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Abstract

Background: Ceramic materials are used in a growing proportion of hip joint
prostheses due to their wear resistance and biocompatibility properties. However,
ceramics have not been applied successfully in total knee joint endoprostheses to
date. One reason for this is that with strict surface quality requirements, there are
significant challenges with regard to machining. High-toughness bioceramics can
only be machined by grinding and polishing processes. The aim of this study was
to develop an automated process chain for the manufacturing of an all-ceramic knee
implant.

Methods: A five-axis machining process was developed for all-ceramic implant
components. These components were used in an investigation of the influence of
surface conformity on wear behavior under simplified knee joint motion.

Results: The implant components showed considerably reduced wear compared to
conventional material combinations. Contact area resulting from a variety of
component surface shapes, with a variety of levels of surface conformity, greatly
influenced wear rate.

Conclusions: It is possible to realize an all-ceramic knee endoprosthesis device, with
a precise and affordable manufacturing process. The shape accuracy of the
component surfaces, as specified by the design and achieved during the
manufacturing process, has a substantial influence on the wear behavior of the
prosthesis. This result, if corroborated by results with a greater sample size, is likely to
influence the design parameters of such devices.
Background
Medical engineering is an important area of technological advancement in the 21st

century. The development and manufacturing of medical implants that replace failed

body or organ functions is of great importance for an aging population. The number

of implants/prostheses continues to increase, which in Germany, led to a total cost in-

crease from 450 million Euro to 1.1 billion Euro from 1996 to 2004 (German Institute

for Economic Research, DIW Berlin) [1]. However, currently available implant techno-

logy can be improved in areas including biocompatibility, functionality, biointegration,

and survivability.

More than five million individuals currently suffer from osteoarthritis in Germany,

and in 2008, approximately 170,000 of these were provided with knee endoprostheses.
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The complication rate of current knee implants is approximately 25% within 20 years.

Infection, wear and breakaway are common reasons for revision surgery [2-5], but the

major cause of implant failure is implant loosening, often itself related to wear-induced

osteolysis. Most knee joint replacements presently involve the articulation of a cobalt-

chromium-molybdenum alloy and ultra-high-molecular-weight polyethylene (hereafter

denoted CoCr-PE).

A large amount of research and development related to orthopaedic implants cur-

rently relates to wear reduction and the prevention of foreign-body reactions through

the use of coatings or high-strength materials [4]. At present, wear-resistant, all-

ceramic tribological pairings are being used in hip arthroplasties [6,7]. However, these

successful tribological pairings are not easily transferable to knee arthroplasties for a

variety of design and manufacturing reasons. The complex geometry, surface quality re-

quirements, and typical loading patterns of a knee joint replacement present a genuine

challenge when considering the mechanical properties of ceramic materials.

Several studies are presently investigating the possibility of using a high-strength

ceramic material for the femoral component of a total knee replacement. Two manu-

facturers – Kyocera (Japan) and CeramTec (Germany) – have developed such a com-

ponent as an alternative for patients with metal allergies [6,7]. However, the implant

component, which is vulnerable to wear – the polyethylene inlay – remains present.

Tibial and femoral components made of ceramic in a hard-hard-pairing may reduce

wear and increase implant longevity. As known from hip replacements, ceramic-on-

ceramic pairings have vastly different surface requirements to ceramic-on-polyethylene.

Therefore, the machining technology required for ceramic-on-ceramic knee prostheses

has not been developed to date.

The primary aims of this study were the identification of design and manufacturing

requirements of an all-ceramic knee implant, the translation of these requirements into

a design, and the realization of this design by an economical, automated manufacturing

and machining process. The investigation of the influence of surface machining on the

wear behavior of an all-ceramic knee implant was the final aim of this study, which

involved answering the following questions:

1. How constant is the machining result, and how do roughness deviations from the

production process influence wear behavior?

2. To what extent does the contact geometry of the articulating surfaces of the

femoral and tibial components influence wear behavior?

Furthermore, we aimed to determine the extent to which surface roughness in-

fluences wear behavior. As such, we performed a pre-investigation regarding this rela-

tionship, with a small sample size.
Methods
Manufacturing techniques

Ceramic implants originate as sintered components, and the manufacturing process

chain for ceramic hip implant components is well-established. Due to geometrical dis-

tortions and shape deviations, a green body is manufactured slightly larger than the
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final product, and is then ground and polished after the sintering and hipping pro-

cesses. There are up to 60 individual machining steps for even the relatively simple

geometry of a ceramic hip replacement. Diamond tools are used in the grinding

process, and subsequent polishing is often performed using a free-abrasive grinding

machine. Machining accuracy can be specified to shape deviations of < 2 μm and sur-

face roughness values (Ra) of < 20 nm.

In contrast to hip replacements, knee implant components have complex, partly free-

form surfaces. Free-form surfaces are industrially milled by machines with five or more

axes [8-10]. Such milling processes can only be carried out on ceramic components in

a green- or white-body state. Sintering and high-isostatic pressing (HIP) follow this,

and the final steps involve grinding and polishing.

The finishing of metallic knee implant components is usually performed using belt

grinding, polishing cloths and free-abrasive grinding processes. Polishing processes re-

sult in a smooth surface, and typically account for 10–15% of the total manufacturing

cost [11]. For the finishing of complex-shaped ceramic components, a two-step ma-

chining process was developed, with both steps able to be performed using the same

multi-axis machining center. The 5-axis grinding process generates a macro geometry

with a precise surface topography, leading to a reduction in polishing effort. Toric dia-

mond grinding pins are used in this procedure (Figure 1, top) [12-14].

The polishing process employs resilient silicone or polyurethane bond diamond tools

which level roughness peaks (Figure 1, bottom). The dimension of material removal

during this polishing step is less than 1 μm. The combination of the grinding and

polishing steps ensures the requirements regarding shape accuracy and surface quality

of the articulating surfaces are met. Previous work by the authors has described in

detail the grinding process with toric tools [12-14] and the polishing process with resi-

lient tools [15-20].

For verification of the two-step machining process, implant samples of a zirconia-

toughened alumina (ZTA) bioceramic were machined with a galvanic tool by means of

frontal grinding, and their topographies were analyzed (e.g., Figure 2, left). A ground

surface with a roughness (Ra) of approximately 100 nm was achieved. Following this,
Figure 1 5-axis-machine tool and tool designs for grinding and polishing.



Figure 2 SEM photographs of ground and polished surfaces of simplified components.
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the surface was polished with resilient silicone bond diamond tools (Figure 2, right).

After polishing, the surface had a roughness (Ra) of 8 nm.
Surface shape measurement

A coordinate measurement machine (CMM) system (Leitz PMM 866, Hexagon

Metrology AG, Wetzlar, Germany) was used for two purposes: assessment of shape

accuracy, and measurement of the radii of curvature in both the sagittal and frontal

planes. Due to the very short measurement length in the frontal plane, the radius

calculation is considerably less accurate than that of the sagittal plane radius. A cir-

cle segment of greater than 180° is needed for precise radius measurement, and in

industrial measurement, a segment of at least 90° is used [21-23]. Due to the geo-

metry of the samples, only about 4.5% (16,2°) of a full circle was able to be used for

measurement of the frontal plane radius for both counterbodies and base plates.

For this reason, frontal plane radii were measured three times at three different

positions, and the average of these was used in subsequent analysis.
Wear testing

In order to analyze the wear behavior of ceramic knee implant components, a wear

simulator was developed [24,25] for components with simplified geometries (Figure 3).

This machine was intended to be more representative of physiological loading and
Figure 3 Development of simplified implant geometry [24,25].
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motions than a pin-on-disk or ring-on-disk tribometer, but at the same time avoiding

the complexity of a commercial-grade wear testing device. The surface geometry of the

simplified tibial components was planar, and that of the simplified femoral components

was semi-cylindrical, with a sagittal-plane radius of 32 mm. The counterbody repre-

sents only one of the two articulating surfaces of a knee prosthesis’ femoral component

(e.g., the medial surface). The wear track is 15 mm long, which was designed based on

the contact area length on the medial tibial plateau during knee flexion.

Three articulation mechanisms of the tibiofemoral joint – pure rolling, rolling-

slipping and gliding – are accounted for by the wear simulator. The simplified tibial

component (base plate) is oscillated along a horizontal axis by a servo-motor with an

adjustable eccentric. The base plate thus rolls and glides against the simplified femoral

component (semicylindrical counterbody, radius 32 mm) under axial loading from a

dead weight (Figure 4). Adjustable stoppers on the counterbody fixture limit this com-

ponent’s free rotational range of motion, thus enabling control of the ratio of rolling to

gliding. Reproducible positioning of the test pieces is ensured through: first, the use of

keyways in the ceramic pieces corresponding to inverse shapes in the stainless steel ma-

chine fixtures, for positioning along the translational axis; second, customized plastic

spacer blocks for positioning perpendicular to this axis; and third, the ability for the

fluid tray to rotate freely about this axis to account for small malalignments of the top

and bottom fixtures.

Wear testing was carried out under a constant vertical load of 700 N (+14 N struc-

ture weight) on the counterbody. This load corresponds to one half of the mean knee

compressive force (i.e., that applied through one of the two tibiofemoral contact areas)

calculated over the stance phase of a gait cycle (ISO14243). The ratio of rolling (with

or without slip) to a superposition of rolling and gliding was set at 1:2, approximating

the physiological articulation in the range of knee flexion associated with the aforemen-

tioned stance phase. The wear simulator operates at 1 Hz, and the simplified compo-

nents are tested while bathed in fetal calf serum diluted to a protein content of 20 g/L,

at a temperature of 37 +/− 2°C. Distilled water was regularly added to the serum to

compensate for evaporation and thus maintain a consistent protein concentration in

the testing medium.

Wear was measured gravimetrically according to ASTM standards F2025 and F1715.

The components were cleaned and dried as specified by these standards prior to

weighing. After wear testing, these processes were repeated under identical conditions,
Figure 4 Principle of the rolling-gliding wear simulator.
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and gravimetric wear was calculated by the change in mass. Volumetric wear was

computed using the known material density. Wear measurements were carried out

after 100,000, 500,000, 1 million, 2 million and 3 million cycles. Further details of

the wear simulator and the procedures of testing and gravimetric wear assessment

have been previously reported [24].

Topography measurement

Two methods were used to measure the topography of the ground and polished

surfaces before and the worn surface after wear testing. Firstly, roughness para-

meters (specifically, Ra, Sa, Rz, and Sz) were measured with a confocal white-light

microscope (μsurf®, Nanofocus AG, Oberhausen, Germany) with a measuring field

of 160 μm × 160 μm (Figure 5) and a vertical resolution of 0.0015 μm. Secondly, a

scanning electron microscopy (SEM) device (EVO 60VP, Carl Zeiss Industrielle

Messtechnik GmbH, Oberkochen, Germany), was used to image and evaluate the

articulating surfaces at a resolution of 4 nm.

For a second, independent set of wear measurements, wear volume was measured by

optical methods following completion of wear testing. For this, a laser profilometer

(μscan®, Nanofocus AG) was used, with a measuring range of 200 mm × 200 mm × 1 mm

(Figure 5) and a maximum vertical resolution of 0.02 μm. The volume of material removed

during the wear tests was calculated to be the difference between the final (worn) surface

and the initial surface, i.e., the volume of the ‘crater’. The initial surface was estimated by

generation of a polynomial surface that fits over the non-worn areas of the components,

using MountainsMap® software (DigitalSurf, Besançon, France).

Results
Manufacturing conditioned wear of implant components

The overall procedure for manufacture, wear testing and documentation is shown in

Figure 6. Sintered test piece bodies were measured in the aforementioned coordinate
Figure 5 Optical wear and wear depth measurement using laser scanning microscopy.



Figure 6 Procedure of manufacturing and wear testing.
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measuring machine (CMM), from which CAM-programming of the grinding tool paths

took place. Precise measurement of the tool shape was necessary due to a five-axis ma-

chining kinematic and complex workpiece geometry. In the grinding step, removal of

one material layer of 20 μm depth took approximately 20 minutes, but depended on

the type of ceramic and the grinding tool. After grinding, both tool wear and material

removal were measured. After the desired shape of a given sample had been achieved,

polishing was performed similarly, and took approximately 200 min, with the increase

mostly due to smaller tools. After all machining steps had been completed, the geom-

etry of the samples was measured by the CMM, and the surface topography was

inspected by optical methods. Wear testing was then able to commence.

This manufacturing procedure took between 2–3 weeks for a single batch of samples,

which included cutting tool programming, grinding and polishing, wear compensation,

and surface measurement. However, for a hypothetical all-ceramic knee implant com-

ponent, the complete machining time (i.e., grinding and polishing) would be dependent

on the workpiece oversize of the sintered component. Ideally, this oversize would be

less than or equal to 150 μm, which would then require one rough grinding step

(approximately 20 min), one fine grinding step (20 min) and one polishing step

(<200 min, depending on tool size).
Study design on wear behavior

The specific questions relating to wear behavior (cf. 1) were addressed after samples of

the ZTA ceramic had been machined by grinding and polishing (Figures 1 and 2).

To address the first research question – the influence of machining quality - the

same machining process was applied to three component pairs and the roughness

parameters Sa, Ra, Sz and Rz were measured with a white-light microscope (cf. 2.5).

The simplified femoral components (counterbodies) were semi-cylindrical with sagittal

plane radii of R = 32 mm, and the simplified tibial components (base plates) were

planar. These samples were named C1.x and P1.x. The mean roughness values were:

SaC of 12.33 nm, RaC of 9.66 nm, SaP of 8.7 nm and RaP of 4.7 nm. The SEM images
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displayed even and ductile-machined surfaces (Figure 7, top). The pores of the ceramic

material were closed, and the surface was finished.

To begin to address the second research question, the frontal-plane radii of con-

ventional femoral/tibial implant components were measured. An improved load dis-

tribution within the implant may be expected with smaller radii differences between

the components, while greater radii differences may be advantageous for restoring

medio-lateral translation kinematics. To examine wear differences with respect to

surface congruence, seven sample pairs with frontal-plane radii differences (base

plate radius RP minus counterbody radius RC = 8.2 mm; 1.0 mm, 1.0 mm, 0.7 mm;

0.0 mm, 0.0 mm; -0.6 mm) were examined (Figure 8). The radius in the plane of

movement (sagittal plane) remained at R = 32 mm, equal to the previous samples

(Figure 7). For the last sample an unfavorable ratio was intentionally used: the ra-

dius of the counter body is 0.6 mm larger than that of the base plate, and theore-

tically this may cause unfavorable edge effects and high stress concentrations when

undergoing wear testing. All components were machined with identical process

steps to the previous samples. The mean surface roughness values of these sample

pairs were: SaC of 25.7 nm, RaC of 11.9 nm, SaP of 44.5 nm and RaP of 14 nm.

As a pre-investigation, the influence of roughness on wear under knee implant

conditions was also determined, but for a small sample size. Three sample pairs

with identical geometry to the first three were used, but with varying levels of sur-

face roughness, with Sa values of the counterbodies that ranged from 130 nm to

994 nm (Figure 9). Figure 8 also shows the different topographies of the cylindrical

component surfaces. There were clearly recognizable grinding marks on the sample

with the roughest surface, C3.1, while samples C3.2 and C3.3 displayed smoother

surfaces.
Figure 7 Roughness and geometry of the ground and polished samples (C1.x and P1.x).



Figure 8 Tested specimen geometries with different levels of frontal plane congruence (C2.x
and P2.x).
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Results of wear investigation

The wear behavior of the samples throughout the 3 million wear cycles displayed

roughly linear wear after a brief “running-in” period of approximately 500,000 cycles.

The wear measurements from gravimetric and optical methods were reasonably con-

sistent (Figure 10), with the average wear of the first three pairs (1.1-1.3) differing bet-

ween methods by around 25% (0.72 mm3 optical, 0.96 mm3 gravimetric). The wear of

the base plates was generally slightly greater than the wear of the counterbodies. In

comparison to a conventional implant pairing (CoCr-PE) tested using the same wear

simulator and protocol, the ceramic-ceramic pairings showed a reduction of wear

behavior of almost 90% (wear of PE component: 7.62 mm3 after 3 million cycles).

For the samples with different frontal-plane radii and associated levels of surface con-

gruence, contact pressure would certainly increase with increased radius difference due

to a reduced contact area. However, high-strength ceramic materials are capable of
Figure 9 Different roughness and geometry of the ground and polished samples (C3.x and P3.x).



Figure 10 Influence of machining at constant roughness on absolute wear after 3 million cycles.
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withstanding high pressures, and wear is thought to be predominantly affected by the

number of micro contacts [26]. The number of micro contacts is determined by the

size of the contact area; thus, wear should increase with increased contact area, and

therefore, decreased radius difference. Our results show low wear for frontal-plane

radius differences of 8.2 mm, 0 mm and −0.6 mm, but higher wear for radius dif-

ferences of 0.0 mm, 0.7 mm, 1.0 mm, and 1.0 mm (Figures 11 and 12). The radius dif-

ferences, as mentioned in section 2.3, are vulnerable to small measurement errors.

The specimens with high levels of congruency (2.2: 1.0 mm, 2.3: 1.0 mm, 2.4:

0.7 mm, 2.5 0.0 mm) showed very similar rates of wear after 3 million wear test cycles.

Sample pairs 2.1 (unconforming surfaces, central point load) and 2.7 (unconforming

surfaces, peripheral point loads) displayed considerably lower wear than the conforming
Figure 11 Wear of specimen with different frontal-plane geometry (increasing congruency of
contact areas) and constant roughness (C2.x and P2.x).



Figure 12 Wear behavior during wear testing of specimen with different frontal plane geometry
(increasing congruency of contact areas) and constant roughness (C2.x and P2.x).
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pairs. Sample pair 2.6 also displayed a low rate of wear, possibly due to the margin of

error of the radius measurement, because if the difference in radius was −0.1 rather

than 0.0, contact and wear would occur at peripheral point loads.

The results of the pre-investigation of the influence of roughness on wear are shown

in Table 1. For all three samples with varying levels of surface roughness (samples

3.1-3.3), the average wear rate was similar to the highly polished samples (1.1-1.3)

(Figure 10). The samples with the roughest surface actually produced the lowest wear –

0.43 mm3 (1.87 mg) after 3 million cycles, but the variability was high and the sample

size was very low, and there was no identifiable relationship.

An additional analysis of wear behavior involved measurement of the maximum depth

of the worn areas (Figures 5 and 13). This was performed with a laser confocal sensor

system that cut into the worn surfaces. The base plates showed a “W”-shaped wear

depth along the direction of movement (see example in Figure 5). The area of pure

rolling can be identified in the center, at which low wear occurred. The areas of rolling

and gliding produced the greatest wear depths around the locations of cycle reversal.

Figure 13 illustrates a comparison of the maximum wear depth for all tested speci-

mens. A line contact of high polished surfaces (group 1) achieved maximum depths

similar to samples with low congruency (group 2: 2.1, 2.6 and 2.7). For pairings with

high surface congruence (3.2a-c and 3.3), greater wear and wear depth were observed

when compared with pairings with lower surface congruence. Nevertheless, the wear

and wear depth of ceramic samples was considerably lower compared to a conventional

material combination.

Scanning electron microscopy (SEM) images were used to identify wear mechanisms

(Figure 14). The wear pattern of the base plates always contained three lines (Figure 14,

labels B, D, and F). Highly polished samples (e.g., P1.1) had uniform wear areas, the
Table 1 Wear of sample with varying roughness

Combination CoCr-PE Average of group
1.1-1.3

C3.1 / P3.1 C3.2 / P3.2 C3.3 / P3.3

Gravimetrical wear [mm3/3x10^6 cycles] 7.62 0.97 0.43 0.15 0.86



Figure 13 Maximum depth of wear area for all samples 1.1 – 3.3.
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polished surfaces were slightly roughened and the pores of the ceramic were opened. In

the area of pure rolling (Figure 14, label D), micro-pitting occurred, while in areas of

gliding (Figure 14, label C) there was no breakaway of the ceramic surface. Thus, it can

be concluded that the material removed was powdery, and caused only by abrasion.

The pre-investigation shows that a sample with an initially rougher surface (e.g., P3.1)

was mainly worn in areas of pure rolling and rolling with slip. This resulted in micro-

chipping and intergranular fracture of the ceramic surface. Abrasion was also observed

on the double-curved samples (2.1 to 2.7), similar to the similarly polished surfaces of

samples 1.1 to 1.3. In previous studies, pitting and abrasion have been found to depend

on wear test kinematics, load, speed and alumina type [26-30]. Intergranular fracture

was also reported by Tipper et al. [29].

The counterbodies showed a similar wear mechanism to the base plates. Due to the

fixed point of rotation, the edge regions (Figure 5, reversal point) of the transitions bet-

ween rolling to rolling-gliding were slightly flattened. Abrasion and micro-chipping

were found on all the counterbodies. The double-curved samples C2.1-2.7 showed

increasing wear areas with decreased frontal-plane radius differences (cf. 3.1.1).
Figure 14 SEM analysis of the worn surfaces of the base plates.
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Furthermore, audible “squeaking” noises occurred during testing of the rougher sam-

ples. Squeaking is a known phenomenon that occurs in some ceramic hip joints. It is

therefore assumed that the effect is led back to the stick slip effect. After a running-in

period of 80,000 cycles, the samples 3.1-3.3 (with high roughness of contact surfaces)

stopped squeaking. A possible explanation for this is that the high roughness peaks of

the surfaces were causing the squeaking, and these were removed during the running-

in period.
Discussion
Analysis of tribological pairings under appropriate loading and kinematic conditions is

of great importance for the design and manufacturing strategy for a novel low-wear

knee endoprostheses. Two major aspects of such tribological studies are the surface

topography and the geometrical tolerances of the implant components [25,31]. The

present study found a strong effect of frontal-plane surface conformity on the wear

mechanism and volumetric wear rate: increased conformity led to increased wear. A

pre-investigation into the effect of surface roughness with a small sample size showed

highly variable wear with no clear trend.

The average wear rate of ceramic single-curved samples with identical surface topog-

raphy was 0.31 mm3 per 1 million cycles (Table 2). Previous experiments showed that a

geometrically identical specimen of the conventional knee implant material combi-

nation (CoCr-PE) displayed wear of the polyethylene component of 2.54 mm3 per 1 million

cycles. Thus, the wear of a conventional pairing using this simulator was more than eight

times the wear of a ceramic pairing.

Similar results for hip implants were found by Morlock et al. [32], who summarized

the findings of wear studies for different material combinations. For metal-PE hip com-

binations, wear rates between 3–80 mg/10^6 cycles were found. All-ceramic material

combinations displayed wear rates between 0.02-0.30 mg/10^6 cycles. Minoda et al.

[33] also reported reduced wear by ceramic-PE knee implants relative to CoCr-PE

implants.

The wear tests with varying differences in frontal-plane radii showed an increase in

wear with increasing contact area (i.e., reduced difference in radii). This can be

explained by an increasing number of micro contacts. Similar results for increasing

contact stress and decreasing wear rate by increasing the radial clearance have been

found for hard-soft material combinations (CoCr-PE) [34-36]. Abdelgaied et al. [34]

showed by computational models of PE-inserts in total knee replacements that less

conforming geometries had a lower predicted wear under both intermediate and high

kinematics. The wear rates for the more conforming inserts were more than three

times that for the less conforming insert. Uma et al. [35] demonstrated in PE-inlays

that the wear rate increases with the increasing contact area, too. Hereby, the
Table 2 Average wear rate reduction by use of ceramic-ceramic material combination

Combination CoCr-PE Ceramic-ceramic
(Single-curved, group 1)

Ceramic-ceramic
(Double-curved, group 2)

Average wear rate [mm3/10^6 cycles] 2.54 0.31 0.53

Improvement to CoCr-PE [%] 87.5 79.1
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volumetric wear and contact area are a function of the effective radius of the contact

geometry. Additionally, Mazzucco et al. [36] showed that the volumetric wear was

independent of normal load within the measured range of his study.

Due to the limited number of sample pairs tested, further investigations are needed

for a more complete understanding of the influence of frontal-plane radius differences

on wear behavior. As this research uses simplified components and simplified rolling-

gliding kinematics, the data cannot be directly compared with wear test results from a

total knee endoprosthesis simulator. Nevertheless, the results of the simplified samples

of cobalt-chromium and PE showed similar behavior to total knee prostheses [23,37].

Further analysis is required to determine if the different topographies of the com-

ponents leads to reduced wear due to the changing lubrication film on ground surfaces.

Furthermore, if the application of a specific structure/pattern on the articulating

surfaces has been shown to improve macro lubrication [31,38], and this also warrants

further investigation with the materials and testing methods used in the present study.

The results of the pre-investigation did not show any clear relationship or trend

relating surface roughness and wear, but the wear rate of rougher specimen was similar

to polished samples. While in conventional material combinations (CoCr-PE), a highly

polished surface quality displays the lowest wear [39,40], other studies have shown that

the effect of roughness is particularly remarkable or negligible if the wear test duration

is sufficiently high [40-42]. In this case, rough surfaces tend to be smoothed and

smooth surfaces tend to be roughened over the high number of wear cycles. After a

certain running-in period, implants have been shown to display similar levels of rough-

ness and similar wear rates [43]. This behavior has also been described in purely tribo-

logical studies on both ductile metallic samples [44] and brittle ceramic materials

[45-48]. As a result, further investigations are needed to check of a highly accurate

polishing of the surface Ra < 20 nm is required, or rough polished or precision ground

surface is sufficient for wear and the manufacturing costs for ceramic implants can be

reduced.

The wear mechanisms found in the present study relating to surface conformity

generally agree with the literature, but are the first to report wear of components made

from this commonly used implant material under loading and surface conditions

similar to that of a knee joint replacement.
Conclusions
A process chain for the manufacturing of all-ceramic implants was successfully

developed. Surface roughness levels were able to be predicted after grinding by means

of calculated and verified models. Therefore, it was possible to determine a process lay-

out in advance. The subsequent polishing step, which levels the roughness peaks, is

being advanced in current research with an aim to also successfully predict surface

roughness after polishing and to increase productivity.

Using grinding and polishing methods, simplified all-ceramic implant components

were manufactured. The influences of surface geometry on implant wear in a rolling-

gliding wear simulator were examined. The results showed that it is possible to attain

significantly reduced wear rates through the use of all-ceramic implants compared to

conventional material combinations such as cobalt-chromium-molybdenum alloys with
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polyethylene. Increased frontal-plane radius differences (and therefore increased

stresses under loading) of the components did not result in breakage or other failure,

and additionally displayed reduced wear compared to components with highly con-

gruent surfaces.

Future research will focus on the verification of the wear results, investigation of the

effect of surface roughness on wear, grinding with toric grinding pins, polishing of

unicondylar-ceramic implant components with resilient diamond tools and subsequent

testing of wear and kinematic behavior. Our ultimate aim is to manufacture and test

an all-ceramic total knee endoprosthesis.
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