB are that it

1. identifies novel and possibly diverse architectures and elements,

with the only input being the set of promoters,

2. is an organism and a cell-type independent,

3. can be applied to the full set, directly,

4. employs a likelihood-based approach, thus can be used to make

new predictions of promoters, as well as classify between

architectures,

5. uses multiprocessing, making it fast: takes about 2 h for bacteria

and 10 h for fly on an Intel i7-3770 K desktop. (Supplementary

Fig. S1 shows how runtime scales with number of promoters.)

Written in C and Python, NPLB requires a prior installation of gnu-

plot 4.6þ. Weblogo 3.3 (Crooks et al., 2004), and is modified to

generate sequence logos.

2.2 NPLB input
NPLB can learn new PAs (PROMOTERLEARN) or categorize new pro-

moters based on an input PA-model (PROMOTERCLASSIFY). Both re-

quire a fasta file of promoters, aligned according to the TSS. A

typical eukaryotic file would contain DNA sequences �50 bp up-

and downstream of the TSS. PROMOTERCLASSIFY also needs a previ-

ously learned model. Various other default settings such as number

of PAs to be explored and the number of sampling iterations can be

overridden by the user. This is especially useful when the user wants

to choose between a quick, approximate solution and a slow, but

more accurate characterization. A tab-separated text file with one

line per promoter, containing additional characteristics of each TSS

such as UTR length, TSS spread, etc. is an optional input. In such a

situation, NPLB creates plots that can give insights into functional

differences between PAs.

2.3 NPLB output
A successful run of PROMOTERLEARN produces the following outputs:

• PAs in two visual formats: image (PAimage.png; Fig. 1b) and

logos (PAlogo.html; Supplementary Fig. S1). The input is stored

as rawImage.png (Fig. 1a) for reference. An -eps option produces

eps figures. More details about the PEs and PAs are reported in

modelOut.txt and architectureDetails.txt.
• If a characteristic file is supplied, box-plots (Fig. 1c and d) or pie-

charts are created for real or categorical characteristics,

respectively.
• The model itself is saved in a binary file bestmodel.p and can be

used by NPLB to classify a new promoter.
• The best model is determined by cross validation. Likelihoods of

all models are recorded in CVLikelihoods.txt. The verbose op-

tion leads to likelihoods of all sampling iterations to be plotted in

separate png files.
• The parameters of the execution are saved in settings.txt.

A successful run of PROMOTERCLASSIFY produces all the aforementioned

files except CVLikelihoods.txt, settings.txt and the likelihood plots.

3 Case study: Drosophila

PROMOTERLEARN was applied to 90-bp neighbourhoods centred on

6635 TSSs (Fig. 1a) reported in adult Drosophila melanogaster car-

casses (Chen et al., 2014). In the original study, four types of promoters

were identified, based on known fly PEs (Ohler and Wassarman,

2010): TATA-box, INR, DPE, Dmv4 and Dmv5. These four types ac-

counted for 2112 of the 6635 promoters (Supplementary Fig. S3a).

Here, 12 PAs were identified (Supplementary Fig. S4a);

PROMOTERLEARN was run again on each of them. Eight PAs were split

further into a total of 23 PAs (Supplementary Fig. S4b), three of which

were split to get a final set of 30 PAs (Fig. 1b).

A1–A6 contain the TATA-box, but differ in its distance from the

TSS. Interestingly, the INR motif TCAGTY varies slightly with the

TATA-box position in A3–A6. Standard analyses miss such vari-

ations, either because they rely on known PEs or look for elements

overrepresented in the full set. For instance, in the sequences left out

in the original study, NPLB finds PAs characterized by known as

well as novel PEs (Supplementary Fig. S3b).

The characteristic file with the number of tags at each TSS and 50

UTR length was used to construct two box-plots (Fig. 1c and d). A30

contains the ribosomal TCT motif (Parry et al., 2010) in place of the

INR, which explains the significantly higher number of tags at those

promoters (P<10�21). This PA was missed in the original analysis pos-

sibly since it contains <2% of all promoters. Interestingly, A7–A11,

which contain variants of the DPE, but no obvious upstream element,

create transcripts with longer 50 UTRs than other PAs (P<10�62).

This has not been noted before. A more detailed description of the PAs

is available in the Supplementary methods. PAs can be further analysed

for function through conservation analysis (Karolchik et al., 2014;

Supplementary Fig. S5) and GO term enrichment studies (Huang et al.,

2007; Supplementary Table S1).

Fig. 1. (a) Original set of promoter sequences. (b) 30 PAs learned by NPLB,

ordered here based on presence of known PEs. (c) Tags per million at TSSs in

each PA. (d) Length of 50 UTRs in each PA
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4 Conclusion

Data from new and advanced high-throughput technologies are in-

creasingly making it clear that cells employ diverse mechanisms for

transcriptional regulation. NPLB seeks to fulfil the need for an efficient

and unbiased method that can identify these mechanisms directly from

such data. Although NPLB has been designed for TSS maps, it can be

applied to any DNA sequences aligned on the basis of a common gen-

omic event such as splicing, eRNA synthesis or protein–DNA binding

and expected to have distinct sequence architectures in the immediate

neighbourhood.
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