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Abstract

The metabolic capabilities of the species and the local environment shape the microbial

interactions in a community either through the exchange of metabolic products or the com-

petition for the resources. Cells are often arranged in close proximity to each other, creating

a crowded environment that unevenly reduce the diffusion of nutrients. Herein, we investi-

gated how the crowding conditions and metabolic variability among cells shape the dynam-

ics of microbial communities. For this, we developed CROMICS, a spatio-temporal

framework that combines techniques such as individual-based modeling, scaled particle

theory, and thermodynamic flux analysis to explicitly incorporate the cell metabolism and

the impact of the presence of macromolecular components on the nutrients diffusion. This

framework was used to study two archetypical microbial communities (i) Escherichia coli

and Salmonella enterica that cooperate with each other by exchanging metabolites, and (ii)

two E. coli with different production level of extracellular polymeric substances (EPS) that

compete for the same nutrients. In the mutualistic community, our results demonstrate that

crowding enhanced the fitness of cooperative mutants by reducing the leakage of metabo-

lites from the region where they are produced, avoiding the resource competition with non-

cooperative cells. Moreover, we also show that E. coli EPS-secreting mutants won the com-

petition against the non-secreting cells by creating less dense structures (i.e. increasing the

spacing among the cells) that allow mutants to expand and reach regions closer to the nutri-

ent supply point. A modest enhancement of the relative fitness of EPS-secreting cells over

the non-secreting ones were found when the crowding effect was taken into account in the

simulations. The emergence of cell-cell interactions and the intracellular conflicts arising

from the trade-off between growth and the secretion of metabolites or EPS could provide a

local competitive advantage to one species, either by supplying more cross-feeding metabo-

lites or by creating a less dense neighborhood.

Author summary

Microbial communities play a key role in biogeochemical cycles, bioremediation, and

human health. In crowded microbial systems such as biofilms and cellular aggregates, the
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close proximity between individual cells reduces the free space for the nutrients diffusion.

To model the heterogeneous nature of these microbial systems, we developed CROMICS,

a framework that integrates the information about the metabolic capabilities of each indi-

vidual cell as well as the size and location of cells and macromolecules in the medium. The

interactions among the individuals arise naturally through competition for or the

exchange of metabolites. We show how the presence of mutants and a reduced diffusion

in crowded environments can perturb the local availability of nutrients and therefore

modify the dynamics of a microbial community. The discovered mechanisms underlying

the microbial interactions in crowded systems together with the developed framework

represent a valuable starting point for future studies of the interplay of human micro-

biome and host metabolism, the pathogen invasion, and the evaluation of antibiotic

effectiveness.

Introduction

Microbial communities, such as biofilms, are involved in several processes ranging from bene-

ficial bioremediation to the harmful fouling of industrial equipment, food contamination, and

human chronic infections [1]. One of the main features of these communities is the close prox-

imity among individuals, either because they are embeded in a biofilm matrix or due to physi-

cal restrictions of the system. The proximity of individuals facilitates the exchange of

metabolic products and cell signaling [2], therefore promoting the emergence of cooperative

interactions inside the community, but also promoting the competition for space and

resources [3–5]. The presence of cells and other extracellular polymeric substances (EPS) in

the biofilm matrix (i.e. macromolecules, DNA, polysaccharides, etc.) add another dimension

of complexity to the system by creating a crowded environment, where the nutrient diffusion

is unevenly reduced [6–11]. The crowding conditions are given by the volume fraction occu-

pied by the cells and EPS. Changes in the availability of nutrients and solutes could have conse-

quences on microbial dynamics, such as limiting the growth rate [12], reducing the

effectiveness of antibiotic treatments [13], or modifying the protein expression levels of cells

[14,15], and thus increasing the metabolic heterogeneity of the population. Herein, we investi-

gate the influence of the crowding and environmental conditions as well as the metabolic vari-

ability of the species on the dynamics and interactions within microbial communities.

Simulating the competition/cooperation among microbial species that arises from the bio-

synthesis and secretion of metabolites and their diffusion in structured media has been suc-

cessfully done through the application of the genome-scale metabolic models (GEMs) of the

species [16–20]. The current computational frameworks proposed for modeling microbial sys-

tems oversimplify the crowding effect by assuming a homogeneous effective diffusion (Deff,met)
x times slower than the diffusion in water, such that Deff ;met ¼ D0

met=x. For example in 3DdFBA

[20], Deff,met is a function of the local volume not occupied by cells of a similar size and shape.

However, experimental evidence shows that Deff,met is asymmetrical and depends on the local

biofilm composition such as the abundance and size of EPS and cell species as well as the size

of the diffusing molecule [6–11].

To provide a more realistic representation of the heterogeneous nature of microbial systems

and study how the spatio–temporal-dependent crowding conditions affect the dynamic coop-

eration/competition among the individual cells, we developed a mechanistic framework for

the CROwding-Modeling of In-silico Community Systems (CROMICS). CROMICS combines

techniques such as individual-based modeling (IbM) and thermodynamic flux analysis (TFA)
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[21] to capture the metabolic variability within a population. For this, the metabolic activity of

each cell is estimated under the local environmental conditions using GEMs. Additionally, the

crowding effect is explicitly incorporated in the simulation by applying scaled particle theory

(SPT) [22,23], thus Deff,met in each region of the system is calculated as a function of the size

and spatial distribution of cells and EPS with spherical shape.

As illustrative case study, we used CROMICS to simulate the co-growth of mutants of

Escherichia coli and Salmonella enterica to demonstrate the competitive and mutualistic inter-

actions among the species and subpopulations. We show how the crowding conditions favor

the cooperation among individuals by focusing the exchange of metabolites in regions close

the origin point, avoiding the metabolites leakage towards regions dominated by non-coopera-

tive species. Thus, the fitness of cooperative mutant is enhanced as the crowding increased.

Additionally, we investigated the crowding effect on the competition of two mutants of E. coli
with different level of EPS production. The EPS secretion provided a competitive advantage to

EPS-secreting mutants over non-secreting competitiors developing less dense structures, so

that the amount of nutrients per mutant cell increased. In this case, the crowding modestly

enhanced of the relative fitness of EPS-secreting cells over the non-secreting ones. These

results give further understanding of the mechanisms underlying the interplay between the

local composition and spatial organization in microbial communities and the inter/intra spe-

cies interactions.

Results and discussion

CROMICS workflow

CROMICS allows the spatio-temporal modeling of microbial communities, wherein the het-

erogeneous aspects of the system, such as metabolic capabilities of the species and crowding

conditions, can be incorporated. Thus, the effect of the spatial restrictions imposed by the pres-

ence of cells (and other macromolecules secreted to the medium) on the diffusion of nutrients

and metabolites exchanged by the microorganisms arises naturally in the simulation. Here, the

system is divided into small boxes or regions, where cells can uptake the nutrients locally avail-

able in a box. The simulation consists of three iterative steps (Fig 1). At every time step Δt, (i)

the growth rate and exchange metabolic fluxes of each microorganism are obtained from

GEMs using either TFA or neural networks (NN) [24] specially trained for such purpose. NNs

reduce the computational burden associated to the computation of the metabolic fluxes (see

Methods). These metabolic fluxes are used to update the mass and volume of the cells as well

as the amount (or concentration) of metabolites in each region. Then, (ii) the metabolites are

allowed to diffuse to other regions, whose crowding conditions have changed due to the size

increment of the cells. The effective diffusion is computed as Deff ;met ¼ g
� 1
metD

0
met [25], where the

activity coefficient γmet (calculated using SPT) represents the ratio between the total volume

and the available volume for metabolite met in each region of the system. The metabolite diffu-

sion in a 2D or 3D system can be computed using a crowding adaptation of either the semi-

implicit Crank-Nicholson appoach [26] or the lattice Boltzmann method (cLBM) [27]. Finally,

(iii) the cell division and re-distribution of species in the system is computed following IbM

rules.

Crowding conditions do not affect the species ratio convergence when there

is not metabolic variability among individual cells

Spatio-temporal models are useful for studying and simulating the possible interdependence

among microbial species that arises from sharing space and resources. We used CROMICS to
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simulate the growth of a mutualistic microbial community composed of E. coli K12 ΔmetB and

a methionine-secreting mutant of S. enterica (identified as meth+) in a 2D system. Ten bacte-

rial spots with E. coli and meth+ were randomly inoculated. Each bacterial spot contained 3 x

10−7 gDW spread over 200 individuals or metabacteria, where one metabacterium is collection

of cells (see Methods. Community model 1). For simplicity, we will use the term cell to refer to

metabacterium. The box height was set as Δz = 0.18 mm, thus the initial crowding conditions

(i.e. the volume fraction of the box occupied by cells) was on average 2%. Only lactose and O2

were continuously supplied to the system, maintaining an effective concentration of 2.92 mM

and 0.21 mM in all boxes, respectively. The effective concentration is defined as the amount of

metabolite per available volume (or volume not occupied by cells) in each box (Eq 2). E. coli is

able to metabolize lactose under different oxygenation conditions and produce acetate and

galactose as by-products, though this mutant is unable to synthesize methionine. On the other

hand, meth+ can use both galactose and acetate (but not lactose) as a carbon source and syn-

thesizes 0.5 mmol of methionine per gram of cell dry weight (gDW) [19]. The synergy between

these two species relies on the mutual exchange of metabolites, i.e., E. coli use the methionine

secreted by meth+, and the latter use the acetate and galactose produced by E. coli. Although at

the beginning of the simulation there was not methionine (essential for the biomass synthesis)

in the system, E. coli consumed lactose to satisfy its nongrowth ATP requirements. Small

amounts of galactose and acetate are secreted as a consequence of lactose metabolism. Thus, E.

Fig 1. Workflow of CROMICS. The 2D or 3D system is divided in well-mixed boxes. At every time step Δt, (i) the

metabolic activity of the organisms is calculated using either thermodynamic flux analysis (TFA) or neural networks

(NNs), then (ii) the diffusion of metabolites is approximated by the Crank-Nicolson method (CN) or crowding-lattice

Boltzmann method (cLBM), and finally (iii) the behavior and spatial distribution of the microbial cells are computed

using an individual-based modeling (IbM) approach. In step (iii), solid arrows indicate the cell motion, while dashed

arrow indicates that cell division will take place. Since the uptake and diffusion of the metabolites are faster processes

than the cell division and shoving (S1 Text IbM rules), steps (i) and (ii) can be simulated during a time tl using a

smaller time step ΔtCN (ΔtCN� Δt). Step (iii) is computed when tl = Δt. The simulation ends when the final simulation

time tsim is reached.

https://doi.org/10.1371/journal.pcbi.1009140.g001
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coli started the cooperation with meth+ by releasing waste products obtained during the gener-

ation of energy for cell maintenance.
Two initial composition ratios of E. coli: meth+ were tested, i.e., 99:1 and 1:99. The results

showed that regardless of the initial inoculum, the system converged in a species ratio of 76.3%

± 0.1% for E. coli and 23.7% ± 0.1% for meth+ after 14 h (when both microorganisms covered

the whole system). This stability was achieved due to the cross-feeding interdependence that

exists in the community, where one species cannot grow without the other. The convergence

predictions of CROMICS agree well with both the experimental data and COMETS simula-

tions [19], which use a spatio-temporal framework that approaches the dynamics of microbial

populations (i.e., not individual cells like in CROMICS) by combining flux balance analysis

and diffusion (S1 Fig). Unlike CROMICS, COMETS assumes that the metabolite diffusion

coefficient is constant, meaning that cells do not affect the metabolite diffusion. To determine

if the crowding conditions affected the CROMICS predictions in this case study, we simulated

the system again assuming volumeless cells and Deff ;met ¼ Do
met.

For an initial composition of 99% E. coli and 1% meth+, the results showed that at the begin-

ning of the simulation, when the cells occupied less than 10% of their current box volume,

there is not difference in the total biomass computed in both simulations. However, such bio-

mass difference increased as the system became more crowded, that is when cells grew and

occupied more than 10% of the box volume (Fig 2A and 2B). The biomass accumulated in the

system was lower in the simulations where the crowding effect was taken into account (Fig

2A). This may be because the metabolite diffusion decreased as the system became more

crowded, making it difficult the re-distribution and access to the metabolites exchanged by the

cells (methionine, acetate and galactose). Nevertheless, a similar relative abundance of the spe-

cies was obtained in both simulations (Fig 2C).

To determine if the initial crowding conditions have an impact on the relative species abun-

dance, we artificially increased the crowding (i.e. volume fraction occupied by the cells, Vcell/
Vbox) by reducing the height Δz of the system, thus, the box volume (Vbox = ΔxΔyΔz) also

decreased. This is similar to have the microbial community in a 2-plate chamber of Δz in

height. Three initial crowding conditions were tested: 2% (Δz = 0.18 mm), 20% (Δz = 0.018

Fig 2. Dynamics of the mutualistic community E. coli ΔmetB: methionine-secreting mutant of S. enterica (meth+)

with an initial composition of 99:1. (A) Total biomass. (B) The average volume fraction occupied by the cells (i.e.

crowding conditions) in their corresponding box. (C) The species ratio convergence of meth+. Three initial crowding

conditions were tested: 2% (using a box height Δz = 0.18 mm), 20% (Δz = 0.018 mm), and 40% (Δz = 0.009 mm).

Closed symbols represent simulations where the crowding effect was taken into account (Deff ;met ¼ g
� 1
metD

0
met), while

open symbols represent simulations where the crowding was neglected (Deff ;met ¼ D0
met). Error bars show the standard

deviation in five independent simulations.

https://doi.org/10.1371/journal.pcbi.1009140.g002
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mm), and 40% (Δz = 0.009 mm). For an initial ratio E. coli: meth+ of 99:1, the results con-

firmed that the biomass achieved in the simulation decreased as the initial crowding increased,

because the metabolites diffuse slower from the production point. Nevertheless, the crowding

conditions did not affect the convergence ratio of the species (Fig 2C). That is the convergence

ratio 76% for E. coli and 24% for meth+ was determined by the amount of the metabolites

exchanged by the species.

In crowded environments the access to the exchanged metabolites depends on the distance

from the production to consumption point. As an example, we simulated the production and

diffusion of methionine in a small system of 2.5 mm by 2.5 mm divided in boxes of Δx = 0.025

mm per sides (Fig 3A), and under three different crowding conditions: 2% (Δz = 0.18 mm),

20% (Δz = 0.018 mm), and 40% (Δz = 0.009 mm). The system was filled with inactive cells (i.e.

they cannot consume methionine nor grow), and only one meth+ cell was placed in the center.

The mass of each cell was set to 7.5 x 10−10 gDW. The effective concentration of O2, lactose and

acetate in the system was fixed to 0.21, 2.92, and 10 mM, respectively, that is meth+ does not

depend on the acetate produced by E. coli. The system was divided in areas or regions delim-

ited by concentric circles of radii Δx, 2Δx,. . ., 50Δx. The methionine available per box in the

different regions was obtained by averaging the amount of methionine in the boxes whose cen-

ter is located between two concentric circles. A snapshot of the average abundance of methio-

nine per box after 6 min of simulation showed that the amount of methionine retained or

concentrated at Δx = 0.025 mm from meth+ increased as the crowding increased (Fig 3B).

Even more, simulations where the inactive cells were replaced by active E. coli revealed that the

fitness of cells located at Δx from meth+ were higher in more crowded systems, e.g. at 40% (Fig

3C), that may be due to a higher methionine retention in such region. However when the

crowding was set to 40%, only E. coli cells within a radial distance of 2Δx had access to the

methionine produced by meth+, allowing them to grow (Fig 3C), while in less crowded systems

(20% and 2%), the methionine can diffuse further (5Δx and 14Δx, repectively) before being

almost depleted by the E. coli. This suggested that the crowding conditions can limit the area

of microbial interaction. Therefore, crowding effect could become more important in hetero-

geneous systems with metabolic variability among individuals that compete for the same nutri-

ents as shown in the next section.

Fig 3. Availability of methionine and fitness as a function of the distance from the production point in crowded

environments. The microbial community was composed by E. coli ΔmetB and methionine-secreting mutant of S.

enterica. (A) Schematic representation of the spatial distribution of the species. (B) Average amount of methionine

available per box (inset) enlarged graph assuming that E. coli cells are inactive, and (C) fitness of active E. coli cells

(inset) enlarged graph at different crowding conditions. Error bars show the standard deviation in the system (one

independent simulations).

https://doi.org/10.1371/journal.pcbi.1009140.g003
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Crowding conditions enhance the fitness of cooperative mutants

Metabolic variability among the individuals of a population of the same species may arise due

to differences in protein expression levels or gene mutation [28,29]. In many cases, the (over)

production of cross-feeding metabolites comes at the expense of microorganism growth [30].

For example in S. enterica, the secretion of methionine reduces the fitness (expressed in terms

growth rate) of the cell inasmuch as more nutrients and proteome resources are invested for

the synthesis of the amino acid. The comparison of the maximum growth rate computed by

TFA for two S. enterica subpopulations revealed that a methionine-secreting mutant (meth+)

reduces its growth rate in 7% compared to the wild type non-methionine-secreting (meth-).

Here, we analyzed the crowding effect on the fitness of cooperative mutants and the competi-

tion among two subpopulations.

Following our previous case study, we simulated the co-growth of S. enterica and E. coli
ΔmetB, using an initial species ratio of 50:50 and assuming that cells occupied 40% of the

box volume. S. enterica species consisted of subpopulations meth- and meth+. Twenty bacterial

spots were inoculated in the system with an equal number of individuals of E. coli and S. enter-
ica, but only one spot (identified as colony A) contained meth+, we tested three different initial

number of meth+ cells 70, 60, and 50 (corresponding to a relative abundance of 8.8%, 7.5%,

and 6.3%, respectively). All cells were randomly allocated in the bacterial spots. See the model

setup in Methods. Community model 1.

The comparison of the average fitness or growth of meth+ (Eq 10) showed a positive fre-

quency-dependent selection for meth+, where its fitness increased as meth+ was more common

in the initial set up of the system (Fig 4A). This is because more methionine can be produced

when the abundance of meth+ was higher, and therefore E. coli can grow faster and synthesize

more acetate and galactose for both S. enterica subpopulations.

To determine if the crowding have an impact on meth+ fitness, we tested four initial crowd-

ing conditions: 2% (Δz = 0.18 mm), 20% (Δz = 0.018 mm), and 40% (Δz = 0.009 mm). Results

showed that for the same initial meth+ frequency, the fitness of meth+ was enhanced when the

crowding increased. The diffusion of metabolites is reduced in crowded media, such as colo-

nies or biofilms, meaning that crowding can minimize the leakage of exchanged metabolites

towards regions dominated by competitors such as meth-, favoring in this way the prolifera-

tion of cooperative mutants. In comparison, meth+ reached a lower fitness and relative abun-

dance when the crowding effect was neglected in the simulations (open symbols in Fig 4A and

4B), because the exchanged metabolites can easily escape from origin point when the colonies

are made up of volumeless cells. Thus, for the initial frequency tested, the crowding conditions

favor the invasion of cooperative mutants over non-cooperative ones.

For an initial frequency of 70 meth+ cells and under 40% of initial crowding conditions

(Δz = 0.009 mm), the snapshot of the spatial distribution of the species after 26 h (Fig 4C, left)

showed that colony A proliferated due to the cooperation between the E. coli and meth+. Col-

ony A eventually expanded and incorporated neighboring colonies formed with meth-. Meth-

cells benefitted from the cross-feeding resources, and their density at the peripheral of the col-

ony increased (Fig 4C). The exclusion of non-cooperative species to the colony periphery has

been experimentally observed for example in Vibrio cholerae biofilms [31].

A close inspection of the dynamics of the species abundance in different regions of the sys-

tem revealed that meth- became more abundant than E. coli in regions near colonies A. This

can be seen, for example, in quadrant C4 of Fig 4D, where acetate and galactose were available

due to their diffusion from the source colony. However, once meth+ appeared in the quadrant

due to the expansion of colony A, the abundance of E. coli increased and surpassed the S. enter-
ica mass fraction. The high variability found in the species profile suggests that each region

PLOS COMPUTATIONAL BIOLOGY Crowding conditions and metabolic variability in the modeling of microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009140 July 22, 2021 7 / 20

https://doi.org/10.1371/journal.pcbi.1009140


can respond differently to a medium stimulus due to the local interactions among species and

subpopulations.

These results showed that a cooperative mutant can easily dominate the system when the

mutation provides a competitive advantage. In this case, this advantage occurs through the

cooperation with other species, even if the cell sacrifices its own growth rate in favor of the syn-

thesis of metabolites. The successful invasion of meth+ in a community formed by E. coli and

S. enterica WT has been experimentally observed in spatially structured environments [32].

While the cooperation among species is favored in structured environments where the short

distances between the cells facilitates the exchanged metabolites [33,34], our results showed

that the crowding conditions may enhance the fitness of cooperative species by reducing the

diffusion and leakage of the metabolites. This suggests that the microbial dynamics depends

on the local production level of cross-feeding metabolites (i.e. on initial frequency of the pro-

ducing species) as well as the crowding conditions (Fig 4).

Crowding conditions have a modest effect on the competition among species

Frequently, microbial communities are composed of a mixture of species, each one with its

own metabolic capacities, cell size and shape. Experimental measurements indicate that the

Fig 4. Dynamics of the community E. coli—S. enterica with metabolic variability. (A) Fitness and (B) relative

abundance of meth+ computed after 26 h. Three different initial crowding conditions were tested: 2% (Δz = 0.18 mm),

20% (Δz = 0.018 mm), and 40% (Δz = 0.009 mm), with initial frequencies of 70, 60, and 50 meth+ cells. Closed symbols

represent simulations where the crowding effect was taken into account, while open symbols represent simulations

where the crowding was neglected. (C) Snapshot of the spatial distribution of cells in one simulation repetition at

t = 0h and t = 26 h. Only 1 out of 20 bacterial spots, colony A, where inoculated with 70 meth+ cells, the initial

crowding conditions were set as 40%. (D) Dynamics of the relative abundance of the species predicted in 20 different

regions of the system (the time is represented on the x axis of each quadrant, while the relative abundance is on the y
axis). Error bars show the standard deviation in five independent simulations.

https://doi.org/10.1371/journal.pcbi.1009140.g004
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effective diffusion of chemical species (metabolites, antibiotics, etc.) not only depends on their

location in the biofilms but also on the species composition of the biofilm [6–11]. This could

be related to the structure formed by the microbial species and EPS molecules of different sizes

and shapes.

The polymer secretion has been previously identified as a competitive advantage in multi-

species biofilm simulations by assuming Deff ;met ¼ D0
met [3]. In this section, we investigated the

crowding effect on the competition of two species with different EPS production level. The

growth of two E. coli biofilms composed by WT cells and EPS-secreting mutants were used as

case studies. In biofilm Beps+, the mutants secreted 0.11 g gDW
-1 of EPS (identified as eps+);

while in biofilm Beps++, the mutants secreted 0.43 g gDW
-1 of EPS (identified as eps++). The

mutants invest part of their resources in the EPS production, so that eps+ and eps++ reduce

their growth rate in 10% and 30% compared to WT, respectively. Due to the production and

accumulation of EPS, a lower number of mutant cells can be allocated in each box. Thus, a

metabacterium of WT, eps+, eps++ contained 27, 20, and 12 cells, respectively, and the maxi-

mum metabacterium mass Mmax;epsþ was then computed as 0.74Mmax,WT, while Mmax;epsþþ as

0.45Mmax,WT. In both Beps+ and Beps++, WT cells were initially located at the left side of the

biofilm, while mutants occupied the right side (Fig 5A). Glucose and O2 was supplied to the

Fig 5. Dynamics of the biofilm growth of two E. coli species with different EPS production level. (A) Spatial

distribution at t = 0 h of E. coli cells WT and eps mutant (eps+ or eps++). (B) Snapshots of the space occupied only by

the cells and the metabolic regions in the vertical layer (0.06 mm, y, z) of biofilms Beps+ and Beps++ at 25 h. (C) Fitness

of the eps mutant relative to WT. (D) Total biomass and (E) the acetate produced by the microbial community at 25 h.

Closed symbols represent simulations where the crowding effect was taken into account (Deff ;met ¼ g
� 1
metD

0
met), while

open symbols indicate simulations where the crowding was neglected (Deff ;met ¼ D0
met). Error bars show the standard

deviation in five independent simulations.

https://doi.org/10.1371/journal.pcbi.1009140.g005
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system. The cell size and macromolecules of 400 Da or greater were explicitly considered in

the CROMICS simulations. All other molecules (� 400 Da) were considered volumeless. See

the model setup in Methods. Community model 2.

Although eps+ and eps++ sacrificed their own growth in favor of EPS synthesis, the fitness

of the mutant relative to WT, weps = Fitnesseps/FitnessWT (Eqs 10 and 11), computed in both

biofilms showed that EPS secretion provided competitive advantage to mutants over WT (Fig

5C). By secreting EPS to the medium, the mutants created a less dense cell structure where a

lower number of eps+ or eps++ cells shared the same box or region (which was taken into

account by reducing the mass threshold to carry out the cell division Mmax;epsþ and Mmax;epsþþ

compared to WT), so more nutrients are available per gDW of mutant. Even more, the crowd-

ing conditions hindered the diffusion of nutrients towards bottom layers of the biofilm, favor-

ing in this way the growth of species located at the biofilm surface. In our case studies, EPS

molecules pushed the mutant cells up, so mutants can reach the upper biofilm layers more eas-

ily than WT, and thus, have access to the nutrients retained by the crowding conditions. In

comparison, the increment in the EPS production of eps++ compared to eps+ enhanced the rel-

ative fitness of mutant in the biofilm (Fig 5C). This may be because eps++ accumulated more

EPS that allowed them to reach higher regions rich in nutrients (near the top boundary) where

eps++ could grow faster than WT. Nevertheless, the higher fitness cost paid by eps++ for the

production EPS caused that total biomass accumulated in the biofilm Beps++ was lower than

in Beps+ (see inset of Fig 5D).

When the volume of both cells and EPS were neglected in the simulations (making the dif-

fusion coefficients Deff ;met ¼ Do
met) there was more free space in the system for the entry of

nutrients, thus the community reached a higher biomass at 25 h than that obtained in simula-

tions where the crowding effect was taken into account (Fig 5D). However, the relative fitness

of both eps+ and eps++ were lower than that obtained in the simulations where the size of the

biofilm components were considered. In this case, the crowding conditions have only a modest

effect on the competition between EPS-secreting mutants and WT, suggesting that when the

nutrients are supplied externally (from the top boundary, and not produced by a species part-

ner) other factors such as the biofilm cell structure (i.e. the spacing between cells) have a

greater impact on the microbial dynamics of the microbial community.

The space occupied by cells on the left and right sides of both biofilms at 25 h changed as a

result of the difference in the EPS production between WT and mutants (Fig 5B). Due to the

different cell structures reached in both biofilms Beps+ and Beps++, the cells were exposed to a

different concentration gradient of nutrients that could shift their metabolisms. Phenotypes of

both WT and mutants were identified using their metabolic fluxes (Eq 9). Three phenotypic

regions were identified in the biofilms: (i) on the superficial layers where O2 is still available,

both WT and mutant cells activated the respiratory pathways, (ii) cells in intermediate layers

opted for fermentative pathways producing large amounts of acetate, and (iii) inactive cells

appeared at bottom layers where both glucose and O2 were depleted (Fig 5B). Larger inactive

regions were found in both biofilms in regions dominated by WT. This can be explained by

the denser structure formed by WT compared to mutants, which made it difficult to move and

replenish nutrients from the top boundary (Fig 5B). In particular, the lower availability of O2

in the biofilms caused the cells to shift to a fermentative metabolism. The emergence of one

metabolic phenotype or another depending on the nutrient availability can lead to the secre-

tion of different amount of metabolites, e.g. the acetate produced in the biofilm Beps+ was

lower than in Beps++ (Fig 5E), which could change the cross-feeding interactions if one of the

species in the system depends on the acetate availability as in our previous case study E. coli—
S. enterica. Moreover, the production and accumulation of acetate in the system may have an
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additional effect on the community dynamics. For example, high concentration of acetate

(and other organic acids) inhibits the microbial growth due to the perturbation of the anion

balance and the uncoupling effect (where cell have to expend energy to expel H+ and maintain

the membrane potential) [35], which is not considered in CROMICS simulations.

As shown above, the heterogeneous nature of microbial communities is also reflected in the

local cell structure of the system, meaning the spatial arrangement of cells and EPS compo-

nents, which can favor the emergence of certain phenotypes (and therefore the production of a

metabolite) or even provide a competitive advantage to one species over the others. In commu-

nities competing for the same resources, such as Beps+ or Beps++, the less dense structure

reached by the mutants allowed them to access regions with richer nutrients, therefore win the

competition to WT. In this simplified example, the cell structure was determined by the EPS

production, though other factors could affect the configurations, such as the shape of the cells,

the production of different type of EPS molecules, the electrostatic interactions between the

molecules that prevent close proximity, etc.

Conclusion

Modifications to local environments that occur by the secretion of shared resources

(exchanged metabolites and EPS molecules) can provide a competitive advantage to certain

species, though this imposes resource allocation conflicts at the cellular level that could lead to

a reduction of the growth rate. The crowding conditions can boost such competitive advantage

by restricting the area of interactions in a microbial community. We showed how the crowd-

ing enhanced the fitness of cooperative mutants by reducing the leakage of the exchanged

metabolites from the production point. In the case where nutrients were supplied externally to

a biofilm community (instead of being produced by partner species), the fitness of an EPS-

secreting mutant relative to non-secreting cells was modestly enhanced by the crowding effect,

suggesting that the formation of a less dense structure due to EPS accumulation had a greater

effect on the competition between these species, where the EPS-secreting mutant was the win-

ner. Further studies to identify the specific scenarios wherein the crowding effect becomes

important to microbial dynamics could help to simplify this layer of complexity.

Modeling approaches like CROMICS can contribute to efforts to bridge the gap between

the modeling of single cell metabolisms and whole populations. The versatility of these

approaches allows one to explore the interplay between the physical restrictions imposed by

cell growth and macromolecule secretion that negatively affect the nutrients diffusion and the

dependence of the cell metabolism on the local availability of nutrients in microbial systems.

Methods

The spatio-temporal microbial modeling developed in CROMICS is an iterative process that

integrates information about (i) the cell metabolism, (ii) the diffusion of metabolites, and (iii)

the redistribution of individual cells in the system (Fig 1). CROMICS requires an input of the

parameters (e.g. diffusion coefficients, Michaelis-Menten constants) and the initial set up of

the system (GEM, initial seed of cells and metabolites). The system is discretized on a regular

lattice, with meshing sizes Δx, Δy, and Δz along the spatial coordinates. 2D systems are simu-

lated by assuming a monolayer of rectangular (or cubic) prism boxes.

The metabolite diffusion process and the distribution of microbial species are simulated on

two different lattices identified as IbM and CN lattice, respectively. For notation simplicity, the

same lattice size (Δx) is used to describe the spatio-temporal distribution of both cell species

and metabolites. However, a coarse-grained discretization can be applied for the metabolites

PLOS COMPUTATIONAL BIOLOGY Crowding conditions and metabolic variability in the modeling of microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009140 July 22, 2021 11 / 20

https://doi.org/10.1371/journal.pcbi.1009140


diffusion (see S1 Text Coarse-grained considerations). Assuming cells of spherical shape, then

Δx is two times the maximum cell radius Rmax,cell before cellular division occurs.

In CROMICS, the spatio-temporal distribution of the nutrients and microbial species are

computed for each discrete time step Δt until the final simulation time tsim is reached. In

microbial systems, the diffusion of metabolites is faster than the cellular processes (e.g. cell

division and shoving). Shoving process is described in S1 Text IbM rules. Therefore, the pro-

cesses (i) and (ii) depicted in the CROMICS workflow (Fig 1), i.e. cell metabolism and metabo-

lite diffusion, can be simulated using a smaller time step ΔtCN, while the cellular processes (iii)

can be computed using a longer Δt, i.e. ΔtCN� Δt. A description of the CROMICS framework

is given below for a 3D system, and the extension to 2D systems is done in a straightforward

way. The setup of the case studies simulated (E. coli—S. enterica consortium and E. coli bio-

film) are given in Case studies.

(i) Metabolism and cell growth

The interactions between a cell and the medium contained in the same box ijk during a time

ΔtCN are determined by the metabolic capabilities of the microorganism and the exchange rate

of metabolites. Cells can uptake nutrients from the local box ijk. If the nutrient uptake is medi-

ated by protein membranes (i.e. active transport), the maximum uptake flux vUf,ex,met is

bounded by the Michaelis-Menten kinetics.

vUf ;ex;met ¼
VM;metCeff ;metðijk; tÞ

KM;met þ Ceff ;metðijk; tÞ
: ð1Þ

While for passive transport of metabolites, the uptake rate is constrained by

vUf ;ex;met ¼ minðVM;met; rmetðijk; tÞ=McellðtÞDtÞ, where ρmet is the (extracellular) amount of metab-

olite met in the box ijk [mmol], and Mcell is the cell mass at time t [gDW]. The values of the

maximal uptake flux (VM,met) [mmol gDW
-1 h-1] and the Michaelis-Menten constant (KM,met)

[mmol L-1] can be obtained from experimental data and/or databases (e.g. BRENDA data-

base). Ceff,met [mmol L-1] represents the effective concentration of the metabolite in the box ijk,

given by

Ceff ;met ijk; tð Þ ¼
rmetðijk; tÞ

106Vbox

gmet ijk; tð Þ: ð2Þ

where the volume of a box is Vbox = ΔxΔyΔz [mm3], 106 is the conversion factor from mm3 to

L. Assuming that both cells and metabolites are hard spheres of different radii R [mm], the

activity coefficient γmet (i.e. the ratio between the box volume and the available volume for met
in the box ijk) can be estimated by SPT [22,23]

lngmet ¼ � lnð1 � S3Þ þ
6S2

1 � S3

� �

Rmet þ
12S1

1 � S3

þ
18S2

2

ð1 � S3Þ
2

 !

R2

met þ
8S0

1 � S3

þ
24S1S2

ð1 � S3Þ
2
þ

24S3
2

ð1 � S3Þ
3

 !

R3

met; ð3Þ

where the variable Sx is given by

Sx ¼
p

6Vbox

Pmacromolecules
l

rlNA

103
ð2RlÞ

x
þ
Pcells

l ð2RcellÞ
x

� �

; x ¼ 0; 1; 2; 3: ð4Þ

For simplicity, the index (ijk,t) has been dropped from γmet and Sx. kB represents the Boltz-

mann constant, and NA is Avogadro’s constant. The factor 103 in Eq 4 indicates the conversion

from mol to mmol. Eq 4 was modified for metabolites able to penetrate the cell membrane, see

details in S1 Text SPT considerations. Note that if the size of the metabolites is considered
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negligible compared to the size of cells (i.e. Rmet = 0), the last three terms disappear from the

right hand side of Eq 3. Thus, 1/γmet is given by the volume fraction not occupied by cells.

Once the uptake flux limits vUf,ex,met are set based on the effective nutrient concentration in

the medium (Eqs 1 and 2), then the growth rate νbio and exchange flux of metabolites to/from

the cell νf,ex,met [mmol gDW
-1 h-1] can be calculated by TFA (which involves mass conservation

and thermodynamics constraints) [21] or alternatively by NN [24]. See details in S1 Text Meta-

bolic flux estimations. Other stoichiometric models and constraints can also be applied. When

no feasible flux solution was found due to the starvation conditions, the cell was allowed to

shrink with a rate vshrinkage to satisfy the cell maintenance requirements, i.e., νbio = vshrinkage.
νbio and νf,ex,met were used to update cell mass Mcell and the amount of metabolite ρmet in each

box for the next time t + Δt, so that

rmetðijk; t þ DtÞ ¼ vf ;ex;metðijk; tÞMcellðijk; tÞDt þ rmetðijk; tÞ; ð5Þ

Mcellðijk; t þ DtÞ ¼ vbioðijk; tÞMcellðijk; tÞDt þMcellðijk; tÞ: ð6Þ

We assume that the cell volume is proportional to Mcell and the specific volume for species

sp (υsp), therefore the cell radius Rcell at time t+Δt is given by

Rcell ijk; t þ Dtð Þ ¼
3

4p
Mcellðijk; t þ DtÞusp

� �1=3

: ð7Þ

The increase in the cell size (expressed in terms of Rcell) modifies the crowding conditions

prevailing in box ijk such that the activity coefficient of the metabolites γmet will change in

accordance with Eq 3. The direct relationship between γmet and Ceff,met (Eq 2) indicates that the

effective concentration experienced by a cell is affected by: (i) the time-dependent (local)

crowding conditions, and (ii) the changes in the amount of met due to the consumption/pro-

duction of the metabolite or the entrance of new molecules from neighboring boxes. Thus,

Ceff,met (Eq 2) provides the link between the diffusional problems found in biofilms caused by

crowding conditions and its effect on cell metabolism and microbial growth.

(ii) Diffusion of metabolites in a crowded system

In biofilms, as in any other crowded system, the diffusion of metabolites is negatively affected

by the presence of microbial cells and other solid components that reduce the available space

for molecular motion. The re-distribution of the metabolites across the system can be com-

puted by solving the diffusion equation

@rmet
dt
¼ r � Deff ;metrrmet

� �
; ð8Þ

The effective diffusion in each box is given by Deff ;met ¼ g
� 1
metðijkÞD

0
met [25], where Do

met is the

diffusion coefficient in water and γmet is calculated using SPT (Eq 3).

In this paper, the diffusion equation is solved by applying a crowding version of either a

semi-implicit Crank-Nicholson (CN) approach [26] or the Lattice Bolzmann Method [27], see

details in S1 Text Metabolite diffusion. cLBM allows the computation of the mean squared dis-

placement (MSD) of the molecules, which is useful for studies of anomalous diffusion [36].

(iii) Spatial distribution of the microbial cells

The behavior of a microbial cell and its interactions with neighboring cells are simulated by

IbM rules that, as a whole, will determine the evolution and spatial distribution of the
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microbial system. Cell properties of each individual, such as the box position ijk, Mcell, Rcell
(Eqs 6 and 7, respectively) and the metabolic phenotype Phen are tracked at every time step.

Phen is computed based on the exchange metabolic fluxes obtained from TFA/NN and a

threshold value θ = 10−4 mmol gDW
-1 h-1.

Phen ¼
1 if vf ;ex;met < y

2 if vf ;ex;met � y
:

(

ð9Þ

Symmetric or asymmetric cell divison can take place when Mcell reaches the maximum dry

mass Mmax,sp. The daughter cell is allocated in random neighboring box, next to the mother

cell that remains in the current site ijk. When all neighboring boxes are occupied by cells, then

daughter cell will shove/displace neighbour cells. Alternatively, the cell dies under starvation

conditions when Mcell is less than the minimal dry mass threshold Mmin,sp. Additionally, the

random or biased walk of cells can also be incorporated in the simulations. See details in

S1 Text IbM rules.

CROMICS framework was implemented in Matlab R2018b. The metabolic fluxes can be

computed using either NN or TFA. TFA code is available at https://github.com/EPFL-LCSB/

mattfa. The metabolic flux samples required for the NN training were computed using TFA

with CPLEX solver, and the training was performed using the Matlab Deep Learning Toolbox.

Case studies

Community model 1: E. coli K12 ΔmetB and S. enterica. The community composed of E.

coli K12 ΔmetB and the S. enterica methionine-secreting mutant was simulated on a 2D system

with a CN-lattice of 200 x 200 boxes (S1 Fig) [19]. Each CN-box was composed of sides ΔxCN =

0.05 mm and a height of ΔzCN, which was selected to get the desired initial crowding conditions

(i.e. the volume fraction occupied by the cells, Vocc). Thus, the parameter ΔzCN was computed as

DzCN ¼ Mcellusp=ðVoccDx2
CNÞ. The CN-lattice is superposed on an IbM-lattice of 400 x 400 boxes

of ΔxIbM = 0.025 mm and a height ΔzIbM = ΔzCN, wherein each CN-box contains four IbM-

boxes. The time step Δt was set as Δt = ΔtCN = 1.25 s. Ten bacterial spots were randomly inocu-

lated with E. coli and S. enterica in a proportion of either 1:99 or 99:1. One bacterial spot con-

tained 400 metabacteria allocated in 400 IbM-boxes. A metabacteria is a collection of bacteria of

the same species with the same size and metabolic capabilities that move (diffuse) in the same

direction. The initial mass of each metabacteria was randomized using a normal distribution

with mean 4.89 x10-13 gDW and standard deviation 1.32 x10-13 gDW [37] valid for single cells,

and this was multiplied by the number of cells in a metabacteria (metaB). metaB was computed

as a function of the box height selected ΔzIbM, i.e. metaB = 0.52ΔxIbMΔyIbMΔzIbM/(Mmax,spυsp),
where the factor 0.52 represents the densest packing of spherical cells in a square lattice. In total,

each bacterial spot contained a biomass of 3 x 10−7 gDW. The volume of the cells was assumed to

be proportional to its mass. The cell species were allowed to move across the lattice by diffusion.

The parameters of the system are given in Table 1.

Lactose and O2 were supplied to the system to maintain a constant effective concentration

of 2.92 mM and 0.21 mM in all boxes, respectively. Other metabolites such as galactose, ace-

tate, and methionine were available in the system only when they were synthesized by micro-

bial species. All metabolites are allowed to escape from the system through the four

boundaries, where the metabolite concentrations were set equal to zero. Zero diffusive flux

boundaries were applied for bacterial species. Well-mixed conditions were assumed inside

each CN-box and IbM-box. All simulations were replicated 5 times. The diffusion of the

metabolites were computed using the CN method.
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GEM models for the methionine-secreting S. enterica and E. coli ΔmetB were constructed

as described by Harcombe et al. [19]. For the E. coli iJ01366 core [45], the reaction catalyzed by

the cystathionine-γ-synthase was blocked in the GEM model to prevent the synthesis of methi-

onine. For S. enterica iRR1083 [46], the biomass reaction was modified to consume 0.5 mmol

gDW
-1 of intracellular methionine balanced by the production of the same amount of methio-

nine that will be secreted to the medium. Furthermore, to simulate the metabolic variability of

S. enterica (see below), the ratio of methionine: biomass (rmeth) in the biomass reaction was

constrained either to 0.5 or 0 mmol gDW
-1. In this way, different subpopulations were charac-

terized by the methionine production, where a cell with rmeth = 0 corresponds to S. enterica
wild type (WT) that does not secrete methionine (identified as meth-), while rmeth = 0.5 corre-

sponds to methionine-secreting S. enterica mutant (meth+).

In an attempt to reduce the computational burden of the IbM simulations, CROMICS

approximates the metabolic activity of the metabacteria using NNs. For this purpose, one NN

of 2 hidden layers and 15 neurons was created for each species using vbio and vf,ex,met computed

by TFA for 30,000 flux samples (see S1 Text Neural Network as an alternative for the computa-

tion of metabolic fluxes). For E. coli, the NN inputs were the upper flux limits vUf for lactose,

galactose, acetate, and O2. For simplicity, only one NN was trained for all S. enterica subpopu-

lations. For this purpose, the training data were computed by randomly modifying rmeth to

either to 0.5 or 0. Thus, the estimation of the S. enterica metabolism (for both TFA and NN)

requires as inputs vUf for acetate, galactose, O2, and also rmeth. The Pearson correlation

Table 1. Parameters used for the simulation of community models 1 and 2.

Parameter Description Value Units Ref.

υsp Cell-specific volume 3.07 x 103 mm3 gDW
-1 a

υmet Metabolite-specific volume 7.3 x 102 mm3 g-1 [38]

Mmin,sp Minimal dry mass for a single cell 0 gDW Assumed

Mmax,sp Maximal dry mass for a single cell 1.172 x 10−12 gDW [37]

MWprotein Protein molecular weight 7.2 x 104 Da [38]

vshrinkage Cell shrinkage rate 1.6 x 10−2 h-1 Assumed

Parameters specific for community model 1:

Do
sp Diffusion of species S. enterica and E. coli. 3 x 10−9 mm2 ms-1 [19]

Do
met Diffusion of lactose, O2, methionine, and acetate in non-crowded medium. 5 x 10−6 mm2 ms-1 [19]

VM,met Maximum uptake rate of lactose, O2, methionine, and acetate 10 mmol gDW
-1 h-1 [19]

KM,met Michaelis constant for of lactose, O2, methionine, and acetate 1 x 10−2 mM [19]

Parameters specific for community model 2:

Do
glucose Glucose diffusion in water 6.7 x 10−7 mm2 ms-1 [39]

Do
oxygen Oxygen diffusion in water 2 x 10−6 mm2 ms-1 [39]

Do
acetate Acetate diffusion in water 1.21 x 10−6 mm2 ms-1 [39]

VM,glucose Maximum glucose uptake rate 10 mmol gDW
-1 h-1 [40]

KM,glucose Michaelis constant for glucose 1.5 x 10−2 mM [40]

VM,oxygen Maximum oxygen uptake rate 15 mmol gDW
-1 h-1 [40]

VM,acetate Maximum acetate uptake rate 17 mmol gDW
-1 h-1 [41]

MWEPS EPS molecular weight in biofilm matrix 2.5 x 108 Da b

υEPS Polysaccharide-specific volume 9.2 x 103 mm3 g-1 c

a Computed as υsp = ρsp-1 ×Mcell,wet / Mcell,dry, where ρsp = 1.105 g mL [42], Mcell,dry = 2.8 x 10−13 gDW, and Mcell,wet = 9.5 x 10−13 g [43].
b Assumed based to be similar to the DNA molecular weight [44].
c Assumed based on [3].

https://doi.org/10.1371/journal.pcbi.1009140.t001
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coefficient and normalized mean squared error (nmse) were estimated as 0.9982 and 6.4 x 10−3

for E. coli, and 1 and 4.47 x 10−4 for S. enterica, respectively (S2 and S3 Figs).

NNs significantly reduce the runtime required for metabolic flux estimations, e.g. the

exchange fluxes of 10,000 bacteria are computed in approximately 0.04 s (based on the GEM

model of E. coli) using Matlab in a 12-core Intel Xeon E5, CPU 2.7 GHz. Comparatively, the

runtime required by TFA for the parallel computation of metabolic distributions (by maximiz-

ing the growth rate vbio, using CPLEX) of a similar number of bacteria is about 93 min, and

with reduced GEM models [47], the time required is 32 min. Thus, NNs reduce the computa-

tional cost associated with the cellular metabolic response in spatio-temporal simulations that

require a fine time discretization Δt, with a large number of cells and/or when the metabolic

model used is computationally expensive (e.g. genome-scale models of metabolism and mac-

romolecular expression). However, training the NNs requires previous knowledge of the prev-

alent metabolite exchanged among the species to select the most important metabolites to

track. The use of TFA or other stochiometric-based models could be more appropriate in

more complex problems, such as when the metabolic flux distributions of a species are very

sensitive to small amounts of multiple substrates.

As a second case study, we simulated the co-growth of E. coli ΔmetB and two S. enterica
subpopulations (with species ratio 50:50). Twenty bacterial spots were randomly inoculated in

the system with similar dimensions as described before. Each spot represents 200 metabacteria

of E. coli and 200 of meth-. Only one spot (colony A) contains meth+ metabacteria. Three dif-

ferent initial number of meth+ metabacteria were tested: 70, 60, and 50 metabacteria. All meta-

bacteria were randomly allocated in the spots.

Community model 2: EPS-secreting mutants of E. coli. The growth of two E. coli bio-

films (identified as Beps+ and Beps++) on glucose and aerobic conditions were simulated in a

3D system. Biofilm Beps+ was composed by (non-EPS-secreting) wild type cells and mutants

identified as eps+ that secreted 0.11 g gDW
-1 of EPS, while biofilm Beps++ contained WT and

mutants identified as eps++ that secreted 0.43 g gDW
-1 of EPS. We assumed the same metabolic

cost for the synthesis of 1 g of EPS than for 1 gDW of biomass.

The CN-lattice was defined by 11 x 11 x 34 cubic boxes (VCN-box = 1.4 x 10−6 mm3), while

the IbM-lattice was divided into 22 x 22 x 68 cubic boxes of Δx = 5.7 x 10−3 mm per side (i.e.,

VIbM-box = 1.8 x 10−7 mm3). Each CN-box contains 8 IbM-boxes, and 1 IbM-box can allocate

at most one metabacterium. To take into account that eps+ and eps++ accumulated EPS, a

therefore a lower number of cells can be allocated in IbM-box, the number of cells per meta-

bacterium was computed as metaBsp = 0.52ΔxIbMΔyIbMΔzIbM/(Mmax,spυsp+MEPS,spυEPS), where

the denominator represents the maximum volume occupied by a cell of species sp and the EPS

secreted by this. We assumed that the EPS amount MEPS,sp present in a box is proportional to

the cell mass, thus MEPS;epsþ ¼ 0:11Mmax;epsþ and MEPS;epsþþ ¼ 0:43Mmax;epsþþ for eps mutants,

while MEPS,WT = 0 for the non-EPS-secreting WT. Thus, one metabacterim represents 27 cells

of WT, 20 of eps+, and 12 of eps++. The volume occupied in a box by the cells and EPS were

similar for the three species. The maximal metabacterium mass (or mass threshold to carry out

the cell division) was then obtained by multiplying Mmax,sp of a single cells (Table 1) by

metaBsp.
In both biofilms Beps+ and Beps++, the system is initialized with 1,220 metabacteria ran-

domly allocated at the bottom of the system, the left side of the biofilm is composed by 610 E.

coli WT cells, while an equal number eps mutant cells are located on the right side. As in the

previous community model, the initial mass of each metabacterium was randomly taken from

the same normal distribution. We assumed that the cells were attached to a biofilm and that

their motion is only due to the cell shoving, i.e., Dsp = 0. Δt = ΔtCN = 10.83 ms.
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Periodic boundary conditions were assumed in the x and y directions for both metabolites

and bacterial species, while a zero diffusive flux was located at the bottom of the system. The

nutrients glucose and O2 were supplied from the top of the boundary, where the concentra-

tions of 5 mM of glucose and 0.21 mM of O2 were kept constant. Neither the metabolites nor

cells were allowed to leave the system through the top boundary. All CN-boxes contained an

initial amount of nutrients equivalent to 5 mM of glucose and 0.21 mM of O2. The diffusion of

the metabolites was computed using the cLBM approach.

All molecules (metabolites, EPS, and cells) are assumed to be spherical shape and with a vol-

ume proportional to their molecular weight (see S1 Text Eq S3). Only the volume of macro-

molecules with a molecular weight greater than 400 Da were explicitly considered in the

simulations. All simulations were replicated 5 times.

As in the previous case study, GEM models for the eps mutants can be constructed from E.

coli WT iJ01366 [47] by modifying the biomass reaction to produce either 0.11 g gDW
-1 or 0.43

g gDW
-1 of EPS that will be secreted to the medium by eps+ and eps++, respectively. NNs of 2

hidden layers with 15 neurons each were created using 30,000 flux solutions computed by TFA

for the GEM models. The inputs for the NNs were the upper flux limits vUf for glucose, acetate,

and O2. The Pearson correlation coefficient was estimated as 1, and nmse as 2.4 x 10−5 (S4 Fig).

Calculating the species fitness in the community models

The average fitness or growth of a species sp at the end of the simulation was computed as

Fitnesssp ¼
1

tsim
ln

rspðtsimÞ
rspð0Þ

 !

ð10Þ

where ρsp(t) is the total biomass of species sp at t, and tsim is the final simulation time. Addi-

tionally, the relative fitness of species sp1 in competition with sp2 can be computed as

wsp1 ¼ Fitnesssp1=Fitnesssp2 ð11Þ

Supporting information

S1 Fig. E. coli ΔmetB and methionine-secreting mutant of S. enterica consortium. (A) Sche-

matic representation of the microbial community in a 2D system. (B, C) The species ratio con-

vergence predicted by CROMICS, COMETS, and the experimental observations [19] after 48

h for an initial composition E. coli: S. enterica of (B) 99:1 and (C) 1:99.

(TIF)

S2 Fig. Parity and residual plots of the metabolic fluxes estimated by neural networks

(NN) and thermodynamics flux analysis (TFA) for E. coli ΔmetB. To train a NN with 2 lay-

ers of 15 neurons each, 30,000 flux samples were used. Training data were obtained by assum-

ing that for a given uptake flux of lactose, O2, and methionine, the cells produce a mean flux

value of acetate, galactose, and growth rate. The Pearson correlation r was estimated as 0.9982,

while the normalized mean square error between the fluxes predicted by TFA and NN was esti-

mated to be 6.4 x 10−3. Fluxes vf are given in mmol gDW
-1 h-1, and vbio in h-1.

(TIF)

S3 Fig. Parity and residual plots of the metabolic fluxes estimated by NN and TFA for S.

enterica. To train a NN with 2 layers of 15 neurons each, 30,000 flux samples were used. Train-

ing data were obtained by assuming that for a given uptake flux of acetate, galactose, O2, and

methionine:biomass ratio rmeth, the cells produce a mean flux value of methionine and growth

rate. The Pearson correlation r was estimated as 1, while the normalized mean square error
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between the fluxes predicted by TFA and NN was estimated to be 4.47 x 10−4. Fluxes vf are

given in mmol gDW
-1 h-1, and vbio in h-1.

(TIF)

S4 Fig. Parity and residual plots of the metabolic fluxes estimated by NN and TFA for E.

coli WT. To train a NN with 2 layers of 15 neurons each, 30,000 flux samples were used. Train-

ing data were obtained by assuming that for a given uptake flux of glucose and O2, the cells

produce a mean flux value of acetate and growth rate. The Pearson correlation r was estimated

as 1, while the normalized mean square error between the fluxes predicted by TFA and NN

was estimated to be 2.4 x 10−5. Fluxes vf are given in mmol gDW
-1 h-1, and vbio in h-1. GEM

models for the eps+ and eps++ mutants were constructed by modifying the biomass reaction to

produce 0.11 g gDW
-1 and 0.43 g gDW

-1 of EPS that will be secreted to the medium. In compari-

son when the same metabolic upper flux limits were used, the growth rate computed by TFA

for mutants were vbio;epsþ ¼ 0:9vbio;WT , and vbio;epsþþ ¼ 0:7vbio;WT , while the other metabolic fluxes

(glucose, O2, and acetate) predicted were the same for the three type E. coli. Thus, for simplic-

ity, the NN created for WT was modified to represent the eps+ and eps++, by multiplying the

biomass computed by the original NNWT by a factor of 0.9 and 0.7, respectively.

(TIF)

S1 Text. Considerations and methodologies used in CROMICS.

(DOCX)

Acknowledgments

The authors would like to thank Dr. Ljubisa Miskovic and Dr. Kaycie Butler for their valuable

input on the proofreading of this manuscript.

Author Contributions

Conceptualization: Liliana Angeles-Martinez, Vassily Hatzimanikatis.

Formal analysis: Liliana Angeles-Martinez.

Funding acquisition: Vassily Hatzimanikatis.

Methodology: Liliana Angeles-Martinez.

Validation: Liliana Angeles-Martinez.

Visualization: Liliana Angeles-Martinez.

Writing – original draft: Liliana Angeles-Martinez, Vassily Hatzimanikatis.

Writing – review & editing: Liliana Angeles-Martinez, Vassily Hatzimanikatis.

References
1. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious

diseases. Nat Rev Microbiol. 2004; 2:95–108. https://doi.org/10.1038/nrmicro821 PMID: 15040259

2. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent

form of bacterial life. Nat Rev Microbiol. 2016; 14:563–575. https://doi.org/10.1038/nrmicro.2016.94

PMID: 27510863

3. Xavier JB, Foster KR. Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci USA. 2007;

104(3):876–881. https://doi.org/10.1073/pnas.0607651104 PMID: 17210916

4. Mitri S, Xavier JB, Foster KR. Social evolution in multispecies biofilms. Proc Natl Acad Sci USA. 2011;

108(2):10839–10846. https://doi.org/10.1073/pnas.1100292108 PMID: 21690380

PLOS COMPUTATIONAL BIOLOGY Crowding conditions and metabolic variability in the modeling of microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009140 July 22, 2021 18 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009140.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009140.s005
https://doi.org/10.1038/nrmicro821
http://www.ncbi.nlm.nih.gov/pubmed/15040259
https://doi.org/10.1038/nrmicro.2016.94
http://www.ncbi.nlm.nih.gov/pubmed/27510863
https://doi.org/10.1073/pnas.0607651104
http://www.ncbi.nlm.nih.gov/pubmed/17210916
https://doi.org/10.1073/pnas.1100292108
http://www.ncbi.nlm.nih.gov/pubmed/21690380
https://doi.org/10.1371/journal.pcbi.1009140


5. Nadell C, Drescher K, Foster K. Spatial structure, cooperation and competition in biofilms. Nat Rev

Microbiol. 2016; 14:589–600. https://doi.org/10.1038/nrmicro.2016.84 PMID: 27452230

6. Sankaran J, Tan NJHJ, But KP, Cohen Y, Rice SA, Wohland T. Single microcolony diffusion analysis in

Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes. 2019; 5:35. https://doi.org/10.1038/

s41522-019-0107-4 PMID: 31728202

7. Lawrence JR, Wolfaardt GM, Korber DR. Determination of diffusion coefficients in biofilms by confocal

laser microscopy. Appl Environ Microbiol. 1994; 60:1166–1173. https://doi.org/10.1128/aem.60.4.

1166-1173.1994 PMID: 16349228

8. Marcotte L, Therien-Aubin H, Sandt C, Barbeau J, Lafleur M. Solute size effects on the diffusion in bio-

films of Streptococcus mutans. Biofouling. 2004; 20:189–201. https://doi.org/10.1080/

08927010400010494 PMID: 15621640

9. Takenaka S, Pitts B, Trivedi HM, Stewart PS. Diffusion of macromolecules in model oral biofilms. Appl

Environ Microbiol. 2009; 75:1750–3. https://doi.org/10.1128/AEM.02279-08 PMID: 19168660

10. Zhang Z, Nadezhina E, Wilkinson KJ. Quantifying Diffusion in a Biofilm of Streptococcus mutans. Anti-

microb Agents Chemother. 2011; 55:1075–1081. https://doi.org/10.1128/AAC.01329-10 PMID:

21189346

11. Bryers JD, Drummond F. Local macromolecule diffusion coefficients in structurally non-uniform bacte-

rial biofilms using fluorescence recovery after photobleaching (FRAP). Biotechnol Bioeng. 1998;

60:462–473. PMID: 10099452

12. Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008; 6:199–210.

https://doi.org/10.1038/nrmicro1838 PMID: 18264116

13. Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration,

oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to cipro-

floxacin and tobramycin. Antimicrob Agents Chemother. 2003; 47(1):317–323. https://doi.org/10.1128/

AAC.47.1.317-323.2003 PMID: 12499208

14. Salvy P, Hatzimanikatis V. The ETFL formulation allows multi-omics integration in thermodynamics-

compliant metabolism and expression models. Nat Comm. 2020; 11:30. https://doi.org/10.1038/

s41467-019-13818-7 PMID: 31937763

15. Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. Interdependence of cell growth and gene

expression: origins and consequences. Science. 2010; 330(6007):1099–1102. https://doi.org/10.1126/

science.1192588 PMID: 21097934

16. Bauer E, Zimmermann J, Baldini F, Thiele I, Kaleta C. BacArena: Individual-based metabolic modeling

of heterogeneous microbes in complex communities. PLoS Comput Biol. 2017; 13:e1005544. https://

doi.org/10.1371/journal.pcbi.1005544 PMID: 28531184

17. Biggs M, Papin JA. Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm For-

mation. PLoS ONE. 2013; 8(10): e78011. https://doi.org/10.1371/journal.pone.0078011 PMID:

24147108

18. Borer B, Ataman M, Hatzimanikatis V, Or D. Modeling metabolic networks of individual bacterial agents

in heterogeneous and dynamic soil habitats (IndiMeSH). PLoS Comput Biol. 2019; 15:e1007127.

https://doi.org/10.1371/journal.pcbi.1007127 PMID: 31216273

19. Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, et al. Metabolic resource alloca-

tion in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 2014; 7

(4):1104–1115. https://doi.org/10.1016/j.celrep.2014.03.070 PMID: 24794435

20. Cole JA, Kohler L, Hedhli J, Luthey-Schulten Z. Spatially-resolved metabolic cooperativity within dense

bacterial colonies. BMC Syst Biol. 2015; 9:15. https://doi.org/10.1186/s12918-015-0155-1 PMID:

25890263

21. Henry CS, Broadbelt LJ, Hatzimanikatis V. Thermodynamics-based metabolic flux analysis. Biophys J.

2007; 92:1792–1805. https://doi.org/10.1529/biophysj.106.093138 PMID: 17172310

22. Lebowitz JL, Helfand E, Praestgaard E. Scaled particle theory of fluid mixtures. J Chem Phys. 1965;

43:774–9.

23. Reiss H, Frisch HL, Lebowitz JL. Statistical mechanics of rigid spheres. J Chem Phys. 1959; 31:369–

80.

24. Jain AK, Mao J, Mohiuddin KM. Artificial neural networks: A tutorial. Computer. 1996; 29:31–44.

25. Muramatsu N, Minton A. Tracer diffusion of globular proteins in concentrated protein solutions. Proc

Natl Acad Sci USA. 1988; 85:2984–8. https://doi.org/10.1073/pnas.85.9.2984 PMID: 3129721

26. Cen W, Hoppe R, Gu N. Fast and accurate determination of 3D temperature distribution using fraction-

step semi-implicit method. AIP Adv. 2016, 6:095305.

PLOS COMPUTATIONAL BIOLOGY Crowding conditions and metabolic variability in the modeling of microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009140 July 22, 2021 19 / 20

https://doi.org/10.1038/nrmicro.2016.84
http://www.ncbi.nlm.nih.gov/pubmed/27452230
https://doi.org/10.1038/s41522-019-0107-4
https://doi.org/10.1038/s41522-019-0107-4
http://www.ncbi.nlm.nih.gov/pubmed/31728202
https://doi.org/10.1128/aem.60.4.1166-1173.1994
https://doi.org/10.1128/aem.60.4.1166-1173.1994
http://www.ncbi.nlm.nih.gov/pubmed/16349228
https://doi.org/10.1080/08927010400010494
https://doi.org/10.1080/08927010400010494
http://www.ncbi.nlm.nih.gov/pubmed/15621640
https://doi.org/10.1128/AEM.02279-08
http://www.ncbi.nlm.nih.gov/pubmed/19168660
https://doi.org/10.1128/AAC.01329-10
http://www.ncbi.nlm.nih.gov/pubmed/21189346
http://www.ncbi.nlm.nih.gov/pubmed/10099452
https://doi.org/10.1038/nrmicro1838
http://www.ncbi.nlm.nih.gov/pubmed/18264116
https://doi.org/10.1128/AAC.47.1.317-323.2003
https://doi.org/10.1128/AAC.47.1.317-323.2003
http://www.ncbi.nlm.nih.gov/pubmed/12499208
https://doi.org/10.1038/s41467-019-13818-7
https://doi.org/10.1038/s41467-019-13818-7
http://www.ncbi.nlm.nih.gov/pubmed/31937763
https://doi.org/10.1126/science.1192588
https://doi.org/10.1126/science.1192588
http://www.ncbi.nlm.nih.gov/pubmed/21097934
https://doi.org/10.1371/journal.pcbi.1005544
https://doi.org/10.1371/journal.pcbi.1005544
http://www.ncbi.nlm.nih.gov/pubmed/28531184
https://doi.org/10.1371/journal.pone.0078011
http://www.ncbi.nlm.nih.gov/pubmed/24147108
https://doi.org/10.1371/journal.pcbi.1007127
http://www.ncbi.nlm.nih.gov/pubmed/31216273
https://doi.org/10.1016/j.celrep.2014.03.070
http://www.ncbi.nlm.nih.gov/pubmed/24794435
https://doi.org/10.1186/s12918-015-0155-1
http://www.ncbi.nlm.nih.gov/pubmed/25890263
https://doi.org/10.1529/biophysj.106.093138
http://www.ncbi.nlm.nih.gov/pubmed/17172310
https://doi.org/10.1073/pnas.85.9.2984
http://www.ncbi.nlm.nih.gov/pubmed/3129721
https://doi.org/10.1371/journal.pcbi.1009140


27. Angeles-Martinez L, Theodoropoulos C. A lattice Boltzmann scheme for the simulation of diffusion in

intracellular crowded systems. BMC Bioinformatics. 2015; 16:353. https://doi.org/10.1186/s12859-

015-0769-8 PMID: 26530635

28. Takhaveev V, Heinemann M. Metabolic heterogeneity in clonal microbial population. Curr Opin Micro-

biol. 2018; 45:30–38. https://doi.org/10.1016/j.mib.2018.02.004 PMID: 29477028

29. Chen Y, Nielsen J. Energy metabolism controls phenotypes by protein efficiency and allocation. Proc

Natl Acad Sci USA. 2019; 116(35):17592–17597. https://doi.org/10.1073/pnas.1906569116 PMID:

31405984
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