
Articles
eClinicalMedicine
2024;69: 102499

Published Online xxx

https://doi.org/10.
1016/j.eclinm.2024.
102499
Automated and reusable deep learning (AutoRDL) framework
for predicting response to neoadjuvant chemotherapy and
axillary lymph node metastasis in breast cancer using
ultrasound images: a retrospective, multicentre study
Jingjing You,a,f Yue Huang,b,f Lizhu Ouyang,c,f Xiao Zhang,d Pei Chen,a XueweiWu,a Zhe Jin,a Hui Shen,a Lu Zhang,a Qiuying Chen,a Shufang Pei,e,∗

Bin Zhang,a,∗∗ and Shuixing Zhanga,∗∗∗

aDepartment of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
bDepartment of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
cDepartment of Ultrasound, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
dSchool of Information Science and Technology, Northwest University, Xi’an, China
eDepartment of Ultrasound, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical
University, Guangdong, China

Summary
Background Previous deep learning models have been proposed to predict the pathological complete response (pCR)
and axillary lymph node metastasis (ALNM) in breast cancer. Yet, the models often leveraged multiple frameworks,
required manual annotation, and discarded low-quality images. We aimed to develop an automated and reusable deep
learning (AutoRDL) framework for tumor detection and prediction of pCR and ALNM using ultrasound images with
diverse qualities.

Methods The AutoRDL framework includes a You Only Look Once version 5 (YOLOv5) network for tumor detection
and a progressive multi-granularity (PMG) network for pCR and ALNM prediction. The training cohort and the
internal validation cohort were recruited from Guangdong Provincial People’s Hospital (GPPH) between
November 2012 and May 2021. The two external validation cohorts were recruited from the First Affiliated
Hospital of Kunming Medical University (KMUH), between January 2016 and December 2019, and Shunde
Hospital of Southern Medical University (SHSMU) between January 2014 and July 2015. Prior to model training,
super-resolution via iterative refinement (SR3) was employed to improve the spatial resolution of low-quality
images from the KMUH. We developed three models for predicting pCR and ALNM: a clinical model using
multivariable logistic regression analysis, an image model utilizing the PMG network, and a combined model that
integrates both clinical and image data using the PMG network.

Findings The YOLOv5 network demonstrated excellent accuracy in tumor detection, achieving average precisions of
0.880–0.921 during validation. In terms of pCR prediction, the combined modelpost-SR3 outperformed the combined
modelpre-SR3, image modelpost-SR3, image modelpre-SR3, and clinical model (AUC: 0.833 vs 0.822 vs 0.806 vs 0.790 vs
0.712, all p < 0.05) in the external validation cohort (KMUH). Consistently, the combined modelpost-SR3 exhibited the
highest accuracy in ALNM prediction, surpassing the combined modelpre-SR3, image modelpost-SR3, image modelpre-
SR3, and clinical model (AUC: 0.825 vs 0.806 vs 0.802 vs 0.787 vs 0.703, all p < 0.05) in the external validation cohort 1
(KMUH). In the external validation cohort 2 (SHSMU), the combined model also showed superiority over the clinical
and image models (0.819 vs 0.712 vs 0.806, both p < 0.05).

Interpretation Our proposed AutoRDL framework is feasible in automatically predicting pCR and ALNM in real-world
settings, which has the potential to assist clinicians in optimizing individualized treatment options for patients.
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Research in context

Evidence before this study
We systematically searched PubMed for articles published in
English with the following terms: (“radiomics” OR “deep
learning” OR “artificial intelligence” OR “AI”) AND (“breast
cancer”) AND (“axillary lymph node” OR “ALN” OR
[“response” AND “neoadjuvant chemotherapy” OR “NAC”])
from the inception of the database to August 8, 2023. Our
findings indicated that previous studies primarily focused on
the analysis of MRI data, often developed task-specific deep
learning models, heavily relied on manual segmentation, and
excluded low-quality images. These factors could potentially
limit the reproductivity and clinical applicability of their
findings in real-world settings.

Added value of this study
This study proposed an automated and reusable deep learning
(AutoRDL) framework that allows for the autonomous
detection of tumors and prediction of pCR and ALNM.
Additionally, it introduces a super-resolution reconstruction

scheme to enhance the spatial resolution of images with low-
resolution, thereby improving the predictive performance of
our image-based deep learning model. Also, gradient-
weighted class activation mapping saliency was employed to
quantify pathways contribution to individual AutoRDL
decisions.

Implications of all the available evidence
Our findings provide compelling evidence that the
ultrasound-based AutoRDL framework, as an automated,
reusable, and interpretable approach, has the potential to
improve tumor detection and different classification tasks. It
exhibits robust performance that can significantly improve
clinical decision-making and operative planning. Confirmation
of these findings through prospective validation cohort
studies will further strengthen the evidence base for the
predictive performance of our fully automated AI tool in
clinical practice.
Introduction
Predicting the response to neoadjuvant chemotherapy
(NAC) and determining the axillary lymph node (ALN)
status before surgery are two critical elements in the
realm of precision medicine for breast cancer.1,2 Pre-
dicting pathological complete response (pCR) is signif-
icant for identifying candidates suitable for more limited
operations such as breast-conserving surgery even
eliminating invasive surgery after NAC.3,4 Preoperative
identification of ALN status in breast cancer also holds
great importance in disease management, surgical
decision-making, and prognosis evaluation.5 Histopath-
ological examination is still the gold standard for
assessing pCR and ALN status in breast cancer. Despite
this, the quest for a non-invasive method to accurately
predict these outcomes presents a formidable challenge.

Deep learning approaches demonstrate the ability to
decode underlying information contained within images
noninvasively and have been extensively leveraged in
different tasks such as image segmentation and
classification.6–8 In recent years, several studies have
explored the feasibility of image-based deep learning
models for assessing axillary lymph node metastasis
(ALNM) and pCR.9,10 However, most of these studies
have predominantly focused on MRI data, with limited
emphasis on ultrasound images. Moreover, several
significant hurdles hinder the clinical translation of
deep learning models into clinically useful tests for
predicting pCR and ALNM. First, these models are
largely dependent on manual segmentation, which is a
time-consuming process and may introduce observer
variability.11–13 Second, the image quality can vary across
different centers due to variations in equipment,
parameter settings, and operators involved in image
acquisition.14 To attain high model performance, previ-
ous studies often excluded images with inadequate
quality and concentrated solely on using high-quality
images for training their models.11–13,15 Third, previous
studies have developed a wide range of neural networks
for the prediction of pCR and ALNM.16–18 Designing a
reusable deep learning architecture for similar tasks in a
specific disease has the potential to reduce computa-
tional resources and redundant work required in
developing new models. Additionally, it promotes effi-
ciency, collaboration, and knowledge sharing within the
deep learning community.

In this work, we aimed to propose a fully automated
and reusable deep learning (AutoRDL) framework for
end-to-end tumor detection and prediction of ALNM
and pCR using a multicentre ultrasound dataset with
various image qualities. This noninvasive approach may
facilitate a decision regarding breast-conserving surgery
www.thelancet.com Vol 69 March, 2024
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or even omitting surgery for patients who achieve a pCR
and spare patients with negative ALNM from invasive
surgical procedures.
Methods
Ethics
The study protocol was approved by the ethics com-
mittee of Guangdong Provincial People’s Hospital
(approval number: KY2023-318-02) and was endorsed by
the participating hospitals, with a waiver for informed
consent from patients due to the retrospective nature of
the work. We conducted the study in compliance with
STARD-2015 guidelines (equator-network.org).

Patients and data collection
A retrospective screening was conducted on the clini-
copathological and ultrasound data of consecutive fe-
male patients diagnosed with breast cancer at three
tertiary hospitals, including Guangdong Provincial
People’s Hospital (GPPH), the First Affiliated Hospital
of Kunming Medical University (KMUH), and Shunde
Hospital of Southern Medical University (SHSMU) be-
tween November 2012 and May 2021. Patients who had
baseline two-dimensional ultrasound images were
eligible for inclusion in the tumor detection task; how-
ever, patients with non-mass, invisible lesions, and le-
sions with unmatched location and size between the
ultrasound image and pathological examination were
excluded. A full list of the inclusion and exclusion
criteria for the prediction of pCR and ALNM is provided
in the Supplementary file. Fig. 1 depicts the patient
recruitment pathway and the division of the cohort.
Finally, a total of 2556 patients (2632 lesions) were
included in the tumor detection task, with 1409 patients
(1409 lesions) and 792 patients (792 lesions) included in
the prediction tasks of pCR and ALNM, respectively.
Patients recruited from GPPH were used as a develop-
ment cohort, while those recruited from KMUH and
SHSMU were assigned to two external validation co-
horts. All images downloaded from the workstations
were converted into a JPEG format. The images were
generated from 10 different ultrasound scanners
(Supplementary Table S1), with linear transducers of a
frequency range of 5–14 MHz.

After consulting with physicians who specialize in
breast cancer and reviewing recent literature on the risk
factors relevant to pCR and ALNM, clinicopathological
data were collected from medical records, including age,
clinical T stage, tumor laterality, tumor location, patho-
logical type, estrogen receptor (ER) status, progesterone
receptor (PR) status, human epidermal growth factor
receptor 2 (HER-2) status, and Ki-67 proliferation index.
Clinical T stage, tumor laterality, and tumor location
were obtained from the imaging report. Nuclear stain-
ing of ER/PR by immunohistochemistry (IHC) with
≥1% positive tumor cells was defined as ER/PR positive,
www.thelancet.com Vol 69 March, 2024
while staining with <1% positive tumor cells was
defined as ER/PR negative.19 HER-2 was considered
positive if IHC resulted in a score of 3+ or 2+ with
amplification confirmed by fluorescence in situ hybrid-
ization (FISH). HER-2 negative was defined as an IHC
score of 0 or 1+ or 2+ with non-amplified FISH.20

Depending on the receptor status, all the patients were
categorized into three subtypes depending on receptor
status as follows: (i) TN (triple-negative); (ii) HER2+; (iii)
HR+/HER2−. The Ki-67 proliferation index was
considered high if it was ≥20%.

Evaluation of NAC response and ALN status
Pathological assessments of NAC response and ALN
status were conducted through standard histopatholog-
ical examinations. pCR was defined as the absence of
residual invasive tumor cells in both breast specimens
and ipsilateral axillary lymph nodes, regardless of the
presence of residual ductal carcinoma in situ (ypT0/is
ypN0).21 ALN status was determined based on the his-
topathological reports of SLND and ALND, in accor-
dance with the American Joint Committee on Cancer’s
Staging System for Breast Cancer.22

Image preprocessing
The image quality of cases in the KMUH cohort was
significantly poorer than that of cases in the GPPH and
SHSMU cohorts (average image resolution: 262 × 370,
625 × 847, 571 × 763 pixels, respectively). Therefore, a
state-of-the-art image super-resolution via iterative
refinement (SR3) technique was trained on the images
from the GPPH and SHSMU cohorts to enhance the
resolution of images from the KMUH cohort to
512 × 512 pixels.23 The backbone network used in this
study was the U-Net encoder-decoder architecture, in
which the original convolution operations were replaced
with residual blocks (Supplementary Fig. S1). Further
details are described in the Supplementary file.

To obtain the ground truth, a graphical image anno-
tation tool (Python labelImg 1.8.6, https://pypi.org/
project/labelImg/) was used to manually label the rect-
angular region of interest (ROI) on the ultrasound images
of the maximum cross-section. The labeling was carried
out by a trained radiologist with 5 years of experience. The
labeled images were then reviewed and confirmed by a
senior radiologist with 20 years of experience.

To overcome the need for a large amount of training
data, data augmentation was performed using the
NVIDIA MONAI framework. This augmentation pro-
cess effectively increased the size of the dataset,
providing more diverse samples for training the deep
learning model. By applying a range of transformations
such as flipping, rotation, scaling, cropping, translation,
Gaussian noise, and color jitter, the amount of data in
the training cohort was in a seven-fold increase. The
generalization ability of the deep learning model could
be improved, thereby alleviating the risk of overfitting.
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Fig. 1: Flowchart of study enrollment. In this multicentre, retrospective study, patients were consecutively enrolled from three independent
institutions (GPPH, Guangdong Provincial People’s Hospital; KMUH, The First Affiliated Hospital of Kunming Medical University; SHSMU,
Shunde Hospital of Southern Medical University) and assigned to the training and two external validation cohorts, respectively. Red, green, and
blue frames indicate the enrollment process for tumor detection, pCR prediction, and ALNM prediction tasks, respectively. Abbreviations: NAC,
neoadjuvant chemotherapy; pCR, pathological complete response; ALNM, axillary lymph node metastasis.

Articles

4

Development of an AutoRDL framework
To improve efficiency, minimize manual input, and
seamlessly integrate into the routine clinical workflow,
an AutoRDL framework was developed for tumor
detection and prediction of pCR and ALNM. First, a
tumor detection network was established to
automatically localize tumor regions. Upon successful
detection, specific target areas were cropped from the
images and used as input for the prediction network.
Notably, we pertained the prediction network on the
pCR task and then fine-tuned it on the ALNM task.
Supplementary Fig. S2 illustrates an overall design of
www.thelancet.com Vol 69 March, 2024
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the proposed AutoRDL framework. The implementation
of the deep learning framework is available at: https://
github.com/code202308/ALNM_pCR. Convergence
curves during the training process are shown in
Supplementary Fig. S3.

Automatic tumor detection
A state-of-the-art deep learning network called You
Only Look Once version 5 (YOLOv5) was employed as
the backbone to detect tumors in a dataset consisting
of 2556 patients with 2632 lesions. After obtaining the
detection results, the ultrasound images were sub-
jected to a cropping process. This process aimed to
eliminate irrelevant data and retain only the essential
information for further analysis. Manual delineation
was considered as the ground truth for the model.

pCR prediction
The size of the target regions, referring to the ROIs
where tumors were present, varied significantly. Thus,
a substantial number of tumor sample blocks with
diverse sizes were generated. Meanwhile, the implicitly
contained information within these tumor sample
blocks could be varied. To fully exploit the crucial in-
formation within these sample blocks and prevent the
loss of image details, a progressive multi-granularity
(PMG) classification network was employed to
develop the prediction model, i.e., image model.24 The
details about the model development are provided in
the Supplementary file.

ALNM prediction
Since the prediction of pCR and ALNM shared similar
profiles as classification tasks, we decided to utilize the
same network architecture that was used in the pCR
prediction task to develop the prediction model for the
ALNM task.

Integration with clinicopathologic data
Clinicopathologic data including age, tumor size, path-
ological type, ER, PR, HER-2, and Ki-67, were used to
construct the clinical model for predicting pCR and
ALNM via multivariable logistic regression analysis.
Subsequently, these clinical variables were incorporated
into a fully connected layer of the image model to
establish the combined model.

Benchmarking against previous AI models
To illustrate the advantage of our AutoRDL framework,
we conducted elaborately comparative studies by
benchmarking it against other previously published AI
methods, including U-Net with DenseNet-121,16

ResNet-50,25 and DenseNet-20113 for the pCR predic-
tion task, as well as Mask R–CNN with DenseNet-121,26

ResNet-5018 and Inception V312 for the ALNM predic-
tion task.
www.thelancet.com Vol 69 March, 2024
Statistics
The statistical analyses were performed with SPSS
(version 23.0) and Python (version 3.7). The peak signal-
to-noise ratio (PSNR) and the structural similarity index
measure (SSIM) were used to evaluate the quality of the
reconstructed images. The mean average precision
(mAP) was used to assess the tumor detection perfor-
mance. We calculated the area under the curve (AUC),
sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), confusion matrix, cali-
bration curve, and decision curve analysis (DCA) to
comprehensively evaluate the model performance from
multiple dimensions of discrimination, calibration, and
clinical usefulness. Differences in AUCs between the
models were compared using the DeLong test. A two-
tailed p < 0.05 was considered statistically significant.

We utilized local interpretable model-agnostic expla-
nations (LIME)27 and gradient-weighted class activation
mapping (Grad-CAM)28 techniques to interpret the pre-
dictions generated by AutoRDL. LIME generates expla-
nations that highlight the significant features and their
contributions to the model’s prediction at a local level. To
facilitate visualization and analysis, we firstly conducted
dimensionality reduction on the 64-dimensional deep
features obtained from the neural networks for both the
pCR and ALNM tasks. We utilized the Principal
Component Analysis algorithm to further reduce the
dimensionality of these deep features to eight di-
mensions for each network. Subsequently, we concate-
nated these reduced features with their corresponding
clinical features and conducted feature importance anal-
ysis using LIME. Grad-CAM leverages the gradients
flowing into the last convolutional layer of the network.
These gradients indicate the importance of each feature
map in the layer concerning the final prediction. By
calculating the weighted sum of these gradients, Grad-
CAM generates a heatmap that highlights the image re-
gions most relevant to the predicted class. The heatmap
produced by Grad-CAM can be superimposed on the
original image, enabling us to visually identify the
discriminative regions that the network focuses on when
making predictions. This provides valuable insights into
the decision-making process of the network and aids in
interpreting and explaining its predictions.

Role of the funding source
The funders had no role in the study design, data
collection, data analysis, data interpretation, or writing
of the report.
Results
Study design and patient characteristics
The overall study design is shown in Fig. 2. We trained
and independently validated an AutoRDL framework
that used ultrasound images to detect tumors and
5
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independently predict pCR and ALNM. A total of 2556
patients were enrolled in the automated tumor detection
task. Among them, there were 1382 patients from
GPPH, 345 patients from GPPH, 685 patients from
KMUH, and 144 patients from SHSMU, distributed
across the training, internal validation, and two external
validation cohorts, respectively. The pCR prediction task
included 1409 patients (mean age, 49.2 ± 10.3 years), of
which, 975 and 244 patients from GPPH, and 190 pa-
tients from KMUH were allocated to the training, in-
ternal validation, and external validation cohorts,
respectively. The ALNM prediction task consisted of 792
patients (mean age, 51.9 ± 12.0 years), with 207 and 51
patients from GPPH for the training and internal vali-
dation cohorts while 402 and 132 patients from KMUH
and SHSMU for two external validation cohorts. Clini-
copathological data of the pCR and ALNM prediction
tasks are summarized in Supplementary Tables S2
and S3. Baseline characteristics are well balanced be-
tween the training and internal validation cohort except
for the clinical T stage in the pCR prediction task.

Performance of image super-resolution
reconstruction
Image super-resolution via iterative refinement achieved
a PSNR of 28.11 (95% confidence interval [CI]:
27.28–28.99) and an SSIM of 0.93 (95%CI: 0.91–0.94)
on average, indicting significant improvement of image
quality. Supplementary Fig. S4 shows the visual results
of the image super-resolution reconstruction for the
randomly selected cases.

Accuracy of the tumor detection
The YOLOv5 network demonstrated excellent detection
performance among all cohorts, with mAP values of 0.978
(95%CI: 0.965–0.988), 0.921 (95%CI: 0.904–0.936), 0.894
(95%CI: 0.879–0.908), and 0.880 (95%CI: 0.863–0.892) in
the training, internal validation, and two external valida-
tion cohorts, respectively. The results suggested that the
YOLOv5 network had an effective tumor detection ability,
even under the variations in tumor sizes and locations.
Supplementary Fig. S5 displays representative examples
of automatic tumor detection.

Performance of the pCR and ALNM prediction
Tables 1 and 2 provide the performances of the clinical
model, image model, and combined model for the
prediction of pCR and ALNM in the training and vali-
dation cohorts. For the prediction of pCR, the combined
model achieved a training AUC of 0.996 (95%CI:
0.984–0.998), while the clinical and image models yiel-
ded training AUCs of 0.882 (95%CI: 0.869–0.894) and
0.978 (95%CI: 0.966–0.989), respectively. The combined
model outperformed both the clinical model (0.851 vs
0.738, p < 0.0005) and image model (0.851 vs 0.811,
p = 0.001) in the internal validation cohort. For the
external validation cohort (KMUH cohort), the
predictive accuracy of the image modelpost-SR3 was sta-
tistically higher than that of the image modelpre-SR3
(AUC: 0.806 vs 0.790, p = 0.0027). Furthermore, the
combined modelpost-SR3 (AUC = 0.833) was superior to
the combined modelpre-SR3 (0.822, p = 0.0042), image
modelpost-SR3 (0.806, p = 0.0055), image modelpre-SR3
(0.790, p = 0.0014), as well as clinical model (0.712,
p = 0.00029). In addition, the combined modelpost-SR3
demonstrated overwhelmingly higher metrics such as
sensitivity, specificity, PPV, and NPV compared to other
models. Fig. 3 displays the ROC curves, AUC values,
confusion matrices, calibration curves, and DCA curves
of the clinical, image, and combined models. The
comparative results of the models are shown in
Supplementary Tables S4 and S5.

In the ALNM prediction task, likewise, the optimal
predictive model achieved the highest accuracy across
the training, internal validation, and two external vali-
dation cohorts, with AUCs of 0.960 (95%CI:
0.948–0.971), 0.856 (95%CI: 0.842–0.868), 0.825 (95%
CI: 0.814–0.842), and 0.819 (95%CI: 0.806–0.835),
respectively. The accuracy of the image model in the
external validation cohort 1 (KMUH cohort) could be
improved by the super-resolution reconstruction
scheme (AUC: 0.802 vs 0.787, p = 0.0054). The AUC of
the combined modelpost-SR3 was higher than that of the
combined modelpre-SR3, image modelpost-SR3, and clin-
ical model (0.825 vs 0.806 vs 0.802 vs 0.703, all p < 0.05).
In the external validation cohort 2 (SHSMU cohort), the
combined model was superior to those of the clinical
model (AUC: 0.819 vs 0.712, p < 0.0005) and the image
model (AUC: 0.819 vs 0.806, p < 0.005). Furthermore,
the image model also demonstrated higher accuracy
compared to the clinical model in validation cohorts (all
p < 0.005). The ROC curves, AUC values, confusion
matrices, calibration curves, and DCA curves of the
predictive models are illustrated in Fig. 4, and the per-
formance comparison of different models are summa-
rized in Supplementary Tables S6–S8.

We conducted a visualization using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) algorithm to
compare the classification effects of clinical, image,
clinical-image combined features. The results suggested
that the combined features exhibited superior charac-
terization ability (Supplementary Fig. S6).

Interpretation of the AutoRDL framework
To enhance the interpretability of the AutoRDL, the
LIME explainer was applied, with the features for each
case presented in Supplementary Fig. S7. We also
generated activation maps and selected a total of 12
random example explanations for different prediction
results in each task individually. The heatmaps high-
lighted the central region of the tumor in the positive
cases (i.e., pCR and ALNM) while the tumor boundary
was highlighted in the negative cases (i.e., non-pCR and
non-ALNM) (Fig. 5).
www.thelancet.com Vol 69 March, 2024
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Fig. 2: Overview of the study design. The clinicopathologic and ultrasound data of patients were collected from the GPPH, KMUH, and SHSM.
Thereafter, an image super-resolution via iterative refinement (SR3) model was trained on the GPPH and SHSMU with high-quality images to
enhance the resolution of images from KMUH with low image quality. Our proposed AutoRDL framework contained two subnetworks: YOLOv5
network for automated tumor detection and PMG network for the prediction of pCR and ALNM. Model performance was assessed using the
ROC curve, confusion matrix, calibration curve, and DCA curve. Finally, individual decisions made by the AutoRDL framework were visualized and
interpreted by Grad-CAM. Abbreviations: GPPH, Guangdong Provincial People’s Hospital; KMUH, First Affiliated Hospital of Kunming Medical
University; SHSM, Shunde Hospital of Southern Medical University; AutoRDL, automated and reusable deep learning; YOLOv5, You Only Look
Once version 5; PMG, progressive multi-granularity; pCR, pathological complete response; ALNM, axillary lymph node metastasis; ROC, receiver
operator characteristic; DCA, decision curve analysis; Grad-CAM, gradient-weighted class activation mapping.
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Performance comparison with previous AI models
Compared with the segmentation networks Mask R–
CNN and U-Net, our YOLOv5 showed comparable or
slightly higher mAP values, particularly in the KMUH
cohort (0.894 vs 0.869 vs 0.854). Detailed performance
comparisons of the tumor detection networks are pre-
sented in Supplementary Table S9.

As for the pCR prediction task using the combined
model, our AutoRDL framework outperformed the U-Net
with DenseNet-121, ResNet-50, and DenseNet-201 in all
the validation cohorts (all p < 0.05). For the ALNM pre-
diction task, our framework also showed superior predic-
tion performance compared to ResNet-50, Mask R–CNN
with DenseNet-121, and Inception V3 in the validation
cohorts (all p < 0.05). Detailed comparative results are
shown in Supplementary Tables S10–S13.
www.thelancet.com Vol 69 March, 2024
Discussion
In this multicentre study, for the first time, we devel-
oped an AutoRDL framework that allows the automated
tumor detection as well as prediction of pCR and ALNM
from various image quality ultrasound images in pa-
tients with breast cancer. The AutoRDL framework
showed excellent performance in three tasks, which
consist of tumor detection (mAPs: 0.921, 0.894, and
0.880) as well as prediction of pCR (AUCs: 0.851 and
0.833) and ALNM (AUCs: 0.856, 0.825, and 0.819) in
both the internal and external validation cohorts. The
comparative analysis demonstrated that our AutoRDL
framework outperformed other state-of-the-art deep
learning models that have already been published.
Notably, the predictive accuracy of the image models
based on low-quality images could be improved by
7
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Models AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training cohort

Clinical model 0.882 (0.869–0.894) 86.0 (84.2–88.3) 81.8 (80.5–84.7) 77.0 (75.4–78.8) 88.1 (86.2–89.4)

Image model 0.978 (0.966–0.989) 94.8 (93.3–96.2) 92.1 (90.7–93.9) 91.7 (90.0–93.1) 96.5 (94.0–97.8)

Combined model 0.996 (0.984–0.998) 98.0 (96.5–99.0) 91.8 (90.4–93.5) 92.5 (91.3–94.0) 97.2 (95.8–98.4)

Internal validation cohort

Clinical model 0.738 (0.719–0.752) 69.2 (67.3–72.6) 71.0 (69.7–73.2) 65.3 (63.9–67.0) 74.9 (73.3–76.7)

Image model 0.811 (0.797–0.835) 78.5 (77.1–80.0) 76.6 (74.9–78.4) 71.6 (70.2–73.0) 84.0 (82.7–85.9)

Combined model 0.851 (0.828–0.865) 84.0 (81.6–85.1) 77.1 (74.9–78.3) 73.5 (72.1–75.4) 97.2 (95.8–98.4)

External validation cohort

Clinical model 0.712 (0.701–0.729) 66.0 (64.1–67.7) 71.8 (68.6–73.1) 63.3 (61.8–64.6) 72.5 (70.6–74.3)

Image modelpre-SR3 0.790 (0.778–0.805) 75.4 (73.6–76.9) 72.3 (70.7–74.0) 68.1 (66.4–69.8) 81.1 (79.8–82.7)

Image modelpost-SR3 0.806 (0.798–0.824) 77.0 (75.2–78.9) 73.8 (72.2–75.1) 69.7 (68.0–71.5) 82.9 (81.8–84.3)

Combined modelpre-SR3 0.822 (0.805–0.831) 79.0 (77.8–80.3) 73.2 (71.9–74.6) 71.3 (69.8–72.9) 83.0 (81.8–84.4)

Combined modelpost-SR3 0.833 (0.820–0.847) 81.2 (79.5–82.4) 75.8 (74.0–77.1) 72.0 (70.5–74.1) 87.3 (85.4–88.9)

Note: Data in parentheses are the 95% confidence interval. pCR, pathological complete response; AUC, area under the curve; PPV, positive predictive value; NPV, negative
predictive value; SR3, image super-resolution via iterative refinement.

Table 1: Performances of the clinical model, image model, and combined model for the prediction of pCR in the training and validation cohorts.
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increasing resolution via super-resolution. Further, the
combination of images with existing clinical biomarkers
led to a significant improvement in prediction accuracy.
AutoRDL represents a crucial step towards integrating
artificial intelligence into clinical practice to better
inform clinical decision-making and operative planning.

Artificial intelligence techniques have been
employed to capture high-dimensional characteristics of
tumors, facilitating accurate predictions of the response
to NAC.29 In imaging-based research, previous studies
Models AUC Sensitivity (%)

Training cohort

Clinical model 0.813 (0.798–0.832) 81.7 (80.5–82.

Image model 0.928 (0.916–0.937) 90.3 (88.9–91.

Combined model 0.960 (0.948–0.971) 92.2 (90.5–93.

Internal validation cohort

Clinical model 0.738 (0.726–0.764) 77.0 (75.8–79.

Image model 0.810 (0.788–0.819) 73.4 (71.7–75.0

Combined model 0.856 (0.842–0.868) 81.9 (80.7–83.

External validation cohort 1

Clinical model 0.703 (0.687–0.720) 67.8 (66.0–69

Image modelpre-SR3 0.787 (0.771–0.805) 71.2 (69.5–72.

Image modelpost-SR3 0.802 (0.785–0.818) 72.9 (71.5–74.2

Combined modelpre-SR3 0.806 (0.790–0.821) 75.2 (74.0–76.

Combined modelpost-SR3 0.825 (0.814–0.842) 77.1 (75.8–78.

External validation cohort 2

Clinical model 0.712 (0.698–0.720) 69.3 (67.8–71.

Image model 0.806 (0.787–0.816) 73.7 (72.1–75.4

Combined model 0.819 (0.806–0.835) 75.6 (74.0–76.

Note: Data in parentheses are the 95% confidence interval. ALNM, axillary lymph node m
predictive value; SR3, image super-resolution via iterative refinement.

Table 2: Performances of the clinical model, image model, and combined mo
have mainly focused on the analysis of MRI data, with
only a few studies utilizing ultrasound images as the
basis for analysis.10,25,30–33 Jiang et al.13 constructed a deep
learning radiomic nomogram to predict pCR in patients
with locally advanced breast cancer by integrating pre-
and post-treatment ultrasound data. Wu et al.17 also
developed a deep learning model integrating pre-, early-
stage, and post-treatment images for the prediction of
pCR. However, there was a time lag in acquiring post-
treatment images since they were obtained after NAC.
Specificity (%) PPV (%) NPV (%)

8) 83.6 (82.4–85.1) 73.0 (71.7–74.8) 84.6 (83.3–86.1)

8) 97.4 (95.8–98.6) 86.7 (85.4–88.5) 88.3 (86.4–89.2)

5) 92.3 (91.1–93.4) 88.7 (87.2–90.8) 94.8 (93.7–96.5)

5) 67.5 (65.0–70.2) 68.4 (67.5–71.0) 78.5 (76.0–79.6)

) 75.5 (74.0–76.7) 74.2 (72.7–75.6) 80.1 (78.8–81.4)

0) 74.8 (73.2–76.1) 74.3 (72.9–75.6) 81.5 (79.2–83.4)

.2) 65.7 (64.3–66.8) 66.5 (65.3–67.9) 74.4 (73.1–76.2)

8) 67.4 (65.8–69.2) 66.9 (65.4–68.7) 77.3 (75.7–78.8)

) 69.1 (67.9–70.5) 68.5 (66.9–70.1) 79.0 (77.5–80.1)

6) 70.5 (69.0–72.1) 68.9 (67.4–70.5) 80.1 (78.8–81.3)

2) 72.3 (70.8–73.7) 71.0 (70.1–72.2) 81.4 (79.6–82.9)

2) 70.2 (68.8–72.0) 67.6 (65.9–69.8) 76.2 (74.5–78.8)

) 75.6 (74.3–76.7) 71.2 (69.4–73.3) 80.6 (78.0–82.7)

9) 75.5 (74.1–77.6) 73.4 (71.8–74.6) 80.6 (79.8–82.3)

etastasis; AUC, area under the curve; PPV, positive predictive value; NPV, negative

del for the prediction of ALNM in the training and validation cohorts.
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Fig. 3: Performance of the clinical, image, and combined models in predicting pCR. (A): ROC curves of the clinical, image, and combined
models for predicting pCR in the training, internal validation, and external validation cohorts. Specially, in the external validation cohort, the
image and combined models were divided into the models before and after the SR3 method. (B): Confusion matrices of the combined model
without the SR3 method in the internal validation cohort and the combined modelpre-SR3 and combined modelpost-SR3 in the external validation
cohort. The confusion matrices show the pair-wise comparison; diagonal: number of cases correctly classified; off-diagonal: number of cases
incorrectly classified. (C): Calibration curves of the combined model without SR3 method in the internal validation cohort and the combined
modelpre-SR3 and combined modelpost-SR3 in the external validation cohort. Calibration curves show excellent agreement between the model-
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It would be more feasible to adjust treatment decision at
an early stage if pre-treatment images were significant
in predicting pCR, which could maximize the likelihood
of achieving pCR and minimize unnecessary adverse
effects, expenses and risks of disease progression for
patients who do not achieve pCR.34 Furthermore, there
have been additional studies focusing on predicting the
response to NAC using ultrasound images.15,35 Never-
theless, these studies were often limited to single-center
investigations with small sample sizes, and their find-
ings were not validated in external cohorts.15,35 Liu et al.
predicted pCR for HER-positive breast cancer patients.16

In our study, we intentionally relaxed the exclusion
criteria to enhance the generalizability of our model.
This allowed us to include a diverse range of primary
breast cancers, regardless of tumor stage, pathological
type, or molecular subtype. The data we utilized, to our
knowledge, was the largest to date for pCR assessment.
Moreover, to assess the generalizability of our deep
learning model in predicting pCR, we conducted tests
on an external validation cohort. This validation step was
crucial in demonstrating the reliability and effectiveness
of our model beyond the initial study population.36,37

Breast cancer with a negative axilla can be considered
for exemption from unnecessary axillary surgery, lead-
ing to a significant reduction in potential risks associ-
ated with postoperative complications. The Memorial
Sloan Kettering Cancer Center (MSKCC) nomogram is
a well-validated tool that incorporates several clinical
variables to predict the likelihood of ALNM.38 However,
it should be noted that histopathological data, such as
histological tumor size, lymphovascular invasion, and
multifocality, may not be available preoperatively. In
contrast, our deep learning model utilized only clinico-
pathological data after a biopsy of breast cancer, a
standard procedure preoperatively, which could serve as
a non-invasive tool for the prediction of outcomes.
Additionally, the proposed nomogram did not incorpo-
rate any information derived from the images of the
tumor to predict outcomes or guide treatment decisions.
Zhou et al.12 constructed a deep learning model with the
specific purpose of predicting ALNM in T1/T2 breast
cancer with clinically negative axilla. In order to enhance
the applicability of the study findings to real-world
clinical scenarios, we further expanded our inclusion
criteria to encompass patients with primary breast can-
cer across all tumor stages. In another study, deep
learning radiomics was employed to analyze conven-
tional ultrasound and wave elastography data for the
predicted and observed pCR probabilities. (D): DCA curves of the combined
combined modelpre-SR3 and combined modelpost-SR3 in the external validat
risk thresholds (x-axis) of the combined model compared with intervention
show that the combined modelpost-SR3 had a higher net benefit than
probability in the clinical decision was 0.323–0.782. Abbreviations: pCR, p
SR3, image super-resolution via iterative refinement; DCA, decision curve
prediction of ALNM in patients with early-stage breast
cancer.18 Although the previous study yielded satisfac-
tory results, it was limited to a single-center setting and
lacked external validation.18 In the current study, we
sought to address this limitation by validating our
AutoRDL framework for predicting ALNM using two
independent external validation cohorts. This rigorous
validation approach was employed to assess the gener-
alization performance of our model and confirm its
reliability across diverse patient populations.36,37

There was variability in the quality of the ultrasound
images due to the scans being performed by multiple
physicians using different machines.14 For instance, the
images from the KMUH cohort had poorer spatial res-
olution compared to those from other participating in-
stitutions. In previous studies, images with insufficient
quality were typically excluded, and the models were
trained and evaluated exclusively on high-quality images
to obtain higher model performance.11–13,15 In the pre-
sent study, for the first time, we applied a novel super-
resolution via iterative refinement method to enhance
the spatial resolution of the medical images. This
approach allowed us to increase the sample size for
training and enabled the broader clinical implementa-
tion of our deep learning model in real-world settings.
By overcoming the resolution limitations of the imaging
system, this software technology paved the way for more
accurate and reliable diagnoses and treatment decisions,
even in primary hospitals or resource-constrained
medical environments. Moreover, previous studies
predominantly relied on manual delineation of medical
images for predicting pCR and ALNM in patients with
breast cancer, which could be time-consuming, labor-
intensive, and subjective, potentially introducing vari-
ability and bias into the predictions.11–13 To address these
challenges, to our knowledge, our fully automated
AutoRDL framework used the largest data set for tumor
detection and classification in breast cancer, which
detected breast tumors prior to the prediction task, and
demonstrated accurate detection performance despite
the variations in tumor size, shape, and location.
Regarding the classification tasks, we first constructed
the pCR prediction model using a specific PMG
network. Subsequently, we reused the same network
architecture to perform ALNM prediction following
parameter fine-tuning. The reusable neural network
pipeline also demonstrated satisfactory performance in
predicting ALNM. The advantage of this approach lies in
the similarity of the two tasks, which enables more
model without SR3 method in the internal validation cohort and the
ion cohort. The plot shows the net benefit (y-axis) across a range of
in all participants (all) or no intervention (none). The decision curves
the combined modelpre-SR3 in predicting pCR when the threshold
athological complete response; ROC, receiver operator characteristic;
analysis.
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Fig. 4: Performance of the clinical, image, and combined models in predicting ALNM. (A): ROC curves of the clinical model, image model,
and combined model for predicting ALNM in the training, internal validation, external validation cohort 1, and external validation cohort 2.
Among the external validation cohort 1, the image and combined models were divided into models before and after the SR3 approach. (B):
Confusion matrices of the combined model without the SR3 approach in the internal validation cohort and external validation cohort 2, as well
as the combined modelpre-SR3 and combined modelpost-SR3 in the external validation cohort 1. (C): Calibration curves of the combined model
without SR3 in the internal validation cohort and external validation cohort 2, as well as the combined modelpre-SR3 and combined modelpost-SR3
in the external validation cohort 1. Calibration curves display excellent agreement between the model-predicted and observed ALNM proba-
bilities. (D): DCA curves of the combined model without SR3 approach in the internal validation cohort and external validation cohort 2, as well
as the combined modelpre-SR3 and combined modelpost-SR3 in the external validation cohort 1. The plot shows the net benefit (y-axis) across a
range of risk thresholds (x-axis) of the combined model compared with intervention in all participants (all) or no intervention (none). The
decision curves show that the combined modelpost-SR3 had a higher net benefit than the combined modelpre-SR3 in predicting ALNM when the
threshold probability in the clinical decision was 0.108–0.755. Abbreviations: ALNM, axillary lymph node metastasis; ROC, receiver operator
characteristic; SR3, image super-resolution via iterative refinement; DCA, decision curve analysis.

Articles
efficient training and sharing of learned features
through the utilization of the same network architec-
ture. This ultimately improves the model’s ability to
generalize to some extent. Moreover, without the need
for developing two separate architectures, our approach
greatly reduced computational consumption and saved
www.thelancet.com Vol 69 March, 2024
time in model development, while eliminating the
redundancy of results due to multiple networks.

Despite promising findings, our study had some
limitations. First, the retrospective design of this study
may have inevitably introduced selection bias. There-
fore, further validation using prospective cohorts are
11
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Fig. 5: Visualization results of the pCR and ALNM prediction. Color-coded heatmaps were superimposed on the corresponding ultrasound
images. The central region of the tumor was significant for the positive cases (pCR [A] and ALNM [C]) while it was the tumor boundary for
negative cases (non-pCR [B] and non-ALNM [D]), which could be decoded by the color bar on the right. Abbreviations: AutoRDL, automated
and reusable deep learning; pCR, pathological complete response; ALNM, axillary lymph node metastasis.
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needed to ensure the reliability and applicability of the
developed model in real-world clinical practice. Second,
our ultrasound images were acquired from 10 different
devices across multiple centers, which could potentially
introduce systematic variations in the images. Never-
theless, harmonization algorithms can be designed to
minimize the variability of ultrasound images caused by
different scanners and protocols, which may potentially
enhance the generalizability of deep learning models. In
this present study, we mitigated the differences between
low- and high-quality images by using image super-
resolution techniques, and further reduces the domain
gap between different central data by detecting lesion
regions. In the future, more effective harmonization or
domain adaptive algorithms can be developed to remove
the scanner-specific biases while preserving the biolog-
ical properties of images. Third, we only used pre-
treatment images to predict pCR following NAC. Pre-
vious studies have indicated that incorporating longitu-
dinal images at multiple time points may provide more
comprehensive and informative data for pCR
prediction.15–17 Fourth, the patient population was
limited to the Asian population. Therefore, it is neces-
sary to thoroughly evaluate the generalization
www.thelancet.com Vol 69 March, 2024
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performance of our deep learning model in different
geographic settings. Fifth, multiple lesions were
excluded from the study due to the potential challenge
of obtaining one-to-one pathological results for each
lesion. Similarly, non-mass and invisible lesions were
also excluded, as they were difficult to be segmented or
detected on ultrasound images. Finally, although Grad-
GAMs were used to identify salient visual features and
facilitate the interpretation of the image-based deep
learning model, the prediction results of the model
should also be interpreted with caution. Hence, there is
still a need for comprehensive consideration in clinical
decision-making.

In conclusion, our study proposed an AutoRDL
framework as a non-invasive and effective tool for
automated prediction of pCR and ALNM in patients
with breast cancer. This framework holds promise in
offering valuable insights for treatment decisions in
routine clinical practice. However, further refinement
and validation are required prior to integrating this
model into routine clinical use. Prospective multicentre
validation will be conducted to evaluate its performance
across different clinical settings and patient populations.
Through this validation process, the model can be
further improved to ensure its reliability and accuracy,
ultimately becoming a valuable reference for clinical
treatment decision-making.
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