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Abstract 

 

Accurate sample classification using transcriptomics data is crucial for advancing personalized medicine. 

Achieving this goal necessitates determining a suitable sample size that ensures adequate statistical power 

without undue resource allocation. Current sample size calculation methods rely on assumptions and 

algorithms that may not align with supervised machine learning techniques for sample classification.  

Addressing this critical methodological gap, we present a novel computational approach that establishes 

the power-versus-sample-size relationship by employing a data augmentation strategy followed by fitting 

a learning curve. We comprehensively evaluated its performance for microRNA and RNA sequencing data, 

considering diverse data characteristics and algorithm configurations, based on a spectrum of evaluation 

metrics. To foster accessibility and reproducibility, the Python and R code for implementing our approach 

is available on GitHub. Its deployment will significantly facilitate the adoption of machine learning in 

transcriptomics studies and accelerate their translation into clinically useful classifiers for personalized 

treatment.  
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Introduction 

 

Accurate sample classification using transcriptomic sequencing data is pivotal for guiding personalized 

treatment decisions 1-6. The success of such endeavors depends on the selection of an appropriate sample 

size, to achieve adequate statistical power while avoiding undue resource allocation or ethical concerns 7-

12. Various sample size calculation methods are available to identify differentially expressed markers 13-19. 

These methods establish connections between the required sample size, the desired power, and the projected 

effect size within a hypothesis testing framework, employing either closed-form formulae derived from 

statistical tests 13-16 or in silico simulations based on parametric distributions 17-19. When the study goal shifts 

to developing a multi-marker classifier, fewer sample size calculation methods are available.  They were 

primarily developed for microarray data and, in principle, can be adapted for sequencing data 20-24. These 

methods establish relationships between the required sample size and the desired classification accuracy, 

through either formulae derived from parametric distributions 20-22 or simulations via subsampling 23,24. 

However, none of these methods are compatible with modern supervised machine learning techniques, as 

these techniques eschew parametric distribution assumptions and require a substantial number of samples, 

making subsampling infeasible 25-28. Consequently, there is a pressing need to develop sample size 

calculation methods compatible with machine learning in classification studies using transcriptomic 

sequencing data. 

 

We developed a new computational approach to fill this methodology gap. Our approach entails two stages: 

first, synthesizing realistically distributed transcriptomic sequencing data without relying on a predefined 

formula, and second, determining a suitable sample size based on the synthesized data across a range of 

sample sizes. Specifically, we (1) build data augmentation tools that harness the power of deep generative 

models (DGMs), which will be trained on available pilot data and subsequently used to generate data for 

any desired number of samples 29-31, and (2) ascertain a suitable sample size by fitting the inverse power 
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law function (IPLF) with augmented data across different sample sizes and their respective classification 

accuracies using a machine learning technique 32,33 (Fig. 1). We name our algorithm for the first stage SyNG-

BTS (pronounced ‘sing-beats’), representing Synthesis of Next Generation Bulk Transcriptomic 

Sequencing, and the algorithm for the second stage SyntheSize.  

 

DGMs are designed to simulate data resembling real-world observations, which can be especially useful 

when acquiring real data is challenging 34-37. DGMs initially received acclaim for augmenting imaging data 

34 and recently achieved successes in single cell sequencing 35-37. Several families of DGMs are popularly 

used for data augmentation, including Variational Autoencoders (VAEs), Generative Adversarial Networks 

(GANs), and Flow-based generative models 38-41. When employing these models to simulate bulk-tissue 

transcriptomic sequencing, a challenge arises due to the typically modest sample size of the training data, 

as its randomness after online augmentation (that is, augmentation by DGMs in real-time) may have a 

strong impact on the training process. To address this issue, we opt for offline augmentation, which 

generates and stores augmented copies of the original data before training, ensuring a more consistent set 

of generated samples and fostering more stable learning dynamics. We will utilize an autoencoder (AE) for 

offline augmentation when dealing with a relatively modest number of markers, such as in microRNA 

sequencing (miRNA-seq) 42-45. AEs are designed for reconstructing the input data rather than generating 

new samples. In the case of RNA sequencing (RNA-seq), where the number of markers is substantial, we 

will employ Gaussian white noise addition 46,47. It introduces noise generated from a Gaussian distribution 

to the pilot data and iterates this procedure multiple times. The resulting datasets are aggregated to expand 

the sample size of the original pilot data.  

 

IPLFs are utilized to represent learning curves that depict the relationship between a classifier's accuracy 

and the training data's sample size 32,33. The term "learning curve" is often used to portray the learning 

trajectory, illustrating how a learner’s performance improves with experience and practice 33. In the realm 

of machine learning, a learning curve refers to a graphical representation or a mathematical function that 
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illustrates how a learning model’s performance improves with an increasing amount of training data. Such 

curves establish a connection between the prediction accuracy for a learning technique and the sample size 

of the training dataset. More specifically, these curves typically adhere to the IPLF, displaying three distinct 

and sequential phases characterized by (1) rapid performance enhancement, (2) gradual progress, and (3) 

eventual plateauing. The IPLF defines these phases with three parameters: the learning rate, decay rate, and 

minimum achievable error rate. This inverse-power-law 'learning' behavior appears to be widespread and 

has been observed in diverse prediction contexts 48. It has been utilized for sample size determination in 

sample classification with microarray data, initially in an unweighted manner by (Mukherjee et al., 2003)23 

and subsequently refined by (Figueroa et al., 2012) 24 using a weighted strategy to favor larger sample sizes 

in model fitting. Here, we employ the method introduced by (Figueroa et al., 2012) 24 in conjunction with 

our data augmentation algorithm to relate a learning technique’s accuracy to the sample size of 

transcriptomic sequencing data that is synthesized via data augmentation. 

 

In this article, we present a comprehensive workflow that leverages the SyNG-BTS algorithm and evaluate 

its performance in augmenting both miRNA-seq and RNA-seq data. Our investigation delves into critical 

nuances in algorithm specifications, including model choice, hyperparameter tuning, and offline 

augmentation, alongside key pilot data characteristics, such as sample size, marker filtering, and data 

normalization. Performance evaluation is grounded in pilot data sourced from the Cancer Genome Atlas 

(TCGA), which also serves as reference data for comparison with the augmented data 49-55. We utilize a 

spectrum of evaluation metrics, including marker-specific summaries, sample clustering, between-marker 

correlations, and differential expression analysis 56-60. Furthermore, we extend this workflow to integrate 

the SyNG-BTS algorithm and the SyntheSize algorithm and assess its performance in post-hoc sample size 

calculation for TCGA studies. We apply this extended workflow to calculate the sample size for developing 

predictors of immunotherapy response in a study of advanced clear cell renal carcinoma 61, providing 

insights into study design using machine learning for immunotherapy outcome prediction. This novel 

workflow effectively bridges a methodological gap, addressing a critical challenge in the design of 
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transcriptomic sequencing studies using machine learning. Their deployment promises to significantly 

enhance the likelihood of deriving valuable outcome predictors for personalized treatment of patients. 

 

 

Results 

 

Overview of SyNG-BTS 

 

The objective of SyNG-BTS is to train DGMs on a pilot set of bulk transcriptomic sequencing data and 

subsequently generate data for any number of samples using the trained model (Fig. 1A). Algorithmically, 

the training of SyNG-BTS involves two main steps, with the first being optional depending on the pilot 

data characteristics: (1) offline data augmentation using either an AE head or a Gaussian head; (2) online 

data augmentation using VAEs, GANs, or Flow-based generative models. We also explored their variants, 

such as Conditional VAE (CVAE), Wasserstein GAN (WGAN), WGAN with Gradient Penalty (WGANGP), 

Masked Autoregressive Flow (MAF), Generative Flow with Invertible 1x1 Convolutions (GLOW), and 

Real-valued Non-Volume Preserving (RealNVP) 29,30,62-67. For all models and their variants, we evaluated 

values for two shared hyperparameters: the number of learning epochs and the size of learning batches, 

along with an additional hyperparameter specific to VAE and CVAE 68,69. For detailed information on the 

models and their parameter tuning procedures, please refer to Methods.  

 

We evaluated the performance of SyNG-BTS using data from four TCGA datasets studying Skin Cutaneous 

Melanoma (SKCM), Acute Myeloid Leukemia (LAML), Breast Invasive Carcinoma (BRCA), and Prostate 

Adenocarcinoma (PRAD). These datasets served a dual purpose: (1) acting as sources for subsampling to 

generate pilot datasets, and (2) serving as reference datasets for assessing the augmented data quality (Fig. 

1B). To determine the quality of the augmented data, we assessed its congruence with the reference 
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empirical data using five key metrics. These metrics, detailed in Methods, collectively captured marker-

specific, inter-marker, and inter-sample data characteristics in both one-group and two-group settings. For 

miRNA-seq data augmentation, we examined all four TCGA datasets in the one-group setting, presenting 

the results for SKCM in the main text and that for the other three in the Extended Data File. In the two-

group setting, we used the combination of SKCM and LAML datasets (referred to as SKCM/LAML) and 

the combination of BRCA and PRAD datasets (referred to as BRCA/PRAD), with the results for the latter 

presented in Extended Data. For RNA-seq data augmentation, which needs larger pilot data than miRNA-

seq due to the considerably greater number of markers, we focused on the BRCA and PRAD RNA-seq 

datasets for the one-group setting (with the PRAD results presented in Extended Data) and the 

BRCA/PRAD combination for the two-group setting. The process for downloading and preprocessing the 

TCGA data is outlined in Methods. 

 

SyNG-BTS successfully augmented one-group miRNA data 

 

We conducted a comprehensive evaluation of various facets of the augmented data, encompassing marker-

specific summary statistics (mean, variation, and sparsity), inter-marker relationships (particularly partial 

correlation among miRNAs belonging to the same polycistronic clusters), and inter-sample relationships 

(assessed by clustering the augmented data from SyNG-BTS with the empirical data from TCGA), across 

the four TCGA studies (Fig. 2 and Extended Data Fig. S1-S4 ). In general, the augmented data exhibited 

high comparability with the empirical data when suitable DGMs and reasonable pilot data sample sizes 

were utilized, with the latter depending on the specific DGM. The degree of comparability was further 

influenced by the interplay of pilot data characteristics and algorithm configurations. Detailed results are 

presented below in the context of the TCGA SKCM study (Fig. 2 and Extended Data Fig. S1), with similar 

observations noted in the other three TCGA studies (Extended Data Fig. S2-S4).  
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Model choice played a crucial role in the augmented data quality (Fig. 2). Among the DGMs examined, 

VAE (specifically with the ratio between reconstruction loss and Kullback-Leibler divergence being 1:10, 

shorthanded as VAE1-10) and Flow-models (especially MAF) emerged as the top performers across all 

evaluation metrics (Fig. 2A-2D). Compared with VAEs, MAF better preserved the proportions of expressed 

markers (that is, markers with non-zero reads in at least one sample) (Fig. 2C-2D). Furthermore, VAE1-10 

excelled in scenarios favoring deep training, typically with a fixed number of epochs or a small batch size, 

while MAF showed relative insensitivity to batch size and performed well with early stopping (Fig. 2E-2F). 

Among the GAN-based models, WGANGP outperformed GAN and WGAN across most of the evaluation 

metrics especially for marker specific mean and sample clustering (Figure 2A-2D).  It also showed overall 

insensitivity to batch sizes and epoch strategies although occasionally favored early stopping (Fig. 2E-2F).  

 

The pilot data characteristic with the most significant impact was sample size (Fig. 2). Increasing the pilot 

data sample size considerably improved data congruence for VAEs and Flow-based models, as evidenced 

by enhancements across the evaluation metrics (Fig. 2A-2D). Take VAE1-10 as an example, as the pilot 

data sample size increased from 20 to 100, the similarity of marker-specific means and standard deviations 

greatly improved, nearly halving the median absolute deviation between the augmented data and empirical 

data (Fig. 2A-2B); the mixing of the two data sources upon clustering sharply enhanced, raising the 

complimentary Adjusted Rand Index (cARI) from about 0.55 to nearly 1; the concordance of inter-marker 

correlations gradually increased, with the correlation coefficient rising from 0.73 to 0.80 (Fig. 2C). On the 

other hand, the GAN family performed poorly across all pilot data sample sizes, especially in terms of 

marker-specific summary statistics (Fig. 2A-2B). Hence, a reasonable sample size (40 or more for VAE1-

10 and 60 or more for MAF) proved effective for model training, a phenomenon particularly pronounced 

for high-performing models like VAEs and Flow-based models.  

 

In addition to the pilot data sample size, we evaluated the impact of marker filtering (Fig. 2B versus Fig. 

2A, Fig. 2D versus Fig. 2C, and Fig. 2E-2H versus Fig. S1) and sequencing depth normalization (Fig. 2G 
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and Fig. S1C) for pilot data on the efficacy of model training. The effectiveness of marker filtering (that is, 

removing markers with consistently low expression across samples) was evident, leading to a substantial 

enhancements in both the non-zero marker proportions (with its difference between the augmented data and 

empirical data decreasing from about 25% to 5% for VAE1-10 and from about 15% to 0% for MAF) and 

the mixing of samples from the two data sources (with the cARI increasing from about 0.55 to 0.95 for 

VAE1-10 using 40 pilot samples and from around 0.92 to 0.99 for MAF using 60 pilot samples). Its impact 

on the inter-marker correlation metric varied depending on the model, with notable improvements for Flow-

based models. The use of depth normalization may or may not improve data congruence in the one-group 

setting. Although Trimmed Mean of M-values (TMM) and Total Count normalization outperformed Upper 

Quartile normalization, they were found to be roughly equivalent or slightly inferior to no normalization.  

 

We further evaluated the impact of offline augmentation on model training (Fig. 2H). Offline augmentation 

via AE reconstruction proved effective in facilitating the training process, resulting in further enhancement 

even for the top-performing models like VAE1-10 and MAF. However, it did not improve the performance 

of GAN models, underscoring the challenges of training GANs in this context.  

 

SyNG-BTS successfully augmented two-group miRNA data 

 

For the two-group setting, we replaced VAEs with CVAEs and excluded the GAN models due to their poor 

performance in the one-group setting. Detailed results are presented below for the TCGA SKCM/LAML 

study with marker filtering (Fig. 3 and Fig. S5). Similar observations were noted for this study without 

marker filtering (Fig. S6) and for the BRCA/PRAD study (Fig. S7). 

 

The performance of SyNG-BTS remained consistently strong in the two-group setting (Fig. 3 and Fig. S5). 

Specifically, MAF once again emerged as the top performer, closely followed by CVAE1-10 (Fig. 3A-3B 

and Fig S5A). Their performance was influenced by pilot data sample size (Fig. 3A-3B and Fig S5A), 
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marker filtering (Fig. 3 and Fig. S5 versus Fig. S6), offline augmentation (Fig. S5B), and hyperparameter 

tuning (Fig. S5C-S5D), similar to the one-group setting. Additionally, MAF consistently yielded superior 

results in terms of differential expression analysis, as indicated by the concordance correlation coefficients 

of p-values (Fig. 3A third row) and group mean differences (Fig. 3A fourth row). Notably, depth 

normalization, particularly with Total Count or TMM, proved to be more influential than in the one-group 

setting (Fig. 3B). It played a noticeable role in facilitating model training, especially for CVAE1-10, 

particularly for the inter-marker correlation metric and the two metrics related to differential expression 

analysis. The Uniform Manifold Approximation and Projection (UMAP) plot further affirmed the quality 

of the generated samples, displaying distinct separation by sample types without differentiation according 

to data sources, even with the runner-up generative model CVAE1-10 (Fig. 3C).  

 

SyNG-BTS successfully augmented RNA data 

 

For RNA-seq data augmentation, we focused on the better performing model variant for each DGM model 

based on the miRNA results, namely VAE, MAF, and WGANGP. Considering the substantial number of 

markers (60,660) in RNA-seq data, we adjusted the loss ratio of VAE and CVAE to 1:100 (shorthanded as 

VAE1-100 and CVAE1-100, respectively) and expanded the range of pilot data sample sizes to 50 to 250. 

Moreover, we excluded markers with both low mean and low variability across samples, reducing the 

number of markers to 1,099 for the TCGA BRCA data and 1,279 for the BRCA/PRAD data (see details in 

Methods Table 1).  

 

In the one-group setting, the performance of SyNG-BTS for RNA-seq aligned well with that for miRNA-

seq (Fig. 4A-4C and Fig. S8). MAF performed the best for both marker-specific characteristics (Fig. 4A) 

and sample clustering (Fig. 4B), closely followed by VAE1-100. Like miRNA-seq, depth normalization 

had little impact on RNA-seq data augmentation in the one-group setting (Fig. 4C). 
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In the two-group setting, the performance of SyNG-BTS was again consistent with that for miRNA-seq 

(Fig. 4D-4G and Fig. S9). MAF initially exhibited inferior performance to CVAE when the pilot data sample 

size was 50 but significantly improved as the sample size increased towards 250 (Fig. 4D-4E). In particular, 

when the pilot data size exceeded 50, MAF demonstrated exceptional effectiveness in identifying 

differentially expressed markers between two sample types, achieving nearly perfect agreement with the 

empirical data in terms of the p-values and fold-changes (Fig. 4E). Both models were highly effective in 

sample clustering, with the identified clusters showing strong alignment with sample groups rather than 

data sources (Fig. 4E-4G). The impact of depth normalization is mixed, with Total Count and TMM 

facilitating smoother improvement over pilot data sample size for MAF (Fig. 4F). 

 

For offline augmentation, the AE reconstruction approach faced challenges due to its complexity and the 

need for a relatively moderate marker-to-sample-size ratio in the pilot data (results not shown), while 

Gaussian noise addition proved to be more effective (Fig. 4B and 4E). We used the latter for RNA-seq data 

offline augmentation by combining an initial pilot dataset with nine noise-added datasets created by 

introducing Gaussian noise (see details in Methods). This approach reduced variability in all evaluation 

metrics, thereby improving the quality of the augmented data, especially in the two-group setting (Fig. 4E). 

Unsurprisingly, the influence of offline augmentation was particularly marked when dealing with small 

pilot data sizes, with MAF reaping significant benefits in such instances. 

 

Transfer learning enhanced the performance of SyNG-BTS 

 

To examine the potential of transfer learning as a pre-training strategy for improving the performance of 

generative models, we pre-trained VAEs with a loss ratio of 1:10 for miRNA-seq and 1:100 for RNA-seq, 

using datasets from one TCGA study or multiple studies combined (called the pre-training dataset) 70,71. The 

trained models were then used for model training with pilot datasets drawn from a different and intended 

TCGA study. As shown in Fig. 5, model training saw enhancement across all evaluated pilot data sizes. For 
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miRNA-seq, the enhancement was particularly evident in the improvement of inter-marker relationship 

(Fig. 5A third row). Conversely, for RNA-seq, the enhancement was more remarkable in preserving the 

proportion of expressed markers (Fig. 5B first row). While technically any dataset with the same set of 

markers can be used for pre-training, our findings highlighted the importance of the pre-training data having 

characteristics comparable to the pilot data (Fig. 5A left column). Additionally, a larger pre-training dataset, 

such as the combination of TCGA PRAD, LAML, and SKCM data, led to greater enhancements compared 

to using the TCGA PRAD data alone, when augmenting pilot datasets drawn from the TCGA BRCA study 

(Fig. 5A right column). These results underscored the value of incorporating transfer learning in 

transcriptomic data augmentation to leverage distributionally comparable and well-sized pre-training data.  

 

Overview of SyntheSize  

 

Our proposed approach for sample size determination using augmented datasets is implemented in four 

main steps (Fig. 1C). 

I. Data augmentation: Select a set of candidate sample sizes that are evenly distributed (denoted as 

𝑛! 	for 𝑖 = 1,… ,𝑚) and generate data for each 𝑛! 	sample size using SyNG-BTS. 

II. Classifier training: Use each augmented dataset to train a classifier with a chosen learning 

technique (such as Support Vector Machine) and assess its accuracy. Steps I and II can be repeated 

for multiple augmented datasets of each sample size 𝑛! 	to obtain multiple accuracy estimates, 

providing a more stable average estimate.  

III. Learning curve fitting: Fit the estimated accuracies for all candidate sample sizes to a learning 

curve using the IPLF. Its parameters are estimated via a nonlinear weighted least squares 

optimization, employing the ‘nl2sol’ routine from the Port Library, as outlined by (Figueroa et al., 

2012) 24. In this optimization, the weight for the i-th sample size is 𝑖/𝑚	, placing greater emphasis 

on larger sizes. 
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IV. Sample size projection: Utilizing the fitted curve, the prediction accuracy is projected for any 

desired sample size, which applies the IPLF with the estimated parameters. In particular, the fitted 

curve can be used to extrapolate the accuracy level for a larger sample size than 𝑛". 

 

SyntheSize successfully determined the sample size for miRNA studies 

 

For demonstration purposes, we applied the SyntheSize approach for (post-hoc) sample size evaluation 

using the TCGA BRCA miRNA-seq data, which includes two subtypes: Invasive Ductal Carcinoma (IDC) 

and Invasive Lobular Carcinoma (ILC) (Fig. 1D and Fig. 6A). A subset of the TCGA BRCA miRNA-seq 

data (100 samples per subtype) was reserved as an independent validation set, utilized to provide a de facto 

assessment of the relationship between prediction accuracy and sample size. The remaining samples were 

then used as the input pilot data for SyNG-BTS as part of the SyntheSize algorithm. We computed 

accuracies for three learning techniques - Support Vector Machine, K-Nearest Neighbors, and XGBoost - 

in classifying the two BRCA subtypes. The estimated accuracies fitted well with an IPLF curve, which 

began to plateau when the sample size reached about 50 per subtype, suggesting limited value in adding 

more samples (Fig. 6A right column). Additionally, we obtained datasets with varying sample sizes by 

subsampling the validation set (up to 100 samples per subtype), assessed classification accuracies in these 

datasets, and fitted IPLF curves for the same three learning techniques (Fig. 6A left column). The curves 

fitted to the empirical datasets closely mirrored those based on the augmented datasets, providing additional 

validation for the effectiveness of our proposed approach for sample size determination.  

 

SyntheSize successfully determined the sample size for RNA studies 

 

Subsequently, we assessed SyntheSize using the TCGA BRCA RNA-seq data, similar to the assessment 

with the miRNA-seq data (Fig. 6B). Although exhibiting slightly inferior performance compared to its 

efficacy for miRNA-seq, SyntheSize provided a satisfactory sample size estimation for RNA-seq. This is 
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evident from the proximity observed between the predicted accuracies using the augmented data and that 

derived from the empirical validation data.  

 

For further illustration, we showcased SyntheSize in determining the sample size needed for building a 

predictor of immunotherapy response (Complete/Partial Response versus Progressive/Stable Disease), 

sourcing pilot RNA-seq data from a recent clinical study involving a PD-1 inhibitor, nivolumab, in patients 

with advanced clear cell renal cell carcinoma61. The real and generated samples had a high degree of 

similarity as revealed in the UMAP (Fig. S10). The accuracies of the three learning techniques again closely 

aligned with the IPLF model (Fig. 6C). The curves plateaued, indicating that their near-optimal accuracies 

were achieved, when the sample size reached about 200 samples per response group. Among the three 

techniques, K-Nearest Neighbors exhibited a noticeably smoother fit to the IPLF curve, albeit with a much 

higher sensitivity to the sample size as its performance floundered at low sample sizes, compared to Support 

Vector Machine and XGBoost (Fig. 6C).  

 

 

Discussion 

 

Our proposed SyntheSize approach adeptly estimates the required sample size for machine learning with 

bulk transcriptomic sequencing data, harnessing the power of deep generative models via the SyNG-BTS 

algorithm to augment available pilot data. The consistent and reliable performance of SyntheSize, 

demonstrated in both miRNA-seq and RNA-seq, highlights its versatility and effectiveness in informing 

experimental design for transcriptomics studies using machine learning.  

 

We acknowledge that obtaining pilot data of reasonable size and good quality can be challenging, but it is 

necessary to avoid making parametric distribution assumptions or relying on a substantial empirical dataset 
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for subsampling. Ideally, users should source their own pilot data that mirrors real-world data characteristics 

in the intended biomedical problem context. For the large dataset to be collected, for which the sample size 

is assessed, obtaining a pilot dataset of 40 to 60 samples is worthwhile. If this is not possible, users can turn 

to publicly available data. For instance, the TCGA offers high-quality transcriptomic sequencing data for 

more than 30 cancer types, each with hundreds of samples.  

 

Through a comprehensive evaluation of SyNG-BTS in diverse settings, we have demonstrated the 

successful training of generative models for bulk transcriptomic sequencing data. The efficacy of these 

models is influenced by various factors related to the pilot data, such as its sample size and marker numbers, 

as well as specifications for the generative models, including model choice, hyperparameter tuning, and the 

use of offline augmentation and transfer learning. Generally, model training is more successful when the 

pilot data maintains a reasonable marker-to-sample-size ratio. In cases where this ratio is excessively high, 

the incorporation of offline augmentation and transfer learning has proven to be beneficial. The generative 

models need to be thoughtfully selected and meticulously tuned. Among the models investigated, MAF and 

VAE models consistently outperformed GAN models.  

 

The runtime of the DGMs used in SyNG-BTS is an important consideration for its overall utility. In practice, 

the time required to train these models can vary based on data complexity, model architecture, and available 

computational resources. Our experiences found that the DGMs did not demand extensive computational 

resources, primarily due to the simplicity of the model structures employed and the modest size of the pilot 

datasets involved. Specifically, when using any of the DGMs in our studies, the runtime typically ranges 

between 1 to 5 minutes on a personal computer with 16GB of RAM and a 2.3 GHz Quad-Core Intel Core 

i5 processor. This brief runtime indicates the manageability of these models, affirming that even personal 

computers, without parallel computing setups, are sufficient for training and applying the DGMs. The low 

computational demands significantly broaden the potential for using SyntheSize to design transcriptomic 

sequencing studies, without necessitating high-end computing infrastructure. 
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In summary, our study demonstrated the successful training of generative models to augment bulk-tissue 

transcriptomic sequencing data, enabling effective sample size determination using augmented datasets and 

the IPLF model. These computational resources are poised to greatly facilitate the deployment of supervised 

machine learning techniques in deriving effective sample classifiers from biomedical transcriptomic data. 

These contributions will significantly advance the development of essential computational tools crucial for 

designing classification studies with transcriptomic sequencing data, thereby accelerating their translation 

into clinically impactful predictors. 

 

Methods 

 

SyNG-BTS 

 

We introduced the SyNG-BTS (Synthesize Next Generation Bulk Transcriptomic Sequencing) algorithm 

to augment transcriptomic sequencing data from a pilot dataset using deep generative models like 

Variational Autoencoder (VAE), Generative Adversarial Network (GAN), and Flow-based models. For each 

model, we explored different variants and fine-tuned hyperparameters. Additionally, we investigated the 

effectiveness of utilizing offline augmentation and transfer learning to enhance model training, especially 

when the pilot data has a low sample size relative to the number of markers. The neural net structures of 

the three generative models are presented in Figure S11-13. They employed the Adam optimizer and ReLU 

activation function, with the learning rate fixed at 0.0005. 

 

Tuning of shared hyper-parameters. The three generative models have two shared hyper-parameters - 

the number of learning epochs and the size of learning batches. Both wield significant influence on the 

training depth and require careful fine-tuning. Small batches with fixed epochs have a similar effect to more 
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learning epochs, so it is beneficial to explore complex epoch settings rather than rely on a fixed number of 

epochs. In addition to fixed learning epochs (200 for Flow-based models and 1000 for VAEs and GANs), 

we considered an early stopping rule, adopting the method proposed in (Li et al., 2021) 72– if the loss does 

not improve for 30 epochs, then stop. For the learning batch size, we examined candidate batches at 10% 

and 20% of the training data sample size. 

 

Model variants and tuning of variant-specific hypermeters. We explored the following variants for each 

generative model utilized in the SyNG-BTS algorithm.  

• VAE: VAE is a generative model that learns to encode and decode data by mapping it to a probabilistic 

latent space. Its loss evaluation consists of two main components: a reconstruction loss, measuring how 

well the model reconstructs the input data, and a Kullback-Leibler (KL) divergence term, enforcing the 

learned latent space to follow a predefined probability distribution. The balance between the 

reconstruction loss and the KL divergence is adjustable, allowing us to prioritize the faithfulness of 

reconstructions or the disentanglement of latent variables. In SyNG-BTS, the ratio of reconstruction 

loss to KL divergence is set to 1:1, 1:5, and 1:10 for microRNA-seq (miRNA-seq) data and 1:100 for 

RNA-seq data. The corresponding VAE models are named VAE1-1, VAE1-5, VAE1-10, and VAE1-100, 

respectively. Conditional VAE (CVAE) extends the VAE by introducing conditional information during 

both the encoding and decoding processes. This enables the generation of data conditioned on specific 

attributes or categories, making it suitable for generating data with multiple sample groups.  

• GAN: GAN is a neural network architecture comprised of a generator and a discriminator engaged in 

a competitive-game-like setting. The generator aims to produce data that are indistinguishable from 

real-world data, while the discriminator works to differentiate between real and generated data. Two 

GAN variants explored in this study are Wasserstein GAN (WGAN) and WGAN with Gradient Penalty 

(WGANGP). WGAN retains the basic GAN structure but employs Wasserstein distance as a more 

stable and meaningful measure of the difference between generated and real data distributions, 

addressing training instability issues. WGANGP enhances WGAN by imposing a Lipschitz continuity 
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constraint through a gradient penalty term in the loss function, further improving training stability. In 

the regular GAN model, each iteration of the generator is followed by one iteration of the discriminator, 

while WGAN and WGANGP set this iteration ratio to 5, following the original papers 63,64. In our study, 

the weight clipping parameter for WGAN is set to 0.01, and the gradient penalty parameter 𝜆 for 

WGANGP is set to 10. 

• Flow-based models: Flow-based models utilize invertible mappings to transform complex data 

distributions into simpler, tractable latent spaces. This paper explores three such models: Real-Valued 

Non-Volume Preserving (RealNVP), Generative Flow with Invertible 1x1 Convolutions (GLOW), and 

Masked Autoregressive Flow (MAF). While RealNVP and GLOW share a similar network structure, 

GLOW enhances it with ‘1x1 convolutions’ and ‘actnorm’ layers for improved performance, albeit 

requiring larger sample sizes due to its deeper structure. MAF, distinct from RealNVP and GLOW, 

leverages the autoregressive property by conditioning each variable on its preceding neural network 

layers and applying transformations across all data dimensions, thereby enhancing the model's capacity 

to capture complex distributions. These Flow-based models prioritize invertibility, enabling efficient 

sampling and precise likelihood computation. In our study, the number of blocks, representing the 

sequential layers within the model that process the data, for these models is set to 5, as in the original 

paper 41. The validation set ratio, which is the proportion of the dataset reserved for validating the 

model's performance, is fixed at 0.15. 

 

Offline augmentation. We examined two techniques for offline augmentation: (1) applying an autoencoder 

(AE) head for pilot data with a relatively modest number of markers compared to the number of samples 44, 

and (2) adding Gaussian white noise for pilot data with a relatively large marker-to-sample-size ratio 46. 

The AE head iteratively reconstructs the input data and combine the reconstructed data with the data from 

the previous iteration, exponentially increasing the number of samples. Assuming the pilot data sample size 

is k, AE offline augmentation with 𝑡 iterations would lead to a sample size of 𝑘 ∗ 2#. The value of 𝑡 is set 

to be 2 in our study. Gaussian white noise addition involves adding noise generated from a Gaussian 
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distribution to the pilot sequencing data on the log2 scale, and this process can be repeated multiple times 

with the resulting datasets combined to increase the sample size. While offline augmentation generates 

dependent samples, leveraging dependent samples poses no issues in deep neural networks. This is 

exemplified by common practices in image data augmentation, such as flipping, cutting, or color changing. 

 

Transfer learning. Transfer learning is a machine learning approach that boosts model training efficiency 

by leveraging knowledge acquired from one task to improve performance on another related task 73. Instead 

of training models from scratch for a specific objective, transfer learning involves pre-training a model on 

a large dataset for a source task. The knowledge gained during this pre-training is then fine-tuned for a 

target task with a (often smaller) training dataset. This approach is particularly valuable when data is scarce 

for the target task, as it allows models to benefit from previously learned features and representations. 

Transfer learning has demonstrated notable success in diverse domains, including computer vision, natural 

language processing, and single-cell sequencing, offering advantages such as reduced data requirements 

and accelerated training convergence, ultimately contributing to enhanced model performance.  

 

Performance Evaluation of SyNG-BTS 

 

Datasets. To assess the performance of SyNG-BTS for augmenting bulk transcriptomic sequencing data, 

we utilized miRNA-seq and RNA-seq datasets from four TCGA studies: Breast Invasive Carcinoma 

(BRCA), Prostate Adenocarcinoma (PRAD), Skin Cutaneous Melanoma (SKCM), and Acute Myeloid 

Leukemia (LAML). These datasets served a dual purpose: (1) as sources for subsampling to create pilot 

datasets of varying sample sizes, and (2) as reference datasets for evaluating the quality of the augmented 

data. Data retrieval from TCGA was conducted using the R package TCGAbiolinks 51. Each dataset contains 

a total of 1,881 markers for miRNA-seq and 60,660 for RNA-seq. The sample sizes for miRNA-seq in 

BRCA, PRAD, SKCM, and LAML are 1207, 551, 452, and 188, respectively. For RNA-seq, the sample 
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sizes are 1231, 554, 473, and 151, respectively. In the one-sample-group setting, all four datasets were 

utilized for miRNA-seq and only the BRCA and PRAD datasets were used for RNA-seq given their larger 

sample sizes. In the two-group setting, we considered the combination of SKCM and LAML (referred to as 

SKCM/LAML) and the combination of BRCA and PRAD (referred to as BRCA/PRAD) for miRNA-seq 

and focused on the BRCA/PRAD combination for RNA-seq. Among the miRNA-seq datasets, the single-

group evaluation was comprehensively performed for SKCM and BRCA to identify a preferred model 

training setting. This setting was subsequently used for evaluating LAML and PRAD. Similarly, the two-

group evaluation was done comprehensively for SKCM/LAML and selectively for BRCA/PRAD. 

 

Depth normalization. Depth normalization is an important step for preprocessing miRNA and RNA 

sequencing data 53. To assess the impact of depth normalization on generative model training, we applied 

the following depth normalization methods to the pilot data: Total Count (TC) 74, Trimmed Mean of 

Mvalues (TMM) 75, and Upper Quartile (UQ) 52. Subsequently, the normalized data underwent log2 

transformation, with a pseudo count of one added to all counts to address the zero-count issue. Additionally, 

we refrained from standardizing the input data for generative models to ensure that the generated samples 

can be transformed back to the original sequencing counts as required by many downstream analyses 

including differential expression analysis. 

 

Marker filtering. MiRNA-seq and RNA-seq data often include a large number of markers with 

consistently low abundance across samples. Such poorly expressed markers pose a challenge for generative 

model training while providing minimal value for downstream analyses. To address this, we investigated 

filtering out poorly expressed markers to improve the performance of SyNG-BTS. For miRNA-seq, where 

mean and standard deviation exhibit a strong association 76, we used marker-specific means to identify 

poorly expressed markers, setting a threshold based on mean count. In the case of RNA-seq, both marker-

specific means and standard deviations were considered for identifying poorly expressed markers. Our goal 

was to choose thresholds that retain at least 256 markers, corresponding to the largest number of neurons 



 21 

in the neural network layers. The specific thresholds varied depending on the datasets. Table 1 lists the 

thresholds used for the four TCGA datasets and another dataset from an immunotherapy dataset 61 that was 

collected in clear cell renal cell carcinoma (CCRCC) and used for our method application, along with the 

numbers of remaining markers after filtering. 

 

Table 1: Threshold (on the log2 transformed counts) for marker filtering and number of remaining markers.  

Molecule type Cancer type 
Mean 

threshold 
SD threshold Number of remaining markers 

miRNA-seq 

SKCM 4  298 

LAML 2  267 

BRCA 3  289 

PRAD 3  268 

SKCM/LAML 3  317 

BRCA/PRAD  3  279 

RNA-seq 

BRCA 5 2 1099 

PRAD 5 2 460 

BRCA/PRAD 5 2 1279 

CCRCC (CRPR/PDSD) 30 3 259 

 

Transfer learning. In scenarios where the pilot data has a relatively high marker number to sample size 

ratio, we explored the use of transfer learning to enhance generative model training by leveraging pre-

trained models. For miRNA-seq, we considered four distinct scenarios: (1) training on SKCM pilot datasets 

with transfer from the LAML dataset, (2) training on SKCM pilot datasets with transfer from the combined 

LAML/BRCA/PRAD dataset, (3) training on BRCA pilot datasets with transfer from the PRAD dataset, 

and (4) training on BRCA pilot datasets with transfer from the LAML/SKCM/PRAD dataset. The key 
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differences between the two pre-training datasets lie in the trade-off between sample size and the level of 

data heterogeneity. For RNA-seq, we trained BRCA pilot datasets with transfer from the PRAD dataset and 

vice versa. Model pre-training utilized the VAE models, with a batch size set at 10% of the pre-training data 

size, an epoch at 1000, and a learning rate of 0.0005.  

 

Data augmentation. To generate pilot datasets, we randomly draw five pilot datasets with a pre-specified 

sample size from an empirical dataset. Each pilot dataset was utilized to train a generative model with 

specified values of epochs, learning rate, and learning batch size. Subsequently, each trained model was 

used to create new samples at a pre-defined target sample size. For each TCGA dataset, pilot data size, 

generative model choice, and hyper-parameter setting, we created 25 sets of augmented data, each matching 

the sample size of the selected dataset from which the pilot dataset was drawn. The pilot data sample sizes 

per group were examined at (1) 20, 40, 60, 80, and 100 for miRNA-seq, and (2) 50, 150, and 250 for RNA-

seq. 

 

Evaluation of augmented data. We evaluated the quality of the augmented data by comparing them with 

the TCGA empirical data using five key analysis metrics. These metrics collectively captured marker-

specific, inter-marker, and inter-sample data characteristics, in both one-group and two-group settings. 

• Marker-specific summary. We compared marker-specific summary statistics, including (1) mean, (2) 

standard deviation, (3) sparsity, defined as the percentage of zero counts across all samples, between 

the generated and empirical data. The preservation of marker-specific characteristics was gauged with 

the Median Absolute Deviation (MAD) between the two sets of summary statistics 36,56. A MAD close 

to zero indicates a high degree of data comparability. In addition, we compared the percentage of 

markers that have zero counts across all samples between the data sources. 

• Inter-marker correlation. We examined the degree of correlation among well-expressed miRNAs that 

belong to the same polycistronic clusters, known for their tendency to be co-expressed, as previously 

reported 57. We quantified their correlation with the partial correlation coefficient (PCC). We assessed 
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its level of agreement between the generated and empirical data using the concordance correlation 

coefficient (CCC) 58. A CCC close to 1 signifies a high level of data comparability. 

• Sample clustering. We conducted hierarchical clustering 77 on a combined dataset comprising both 

generated and empirical samples. The clustering used the Euclidean distance measure and the Ward 

linkage function. To assess the alignment of clusters, we utilized the Adjusted Rand Index (ARI), 

treating the data sources as ground truth labels in the single-group setting 59,78. In this context, an ARI 

close to 0 suggests comparability between the two data sources. For consistence with the favorable 

direction of other metrics, we converted it to 1 – ARI, referred to as the complementary ARI (cARI). 

In the two-group setting, we used the ARI treating the sample groups as the ground truth to evaluate 

the quality of the augmented samples. An ARI close to 1 indicates that the sample separation is 

predominantly driven by biological differences between the sample groups, rather than technical 

differences between the two data sources.  

• Dimension reduction. We performed dimension reduction using the Uniform Manifold Approximation 

and Projection (UMAP) method 60. UMAP is extensively employed in single-cell studies to uncover a 

low-dimensional representation that closely approximates the fuzzy topological structure, aiding in data 

visualization and pattern diagnosis. UMAP plots were utilized to visually assess the separation of 

samples by the two data sources. 

• Differential expression analysis. To assess evidence of differential expression in datasets that include 

two sample types, we applied the voom method to each data source 79, using the DE.voom function in 

the PRECISION.seq package 53,54. Subsequently, we compared the two sets of results for differential 

expression analysis, including p-values and fold-changes, using the CCC. A CCC close to 1 indicates a 

high level of data congruence. 

 

SyntheSize 
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We selected m equally spaced candidate sample sizes. For each sample size 𝑛! , where	𝑖 = 1,… ,𝑚, we 

generated 𝑛!  new samples with the trained generative model. Subsequently, we utilized the generated 

samples to build a classifier using machine learning techniques, such as Support Vector Machine, and 

assessed its classification accuracy. This entire process was repeated 30 times for each candidate sample 

size, and the average accuracy was computed. To quantify the relationship between accuracy and sample 

size, we adopted the method introduced in (Figueroa et al., 2012) 24, fitting a learning curve using the inverse 

power law functions (IPLFs) as follows: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 (1 − 𝑎) − 𝑏(𝑠𝑎𝑚𝑝𝑙𝑒	𝑠𝑖𝑧𝑒)$ . 

 

The parameters a, b, c are estimated through nonlinear weighted least squares optimization using the ‘nl2sol’ 

routine from the Port Library 80, where the weight for the i-th candidate sample size is 𝑖/𝑚, 𝑖 = 1,… ,𝑚.	 

These weights emphasize that the accuracy is more reliable for larger sample sizes. After fitting the learning 

curve, we can predict the accuracy for uncalculated sample sizes, along with the 95% prediction interval, 

following the approach outlined in (Figueroa et al., 2012) 24.  

 

Performance Evaluation of SyntheSize 

 

For illustration and evaluation purposes, we applied SyntheSize for post-hoc sample size evaluation in the 

TCGA BRCA study to classify its two subtypes, Invasive Ductal Carcinoma (IDC) versus Invasive Lobular 

Carcinoma (ILC), using miRNA-seq data (n = 871 for IDC and n = 210 for ILC) and RNA-seq data (n = 

892 for IDC and n = 213 for ILC). In addition to marker filtering based on marker-specific means and 

standard deviations, we further selected markers based on the importance score from a random forest 

analysis to adjust the signal to noise ratio. 
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For both miRNA-seq and RNA-seq data, we initially reserved 100 IDC and 100 ILC samples as an 

independent validation set, which would be utilized to estimate the de facto IPLF of classification accuracy. 

The remaining samples were then employed to draw pilot data for SyNG-BTS as part of the SyntheSize 

algorithm. CVAE1-20 with 285 epochs was employed for miRNA-seq, and CVAE1-50 with 185 epochs 

was employed for RNA-seq. The batch fraction was set at 10%, and the learning rate was fixed at 0.0005. 

 

We considered three commonly used classifiers: Support Vector Machine (implemented by the R package 

e1071), K-Nearest Neighbors with K=20 (implemented by the R package class), and XGBoost with 25 

rounds for miRNA data and 10 rounds for RNA data (implemented by the R package xgboost). For RNA-

seq data, specific XGBoost parameters were adjusted: the learning rate was set to 0.1, the maximum depth 

of a tree was set to 3, and the minimum sum of instance weight (hessian) needed in a child was set to 3; 

other training parameters were kept at their default values. The classifiers’ performance was assessed based 

on classification accuracy computed through 5-fold cross-validation, given the limited validation data size. 

 

We trained classifiers using generated samples (across a range of candidate sample sizes) and using real 

samples (over the same candidate sample size range) from the independent validation set. The accuracies 

of the classifiers at each candidate sample size were utilized to fit the IPLF. Subsequently, the fitted 

functions derived from generated samples were compared with those from real samples. This analysis 

provides insights into the effectiveness and reliability of the SyntheSize algorithm for determining sample 

size in supervised machine learning with transcriptomic sequencing data.  

 

Application of SyntheSize to an Immunotherapy Study 

 

To further illustrate, we utilized SyntheSize for sample size assessment in predicting patient response to a 

PD-1 inhibitor, nivolumab, with RNA-seq in advanced clear cell renal cell carcinoma. The objective was 

to build a classifier with RNA-seq data to distinguish two clinical response groups according to RECIST 
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1.1: Complete or Partial Response (CR/PR) versus Stable or Progressive Disease (PD/SD), as outlined in 

the original paper. Pilot data came from a recent study of advanced clear cell renal cell carcinoma involving 

152 patients (39 CR/PRs and 113 PD/SDs), all treated with nivolumab and with available RNA-seq data61. 

For data augmentation, we employed SyNG-BTS using CVAE1-200 with Gaussian head offline 

augmentation, a batch fraction of 10%, and an early stopping strategy. Subsequently, the augmented data 

was utilized by SyntheSize to evaluate the classification accuracy using Support Vector Machine, K-Nearest 

Neighbors, and XGBoost, across a range of total sample sizes from 30 to 400.  

 

 

Data Access 

 

The microRNA and RNA sequencing data used in this article are all publicly available, including those 
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Fig. 1 | Schema of SyNG-BTS and SyntheSize algorithms along with their respective validation. A: SyNG-BTS algorithm. A 

pilot dataset, denoted as 𝑥, undergoes offline augmentation to transform into 𝑥!", which subsequently serves as the input for a deep 

generative model, leading to augmentation to 𝑥"#$. B: SyNG-BTS validation. Pilot datasets are generated by randomly sampling 

from a dataset in the Cancer Genome Atlas (TCGA) and are subsequently inputted into SyNG-BTS to generate augmented data 

with the matching sample size of the source TCGA dataset, enabling a comprehensive comparison of the empirical data and the 

augmented data using various evaluation criteria. C: SyntheSize algorithm. It determines the sample size for machine learning 

(ML), such as Support Vector Machine (SVM), in four steps: (I) A pilot dataset is augmented with SyNG-BTS and sampled to 

generate datasets with a range of sample sizes; (II) Each augmented dataset is used to train a classifier with a chosen ML technique 
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(such as SVM) and assess its accuracy; (III) The estimated accuracies for various sample sizes are fitted to a learning curve using 

the Inverse Power Law Function (IPLF); and (IV) Utilizing the fitted curve, the prediction accuracy is projected for any desired 

sample size. D: SyntheSize validation. ML is used to classify the samples in the TCGA breast cancer study to two subtypes, invasive 

ductal carcinoma and invasive lobular carcinoma. The data is split to two portions: one is used to supply pilot data and derive the 

IPLF curve with SyntheSize, and the other is to provide empirical datasets of various sample sizes via subsampling to construct 

another IPLF curve for comparison with the SyntheSize-derived IPLF curve. 
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Fig. 2 | SyNG-BTS evaluation for microRNA-seq in the one-group setting, using pilot data from the TCGA SKCM study 

without marker filtering (Panels A and C) and with marker filtering (Panels B and D-H). A: Median Absolute Deviations 

(MADs) in marker-specific summary statistics (mean, standard deviation, and sparsity, defined as the percentage of zeros) between 

the SyNG-BTS augmented data and the empirical data are calculated as the pilot data sample size increases from 20 to 100. The 

MAD values are color-coded, with extremely large values represented as “>6”. Smaller MADs indicate better congruency between 

the augmented data and the empirical data. Each sub-panel column represents one of the three generative model families, and each 

row within a sub-panel corresponds to a specific model variant, as indicated on the left of each sub-panel. VAE1-10, MAF, and 

WGANGP consistently exhibit the smallest MAD values in their respective model families. B: MADs in marker-specific statistics 

between the augmented data and the empirical data are evaluated when marker filtering is applied to pilot data. C: Additional 

evaluation metrics, encompassing (1) the percentage of markers with non-zero counts in at least one sample (indicated as 1 – Pct(0-

markers)), (2) the agreement of sample clusters and data sources when clustering a combined dataset of both generated and real 

samples, measured by the complementary Adjusted Rand Index (cARI), and (3) the degree of correlation among member 

microRNAs belonging to the same polycistronic clusters, quantified by the Concordance Correlation Coefficient of Partial 

Correlation Coefficients (CCCPCC), are calculated across various pilot data sample sizes. Proximity of values for 1 – Pct(0-markers) 

to its level in the empirical data (indicated with a horizontal dashed line), along with elevated values of cARI and CCCPCC, signify 

improved congruency between the augmented data and the empirical data. Flow-based models exhibit smaller non-zero marker 

proportions than the empirical data, as they are above the dashed line; VAEs tend to generate approximately 50% of markers with 

zero counts in all samples, while GANs show the highest proportion of zero-count markers. In general, VAE and Flow-based models 

outperform GAN models, with VAE1-10, MAF, and WGANGP emerging as the top performer in their respective model families. 

D: The same additional evaluation metrics, including 1 – Pct(0-markers), cARI, and CCCPCC, are computed when marker filtering 

is applied to pilot data. E: Evaluation metrics, including 1 – Pct(0-markers), cARI, and CCCPCC, are presented for the best 

performing variant in each generative model family, using two different training batch size (indicated by colors). VAE1-10 tends 

to be most sensitive to batch size, showing better performance for smaller batch sizes (that is, deep training), while MAF and 

WGANGP tend to be insensitive. F: Evaluation metrics, including 1 – Pct(0-markers), cARI, and CCCPCC, are presented for the 

best performing variant in each generative model family, using two different epoch strategies (indicated by colors). VAE1-10 prefers 

fixed epochs, while MAF already performs well with early stopping. G: Evaluation metrics, including 1 – Pct(0-markers), cARI, 

and CCCPCC, are presented for the best performing variant in each generative model family, using three different depth 

normalization methods (indicated by colors): Total Count (TC), Trimmed Mean of M-values (TMM), and Upper Quartile (UQ), in 

comparison with no normalization (None) for pilot data. It is noteworthy that depth normalization has minimum impact on the 

generative model performance in this context. H: Evaluation metrics, including 1 – Pct(0-markers), cARI, and CCCPCC, are 

presented with or without the use of offline augmentation via AE head (indicated by colors). It is evident that offline augmentation 
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consistently improves the performance of all three generative models across evaluation metrics in terms of both the average value 

and variability. Unless stated otherwise, panels A to G employ no offline augmentation, no depth normalization, a 10% batch 

fraction, a fixed epoch strategy for VAEs and GANs, and an early stopping strategy for Flow-based models. 



 40 

 

Fig. 3 | SyNG-BTS evaluation for microRNA-seq in the two-group setting, using pilot data from the combination of the 

TCGA SKCM and LAML studies with marker filtering. A: Evaluation metrics assessing the congruence between the augmented 

data and the empirical data, including (1) 1 – Pct(0-markers), (2) the agreement of sample clusters and sample types when clustering 

a combined dataset of both generated and real samples, measured by the Adjusted Rand Index (indicated as ARI), (3) concordant 
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correlation coefficient of p-values from differential expression analysis on the –log10 scale (indicated as CCC of –log10 (p-value)), 

(4) concordant correlation coefficient of log2 fold change from differential expression analysis (indicated as CCC of log2FC), and 

(5) CCCPCC,  are calculated for various generative models as the pilot data sample size increases from 20 to 100 per sample group. 

B: The same evaluation metrics for data congruence are calculated using three different depth normalization methods (indicated by 

colors) in comparison with no normalization. C: The Uniform Manifold Approximation and Projection (UMAP) representation for 

the generated samples (by CVAE1-10) and the real samples, with the data source and the sample type indicated by colors.  
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Fig. 4 | SyNG-BTS evaluation for RNA-seq in the one-group setting (Panels A-C), using pilot data from the TCGA BRCA 

study, and in the two-group setting (Panels D-G), using pilot data from the combination of the TCGA BRCA and PRAD 

studies, both with marker filtering. A: MADs in marker-specific summary statistics (mean, standard deviation, and sparsity) 

between the augmented data and the empirical data are calculated as the pilot data sample size increases from 50 to 250. B: 

Additional evaluation metrics for data congruence, including 1 – Pct(0-markers) and cARI, are calculated over varying pilot data 

sample sizes, with or without offline augmentation via Gaussian noise addition (indicated by colors). C: Evaluation metrics for 

data congruence, including 1 – Pct(0-markers) and cARI, are calculated using three different depth normalization methods for pilot 

data (indicated by colors) in comparison with no normalization. D: MADs in marker-specific summary statistics between the 

augmented data and the empirical data, are calculated as the pilot data sample size increases from 50 to 250 per sample group. E: 

Evaluation metrics for data congruence, including 1 – Pct(0-markers) and ARI, are calculated with or without the use of offline 

augmentation via Gaussian noise addition (indicated by colors). F: Evaluation metrics for data congruence are calculated using 

three different depth normalization methods for pilot data (indicated by colors) in comparison with no normalization. G: The 
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Uniform Manifold Approximation and Projection (UMAP) representation for the generated samples (by CVAE1-100) and the real 

samples for varying pilot data sample sizes, with the data source and the sample type indicated by colors.   



 44 

 

Fig. 5 | Evaluation of transfer learning for enhancing model training in SyNG-BTS using microRNA-seq data (Panel A) and 

RNA-seq data (Panel B) with marker filtering. A: Evaluation metrics on the congruence of the augmented data and the empirical 

data, including 1 – Pct(0-markers), cARI, and CCCPCC, are calculated when pilot data are drawn from the TCGA SKCM 

microRNA-seq study and models are pre-trained using the TCGA LAML study or the combination of the TCGA BRCA, LAML, 

and PRAD studies (left column of sub-panels), and when pilot data are drawn from the TCGA BRCA microRNA-seq study and the  

models are pre-trained using the TCGA PRAD or the combination of the TCGA SKCM, LAML, and PRAD studies (right column 

of sub-panels). B: Evaluation metrics for data congruence, including 1 – Pct(0-markers) and cARI, are calculated when pilot data 

are drawn from the TCGA BRCA RNA-seq study and the models are pre-trained using the TCGA PRAD study (left column of sub-

panels), and when pilot data are drawn from the TCGA PRAD RNA-seq study and the models are pre-trained using the TCGA 

BRCA study (right column of sub-panels).   
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Fig. 6 | Evaluation of SyntheSize on microRNA-seq data (Panel A) and RNA-seq data (Panel B) from the TCGA BRCA 

study, and application of SyntheSize to RNA-seq data from a clinical study of nivolumab (Panel C). A and B: Classifiers are 

constructed to distinguish the two breast cancer subtypes, Invasive Ductal Carcinoma (IDC) and Invasive Lobular Carcinoma (ILC), 

in the TCGA BRCA study using empirical data (left column in each panel) or the SyNG-BTS augmented data (right column in 

each panel) and employing three machine learning techniques (top row in each panel: Support Vector Machine [SVM]; middle row: 

K-Nearest Neighbors [KNN]; bottom row: XGBoost [XGB]). C: Classifiers are built to predict patient response to nivolumab, 

Complete/Partial Response and Progressive/Stable Disease, using RNA-seq data from a published clinical study as pilot data. In 

panels A-C, classification accuracies are assessed for three learning techniques, including SVM, KNN, and XGB, across a range 

of sample sizes. Specifically, classification accuracies estimated from empirical or augmented data are plotted as black dots, while 

their fitted IPLFs are plotted as blue curves, projecting accuracies achieved at additional sample sizes indicated by red dots. The 

gray bands represent the 95% confidence regions for the fitted IPLFs. 
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Fig. S1 | SyNG-BTS evaluation for microRNA-seq in the one-group setting, using pilot data from the 
TCGA SKCM study without marker filtering.  A: Evaluation metrics for assessing the congruence 
between the SyNG-BTS augmented data and the empirical data, including (1) the percentage of markers 
with non-zero counts in at least one sample (indicated as 1 – Pct(0-markers)), (2) the agreement of sample 
clusters and data sources when clustering a combined dataset of both generated and real samples, measured 
by the complementary Adjusted Rand Index (cARI), and (3) the degree of correlation among member 
microRNAs belonging to the same polycistronic clusters, quantified by the Concordance Correlation 
Coefficient of Partial Correlation Coefficients (CCCPCC), are calculated for the best performing variant in 
each generative model family as the pilot data sample size increases from 20 to 100, using two different 
training batch sizes (indicated by colors). B: Evaluation metrics for data congruence, including 1 – Pct(0-
markers), cARI, and CCCPCC, are calculated using two different epoch strategies (indicated by colors). C: 
Evaluation metrics for data congruence, including 1 – Pct(0-markers), cARI, and CCCPCC, are calculated 
using three different normalization methods (indicated by colors): Total Count (TC), Trimmed Mean of M-
values (TMM), and Upper Quartile (UQ), in comparison with no normalization (None) for pilot data. D: 
Evaluation metrics for data congruence, including 1 – Pct(0-markers), cARI, and CCCPCC, are presented 
with or without the use of offline augmentation via AE head (indicated by colors).  

  



 
Fig. S2 | SyNG-BTS evaluation for microRNA-seq in the one-group setting, using pilot data from the 
TCGA BRCA study without marker filtering. A: Median Absolute Deviations (MADs) in marker-
specific summary statistics (mean, standard deviation, and sparsity, defined as the percentage of zeros) 
between the SyNG-BTS augmented data and the empirical data are calculated as the pilot data sample size 
increases from 20 to 100. The MAD values are color-coded, with extremely large values represented as 
“>6”. Smaller MADs indicate better congruency between the augmented data and the empirical data. Each 
sub-panel column represents one of the three generative model families, and each row within a sub-panel 
corresponds to a specific model variant, as indicated on the left of each sub-panel. B: Additional evaluation 
metrics assessing the congruence between the SyNG-BTS augmented data and the empirical data, 
encompassing 1 – Pct(0-markers), cARI, and CCCPCC, are calculated for various pilot data sample sizes. 
C: Evaluation metrics for data congruence, including 1 – Pct(0-markers), cARI, and CCCPCC, are 
calculated for the best performing variant in each generative model family, using two different training 
batch sizes (indicated by colors). D: Evaluation metrics for data congruence are calculated using two 



different epoch strategies (indicated by colors). E: Evaluation metrics for data congruence are calculated 
using three different depth normalization methods (indicated by colors), in comparison with no 
normalization for pilot data. F: Evaluation metrics for data congruence are calculated with or without the 
use of offline augmentation via AE head (indicated by colors).  

 

  



 
Fig. S3 | SyNG-BTS evaluation for microRNA-seq in the one-group setting, using pilot data from the 
TCGA BRCA study with marker filtering. A: MADs in marker-specific summary statistics (mean, 
standard deviation, and sparsity) between the SyNG-BTS augmented data and the empirical data are 
calculated as the pilot data sample size increases from 20 to 100. The MAD values are color-coded, with 
extremely large values represented as “>6”. Smaller MADs indicate better congruency between the 
augmented data and the empirical data. Each sub-panel column represents one of the three generative model 
families, and each row within a sub-panel corresponds to a specific model variant, as indicated on the left 
of each sub-panel. B: Additional evaluation metrics assessing data congruence, encompassing 1 – Pct(0-
markers), cARI, and CCCPCC, are calculated across various pilot data sample sizes. C: Evaluation metrics 
for data congruence, including 1 – Pct(0-markers), cARI, and CCCPCC, are calculated for the best 
performing variant in each generative model family, using two different training batch sizes (indicated by 
colors). D: Evaluation metrics for data congruence are calculated using two different epoch strategies 
(indicated by colors). E: Evaluation metrics for data congruence are calculated using three different depth 



normalization methods (indicated by colors), in comparison with no normalization for pilot data. F: 
Evaluation metrics for data congruence are calculated with or without the use of offline augmentation via 
AE head (indicated by colors).   

  



 
Fig. S4 | SyNG-BTS evaluation for microRNA-seq in the one-group setting, using pilot data from the 
TCGA LAML (left panels) and PRAD (right panels) studies with marker filtering, employing selected 
generative models (represented by different colors) under a preferred training setting (that is, with 
the use of offline augmentation, 10% batch fraction, fixed epochs for VAE1-10, and early stopping 
for MAF and WGANGP). Evaluation metrics assessing the congruence between the SyNG-BTS 
augmented data and the empirical data, including 1 – Pct(0-markers), cARI, and CCCPCC, are calculated 
as the pilot data sample size increases from 20 to 100. 
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Fig. S5 | SyNG-BTS evaluation for microRNA-seq in the two-group setting, using pilot data from the 
combination of the TCGA SKCM and LAML studies with marker filtering. A: MADs in marker-
specific summary statistics (mean, standard deviation, and sparsity) between the SyNG-BTS augmented 
data (using CVAE with various loss ratios and MAF) and the empirical data are calculated as the pilot data 
sample size per sample group increases from 20 to 100. B: Additional evaluation metrics assessing the 
congruence between the augmented data and the empirical data, encompassing (1) 1 – Pct(0-markers), (2) 
the agreement of sample clusters and sample types when clustering a combined dataset of both generated 
and real samples, measured by the Adjusted Rand Index (indicated as ARI), (3) concordant correlation 
coefficient of p-values from differential expression analysis on the –log10 scale (indicated as CCC of –
log10 (p-value)), (4) concordant correlation coefficient of log2 fold change from differential expression 
analysis (indicated as CCC of log2FC), and (5) CCCPCC, are calculated with or without the use of offline 
augmentation (indicated by colors). C: Evaluation metrics for data congruence are calculated using two 
different training batch sizes (indicated by colors).  D: Evaluation metrics for data congruence are calculated 
using two different epoch strategies (indicated by colors).  

  



 
 

 
Fig. S6 | SyNG-BTS evaluation for microRNA-seq in the two-group setting, using pilot data from the 
combination of the TCGA SKCM and LAML studies without marker filtering. A: MADs in marker-
specific summary statistics (mean, standard deviation, and sparsity) between the SyNG-BTS augmented 



data (using CVAE with various loss ratios and MAF) and the empirical data are calculated as the pilot data 
sample size per group increases from 20 to 100. B: Additional evaluation metrics assessing the congruence 
between the augmented data and the empirical data, encompassing 1 – Pct(0-markers), ARI, CCC of –log10 
(p-value), CCC of log2FC, and CCCPCC, are calculated for various pilot data sample sizes. C: Evaluation 
metrics for data congruence are calculated with or without the use of offline augmentation (indicated by 
colors). D: Evaluation metrics for data congruence are calculated using two different training batch sizes 
(indicated by colors).  E: Evaluation metrics for data congruence are calculated using two different epoch 
strategies (indicated by colors). F: Evaluation metrics for data congruence are calculated using three 
different depth normalization methods (indicated by colors), in comparison with no normalization for pilot 
data.  

 
  



 
Fig. S7 | SyNG-BTS evaluation for microRNA-seq in the two-group setting, using pilot data from the 
combined TCGA BRCA and PRAD studies with marker filtering, employing selected generative 
models under a preferred training setting (that is, with the use of offline augmentation, 10% batch 
fraction, fixed epochs for CVAE1-10, and early stopping for MAF). Evaluation metrics for data 
congruence, including 1 – Pct(0-markers), ARI, CCC of –log10 (p-value), CCC of log2FC, and CCCPCC, 
are calculated as the pilot data sample size per sample group increases from 20 to 100. 

 



 
Fig. S8 | SyNG-BTS evaluation for RNA-seq in the one-group setting, using pilot data from the TCGA 
PRAD study with marker filtering. A: MADs in marker-specific summary statistics (sub-panel rows) 
between the SyNG-BTS augmented data and the empirical data are calculated, as the pilot data sample size 
increases from 50 to 250. B: Additional evaluation metrics assessing data congruence, encompassing 1 – 
Pct(0-markers) and cARI, are calculated with or without the use of offline augmentation via Gaussian noise 
addition (indicated by colors). C: Evaluation metrics for data congruence are calculated using three different 
depth normalization methods (indicated by colors), in comparison with no normalization for pilot data. 

 



 

 
Fig. S9 | Comparison of the generated samples with the real samples from the TCGA BRCA study: 
miRNA-seq (panels A and B) and RNA-seq (panels C and D). A and C:  Heatmap of the data for the 
real samples (left sub-panel) and the generated samples (right sub-panel), on the log2 scale. B and D: 
UMAP of the data for the real samples  and the generated sample, with the data source indicated by colors 
and the sample type indicated by point shapes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig. S10 | Evaluation of SyNG-BTS generated samples based on pilot RNA-seq data taken from a 
clinical study of nivolumab in advanced clear cell renal cell carcinoma (Braun et al., 2020)1. A:  
Heatmap of the data for real samples (left sub-panel) and generated samples (right sub-panel), on the log2 
scale. B: UMAP of the data for the real samples and the generated sample, with the data source indicated 
by colors and the patient response status (Complete/Partial response [CRPR]) versus Progressive/Stable 
Disease [PDSD]) indicated by point shapes. 

  



Supplementary Methods: Review of Deep Generative Models 
We review the principle of three categories of DGMs and describe the neural net structures used in our 
study (Fig. S11-13). 

Autoencoder (AE). AE was first introduced by 2 as a neural network architecture designed for learning a 
compact, low-dimensional representation of data. This is achieved by minimizing the reconstruction loss, 
typically measured as the mean squared error between the input samples and their corresponding 
reconstructed data. Comprising an encoder and a decoder, both equipped with non-linear activation 
functions, AEs perform non-linear transformations. The encoder converts the original data into a lower-
dimensional representation, while the decoder reconstructs the data from this representation. By employing 
non-linear activation functions in both components, AEs effectively project data onto a well-fitting non-
linear manifold. However, a drawback of traditional AEs is that the learned low-dimensional representation 
is a fixed function of the data, making it challenging to interpolate. In response to this limitation, the 
variational AE was introduced to offer a more flexible and probabilistic approach to encoding data. 

Variational Autoencoder (VAE). Like AE, VAE 3 also has an encoder and a decoder. But instead of 
learning a fixed function as the low dimensional representation, it learns a random distribution. The fitting 
of VAE is to optimize the log-likelihood of the data by maximizing the evidence lower bound (ELBO). 

Suppose we have data 𝐱 ∈ ℝ!!, we would like to learn the distribution of a low dimensional random vector 
𝐳 ∈ ℝ!", which has density function q"(𝐳|𝐱) indexed with unknown parameters ϕ. The encoder aims to 
transform the observed 𝐱  into 𝐳  through q"(𝐳|𝐱) . Similarly, we define the decoder transformation as 
p#(𝐱|𝐳) with unknown parameters θ. The training is to maximize the log-likelihood of the data logp(𝐱). 
Denote the joint density function of 𝐱 and 𝐳 as p(𝐱, 𝐳), the conditional distribution of 𝐱 given 𝐳 as p(𝐱|𝐳), 
the density of 𝐳 as p(𝐳), the conditional distribution of 𝐳 given 𝐱 as q(𝐳|𝐱). We have the ELBO as the lower 
bound for log likelihood of data. 

logp(𝐱) = log∫ p(𝐱, 𝐳)

= log∫ p(𝐱, 𝐳)
q(𝐳|𝐱)
q(𝐳|𝐱)

= log∫
p(𝐱, 𝐳)
q(𝐳|𝐱)

q(𝐳|𝐱)

= log𝔼$∼&($|))
p(𝐱, 𝐳)
q(𝐳|𝐱)

≥ 𝔼$∼&($|))log
p(𝐱, 𝐳)
q(𝐳|𝐱)

= 𝔼$∼&($|))log
p(𝐱|𝐳)p(𝐳)
q(𝐳|𝐱)

= 𝔼$∼&($|))logp(𝐱|𝐳) − ∫ q(𝐳|𝐱)log
q(𝐳|𝐱)
p(𝐳) dz

= 𝔼$∼&($|))logp(𝐱|𝐳) − KL[q(𝐳|𝐱)||p(𝐳)]
= ELBO.

 

The optimization of ELBO is through stochastic gradient descent (SGD) algorithm. To do this, we need an 
explicit form of the ELBO. The second term of ELBO - KL-divergence can be computed by assuming 

q"(𝐳|𝐱) = N :𝛍"(𝐱), 𝚺"(𝐱)= ,

p(𝐳) = N>𝟎, 𝐈!"A;
 



Then, 

KL[q(𝐳|𝐱)||p(𝐳)] =
1
2 E
tr𝚺"(𝐱) − D$ − logI𝚺"(𝐱)I + 𝛍"(𝐱)+𝛍"(𝐱)K. 

For the first part of ELBO - 𝔼$∼&($|))logp(𝐱|𝐳), Monte Carlo approximation provides a better option. 
Approximate 𝔼$∼&($|))logp(𝐱|𝐳) by 

1
M
Nl
,

-./

ogp#>𝐱|𝐳-A, 

where 𝐳-, i = 1,… ,M are samples from q#(𝐳|𝐱). 

With assumption p#(𝐱|𝐳) = N>𝛍#(𝐳), σ0𝐈!!A, we have 

𝔼$∼&($|))logp(𝐱|𝐳) ≈
1
MNlog p#>𝐱|𝐳-A

,

-./

=
1
MNSC −

1
2σ0 :𝐱 − 𝛍#>𝐳

-A=
+
:𝐱 − 𝛍#>𝐳-A=U

,

-./

 

where C is a constant with respect to parameters θ. Notice that θ is the parameter we want to optimize, 

therefore, only the part − /
1#

/
,
∑ :𝐱 − 𝛍#>𝐳-A=

+,
-./ :𝐱 − 𝛍#>𝐳-A= matters. Equivalently, we can minimize 

the weighted mean squared distance between the data 𝐱 and the reconstructed data 𝛍#>𝐳-A with weights 
1/σ0. 

However, it is difficult to sample 𝐳- from an intermediate layer of the whole VAE, a reparameterization 
trick is introduced to move the sampling at inner layer to the input layer. Instead of sampling 𝐳- from 
N:𝛍"(𝐱), 𝚺"(𝐱)=, sample 𝛆- from N>𝟎, 𝐈!"A, and we can get 𝐳- by 

𝐳- = 𝛍"(𝐱) + 𝚺"(𝐱)//0𝛆-. 

We can get the loss function of VAE  𝐳- = 𝛍"(𝐱) + 𝚺"(𝐱)//0𝛆- 

logp(𝐱) ≈ ELBO(θ, ϕ)
≈ reconstruction-loss+ KL-divergence

= −
1
σ0
Y
1
MN:𝐱 − 𝛍#>𝐳-A=

+
,

-./

:𝐱 − 𝛍#>𝐳-A=Z

		+Etr𝚺"(𝐱) − logI𝚺"(𝐱)I + 𝛍"(𝐱)+𝛍"(𝐱)K.

 

With fixed 𝐱, 𝐳, the loss function is continuous in θ and ϕ, therefore we can use SGD to find the solution. 

Since VAE learns a random distribution instead of a fixed function of the low dimensional representation, 
we can sample from the distribution of 𝐳 to generate more data. This is how VAE performs as a generative 
model. However, VAE is an unsupervised learning model. Once the dataset includes samples from different 
groups, VAE is not directly applicable to the whole dataset since it is not reasonable to assume the samples 
from different groups have the same underlying distribution. One solution is that we can apply VAE to 
samples from each group. But we might lose power since each group have smaller sample size. Conditional 
VAE was introduced to handle datasets with multiple groups, or in other words, labels. 

To incorporate the group information of samples, we use conditional VAE (CVAE). The structure of CVAE 
is essentially the same as VAE. Both include the encoder and decoder. However, to take the groups or labels 



y  into consideration, the encoder in CVAE tries to learn the distribution of the low-dimensional 
representation 𝐳  conditional on the data points 𝐱  and the labels y , denoted as p#(𝐳|𝐱, y) . Similar, the 
decoder of CVAE also takes the labels into consideration by learning the distribution of 𝐱 conditional on 𝐳 
and y, denoted as p"(𝐱|𝐳, y). In this way, we can guide the model to specifically generate samples with the 
labels we want. 

Generative Adversarial Network (GAN). Different from VAEs, the generative adversarial network 
(GAN) 4 provides a smart solution to generate the data, turning an unsupervised learning problem to a 
supervised one. It has two sub-models, the discriminator and the generator. The generator generates fake 
samples from noises while the discriminator learns to distinguish the empirical samples from the fake 
samples produced by the generator. A successfully trained GAN should reach a point where its 
discriminator is fooled by the fake samples approximately half of the time, indicating that the fake samples 
closely resemble the real ones and the discriminator cannot reliably distinguish between them. 

Following the notations from 4, suppose the input noise of generator G with unknown parameters θ3 is 𝐳 
with prior distribution p$(𝐳), thus the fake samples �̂� are G>𝐳, θ3A. The discriminator D with unknown 
parameters θ4 takes empirical samples 𝐱 and fake samples �̂� as input and gives the probability of the input 
to be empirical samples. The generator and discriminator play the following minimax game: 

min5		max!		𝔼𝐱∼7$%&% logD(𝐱) + 𝔼𝐳∼7" logE1 − D>G(𝐳)AK. 

Although GAN has achieved massive success, it faces challenges in the training process. First, it is not easy 
to stop the training by only visualizing the loss of generator and discriminator since their losses are not 
meaningful. This can be a very big problem when GAN is used for a continuous dataset instead of images 
since it is difficult to visually determine whether the fake samples are like the real ones in the continuous 
dataset. In addition, the training of GAN is not stable. Because of the adversarial training, it is difficult for 
the generator and the discriminator to converge simultaneously. And it is easy for GAN to only learn a 
specific mode of the underlying data distribution and generate fake samples that are not representative of 
the whole distribution of the real data. This is called mode collapse. 5 pointed out that these problems are 
from the loss function of GAN. Instead, they proposed to use Wasserstein distance. 

WGAN. Essentially, the training of GAN is to minimize the distance between the distribution of empirical 
samples p9 and the distribution of fake samples p3. The original GAN uses Jensen–Shannon divergence to 
evaluate the distribution between p9 and p3. And this is not suitable when there are disjoint parts of p9 and 
p3.  5 theoretically analyzed several distance measures and proposed to use Wasserstein distance instead, 
resulting WGAN. 

WGAN aims to optimize the following loss function: 

max:∈<		𝔼𝐱∼7'f:(𝐱) − 𝔼𝐳∼7(f:[G(𝐳)]. 

As opposed to the discriminator in GAN which is to learn to distinguish the real and fake samples, the 
discriminator in WGAN is to learn a K-Lipschitz continuous function f:  to minimize the Wasserstein 
distance between p9 and p3. As the training progresses, the distribution learned by the generator is closer 
and closer to the real distribution, and the Wasserstein distance decreases. To maintain the lipschitz 
continuity of f: during training, the authors of WGAN proposed to use weight clipping, which means after 
every gradient update on the discriminator, clamp the weights w to a small, fixed range to enforce the 
Lipschitz continuity. 

Thanks to Wasserstein distance, WGAN has a meaningful evaluation metric. By monitoring the change of 
Wasserstein distance, it is easy to decide when to stop the training. And the empirical study in 5 shows 
increased stability of training compared to GAN and no evidence of mode collapse. 



WGAN is not perfect. The weight clipping to enforce the Lipschitz continuity can be problematic. When 
the clipping window is too large, the training can be very slow after weight clipping. When the clipping 
window is too small, WGAN suffers vanishing gradients. To solve this, WGAN with Gradient Penalty is 
proposed. 

WGANGP. 6 proposed to add a penalty term to the loss function of WGAN to replace the weight clipping. 
The following is the loss function of WGAN with Gradient Penalty. 

L = 𝔼𝐱=∼7(D(x̂) − 𝔼𝐱∼7'D(𝐱) + λ𝔼𝐱>∼7!) S:I|∇𝐱>D(𝐱e)|I0 − 1=
0
U, 

where 𝐱e is ϵ𝐱 + (1 − ϵ)�̂� with ϵ as the random Gaussian noise. From the loss function of WGANGP, the 
only difference between WGAN and WGANGP is the penalty term which constrains the l0 norm of the 
discriminator’s gradient to be around 1. This comes from the fact that along the best optimization path, the 
l0 norm of gradients of discriminators are always 1. Compared to WGAN, WGANGP has a more stable 
training process, generates high quality data, and avoids the problems brought by weight clipping. 

 
FLOWs. A flow-based generative model is constructed by a sequence of invertible transformations. The 
flow model explicitly learns the data distribution by minimizing negative log-likelihood. 

Denote probability density function of real data as p(𝐱) , and 𝐱 ∈ 𝒟, 𝒟 is the domain of the real data. Given 
a random variable z and its probability density function z ∼ π(𝐳), π(𝐳) is known and usually taken as 
Gaussian distribution in experiments. Construct a new random variable using a 1-1 mapping function 𝐱 =
f(𝐳). The function f is invertible, so 𝐳 = f?/(𝐱). The transformation of probability density function can be 
written as:  

𝐳~π(𝐳), 𝐱 = f(𝐳), 𝐳 = f?/(𝐱) 

p(𝐱) = π(𝐳) 4$
4)
= π>f?/(𝐱)A kdet 4@

*+

4)
k, 

where det is the Jacobian determinant. 

Three flow models are considered: GLOW, RealNVP, and MAF, which are all extensions of Normalizing 
Flows. RealNVP employs a coupling layer allowing for easy computation of the inverse and the Jacobian 
determinant. GLOW builds upon RealNVP by introducing 1x1 invertible convolutions, which add more 
flexibility and capacity. MAF considers autoregressive models for the transformation. 

Normalizing Flows. A normalizing flow 7 transforms a simple distribution into a complex one by applying 
a sequence of invertible functions. Flowing through a chain of transformations, repeatedly substitute the 
variable for the new one according to the change of variable theorem and finally achieve the final target 
variable’s probability distribution. Expand the output 𝐱  step by step until tracing back to the initial 
distribution 𝐳A 



𝐱 = 𝐳B = fB ∘ fB?/ ∘ ⋯∘ f/(𝐳A)

logp(𝐱) = logπB(𝐳B) = logπB?/(𝐳B?/) − log ndet
dfB
d𝐳B?/

n
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n − log ndet
dfB
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= ⋯

= logπA(𝐳A) −Nlog
B

-./
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df-
d𝐳-?/

n ,

 

The path 𝐳- = f-(𝐳-?/) is the flow, and the whole chain is called a normalizing flow. To easily compute the 
equation, a transformation f- should satisfy two properties: (a) It’s easily invertible and (b) Its Jacobian 
determinant is easy to compute. 

Then the training criterion of the flow-based generative model is simply the negative log-likelihood (NLL) 
over the training dataset 𝒟 

ℒ(𝒟) = − /
|𝒟|
∑𝐱∈𝒟 logp(𝐱). 

RealNVP. The RealNVP 8 model creates a normalizing flow by stacking a sequence of invertible bijective 
transformation functions. In every bijective function f: z → x, is defined as an affine coupling layer. In this 
layer, the input dimensions are split into two parts. Different transformations are applied to each part, and 
finally these two parts are concatenated: 

𝐳D, 𝐳E = split(𝐳), 

(log 𝐬 , 𝐭) = NN(𝐳𝐛), 

𝐬 = exp(log 𝐬), 

𝐱𝐚 = 𝐬⊙ 𝐳𝐚 + 𝐭, 

𝐱𝐛 = 𝐳𝐛, 

𝐱 = concat(𝐱𝐚, 𝐱𝐛). 

where s and t are set as multilayer perceptron (MLP) with two hidden layers. It’s easy to check that the 
transformation satisfies two basic properties for a flow transformation: (a) It’s easily invertible and (b) Its 
Jacobian determinant is easy to compute. 

GLOW. The GLOW 9 model extends the previous flow-based generative model, RealNVP, and simplifies 
the structure by replacing the reverse permutation step with invertible 1×1 convolution. There are three 
substeps in one step of flow in Glow. 

Activation normalization (actnorm). It is an affine transformation using a scale and bias parameter, similar 
to batch normalization, but works for mini-batch with size 1. The parameters can be trained but initialized 
so that the first minibatch have mean 0 and standard deviation 1 after actnorm. 

∀i, j: 𝐱-,I = 𝐬⊙ 𝐳-,I + 𝐛. 

where 𝐬 and 𝐛 are scale and bias parameters respectively. 



Invertible 1×1 convolution. For different layers of the RealNVP model, the ordering of channels is altered 
so that all the data dimensions have the possibility to be modified. For GLOW, a 1×1 convolution with 
equal number of input and output channels is a generalization of any permutation of the channel ordering 

∀i, j: 𝐱-,I = ω-,I𝐳-,I, 

where ω-,I is the weight. 

Affine coupling layer. The design is the same as RealNVP. 

Models with Autoregressive Flows (MAF). MAF 10 model adds the autoregressive constraint to the 
normalizing flow. For data 𝐱 = [x/, x0, ⋯ , x!], each output only depends on the data observed in the past, 
but not on the future ones, i.e. the probability of observing x-  is conditioned on x/, ⋯ , x-?/  and the 
probability of observing the full sequence equals the product of these conditional probabilities. 

p(𝐱) = ∏ p!
-./ (x- ∣ x/, … , x-?/) = ∏ p!

-./ (x- ∣ x/:-?/). 

An autoregressive flow is a type of normalizing flow whose transformation is based on an autoregressive 
model. In this model, each dimension of a vector variable is conditioned on the preceding dimensions. A 
classic autoregressive flow model we used is Masked Autoregressive Flow (MAF). MAF is a normalizing 
flow with transformation layer built as an autoregressive neural network. Given two random variables, 𝐳 ∼
π(𝐳) and 𝐱 ∼ p(𝐱) and the probability density function π(𝐳) is known, MAF aims to learn p(𝐱). Each x- 
is generated conditioned on the past dimensions x/:-?/. Like RealNVP and GLOW, MAF estimates the 
conditional probability by an affine transformation of 𝐳, where the scale and shift terms are functions of the 
observed part of 𝐱. 

 

 

 

  



 
Fig. S11 | Structure of the VAEs used in SyNG-BTS. For autoencoder (AE), the encoder consists of two 
hidden layers with 256 and 128 nodes, and the low-dimensional representation has a dimension of 64; the 
decoder has a symmetric structure of hidden layers. In the case of the VAE, both the encoder and decoder 
have an additional hidden layer with 64 nodes, and the low-dimensional representation ‘z’ is a 32-
dimensional Gaussian vector with mean ‘𝝁’ and covariance matrix ‘𝜎0𝑰’. The Conditional VAE (CVAE) 
shares the same encoder and decoder structure as the VAE, with the only difference being that the input of 
both the encoder and decoder includes one additional node for the sample group labels. 

 

 

Fig. S12 | Structure of the GANs used in SyNG-BTS. GAN, WGAN and WGANGP share the same 
structure for both the generator and discriminator. The generator starts with a 32-dimensional random 
Gaussian noise and consists of two hidden layers with 128 and 256 nodes, respectively. The discriminator 
takes generated samples 𝒙�	and real samples 𝒙 as input, featuring two hidden layers with 256 and 128 nodes 
and an output layer with only 1 node. The distinction among the three GAN model variants lies in their loss 
functions. 



 

Fig. S13 | Structure of the Flow-based models used in SyNG-BTS. MAF, GLOW and RealNVP each 
consists of three Neural Network components: (i) Masked Linear + Nonlinear: This component includes 
hidden layers consisting of 256 nodes, employs a masking strategy with 30% of the connections masked, 
and utilizes the ReLU activation function for non-linear transformations; (ii) Batch Normalization: 
Implemented following each layer, batch normalization standardizes the output of the previous layer by re-
centering and re-scaling, improving training stability and speed; and (iii) Reverse: This component is tasked 
with computing the inverse function, featuring hidden layers that also contain 256 nodes. This aspect of the 
architecture ensures the model's invertibility, a critical aspect of Flow-based models that enables efficient 
computation of likelihoods and straightforward sampling. 
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