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Abstract
Previous research regarding anchoring effects has demonstrated that human judgments

are often assimilated to irrelevant information. Studies have demonstrated that anchors

influence the economic valuation of various products and experiences; however, the cogni-

tive explanations of this effect remain controversial, and its neural mechanisms have rarely

been explored. In the current study, we conducted an electroencephalography (EEG)

experiment to investigate the anchoring effect on willingness to accept (WTA) for an aver-

sive hedonic experience and the role of anchors in this judgment heuristic. The behavioral

results demonstrated that random numbers affect participants’WTA for listening to pieces

of noise. The participants asked for higher pay after comparing their WTA with higher num-

bers. The EEG results indicated that anchors also influenced the neural underpinnings of

the valuation process. Specifically, when a higher anchor number was drawn, larger P2 and

late positive potential amplitudes were elicited, reflecting the anticipation of more intensive

pain from the subsequent noise. Moreover, higher anchors induced a stronger theta band

power increase compared with lower anchors when subjects listened to the noises, indicat-

ing that the participants felt more unpleasant during the actual experience of the noise. The

levels of unpleasantness during both anticipation and experience were consistent with the

semantic information implied by the anchors. Therefore, these data suggest that a semantic

priming process underlies the anchoring effect in WTA. This study provides proof for the

robustness of the anchoring effect and neural evidence of the semantic priming model. Our

findings indicate that activated contextual information, even seemingly irrelevant, can be

embedded in the construction of economic value in the brain.

Introduction
The anchoring effect is a typical human decision heuristic as demonstrated by Tversky and Kah-
neman [1] in their seminal research. The anchoring effect describes a phenomenon in which
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judgment is biased toward an initially presented value, namely, the anchor. In contrast to the
assumptions of traditional economic theories, it is implied that valuation can be influenced by
arbitrary values. Researchers often use willingness to pay (WTP) and willingness to accept
(WTA) as indices of valuation. WTP refers to the maximum amount of money one would be
willing to offer for a good or experience andWTA represents the minimum compensation
demanded for a person to forgo a good or bear some suffering/harm. Studies have demonstrated
anchoring effects in consumer willingness to pay (WTP) and willingness to accept (WTA). In
experimental settings, anchors affect WTP and/or WTA for consumer goods [2–7], public
goods [8] and hedonic experience [2]. Field studies and real-world data analyses have also pro-
vided evidence of the omnipresence of anchoring effects [9,10]. In contrast to the substantial
research demonstrating anchoring effects in WTP and/or WTA for common products, the lim-
ited studies of anchoring effects in WTA for hedonic experiences have presented inconsistent
results and casted doubts on the robustness of this phenomenon [2,11–14]. Therefore, further
evidence on the robustness of anchoring effects in hedonic experience valuation is needed.

Studies in the field of WTA/WTP mainly focus on the presence and robustness of the
anchoring effect and its moderators [7,8,15,16], and discussion of the influence of anchors on
valuation judgments has been limited. Previous research suggests that various anchoring effects
are mainly produced by two mechanisms: insufficient adjustment from the initial value
[1,17,18] and semantic priming by anchors [19–21]. It is also suggested that the two sources of
anchor value, i.e., self-generated and externally provided, are responsible for the adjustment
and the semantic priming, respectively [17,18]. Some studies of WTP and/or WTA for prod-
ucts have implied that these two mechanisms exert an independent or interactive influence on
anchoring effects [3,5,22,23]. However, the effect of anchors on WTP andWTA for hedonic
experiences still requires further discussion and evidence. Furthermore, while there have been
substantial discussions of the psychological mechanisms of anchoring effects, the neural under-
pinnings of anchored processes have received less attention [24,25]. Among the few neurosci-
entific studies regarding anchoring effects, Qu et al. [24] employed a “dot-image” paradigm
and provided event-related potential (ERP) evidence for the insufficient adjustment model in
the situation of simple physical property judgment. Tamir and Mitchell [25] posited that peo-
ple use their own thoughts and feelings as starting points when making inferences about others’
preferences or traits. In their functional magnetic resonance imaging (fMRI) study, the activa-
tion of medial prefrontal cortex was linear correlated with self-other discrepancy of the mental
state judgment. The results suggested an “anchoring-and-adjustment” process underlying such
a social cognition phenomenon. These few studies have helped to disentangle the conflicts of
explanations of anchoring effects in several judgment domains. The neurocognitive processes
involved in anchoring effects on valuation, nevertheless, have not been examined.

In this research, we investigated how arbitrary information, i.e., an anchor, influences the
construction of value in aversive hedonic experiences and the electrophysiological correlates of
this impact on the cognitive process. The goals of the present study were two-fold. First, we
investigated the robustness of anchoring effects in the valuation of hedonic experiences, partic-
ularly in the WTA for an aversive experience, since more doubt has been cast on the prevalence
of anchoring effects in WTA compared to WTP [3,4]. We conducted a WTA task very similar
to that described by Ariely et al. [2], in which subjects listened to sample pieces of noise, com-
pared their WTA for listening to the same noise at a greater intensity with a random number,
and ultimately provided their WTA.

Second, given that arbitrary anchors have exhibited an effect on subjects’WTA for hedonic
experiences, we attempted to identify the mental process involved in this type of anchored val-
uation by providing corresponding neural evidence. The anchors were drawn from an outside
source in our paradigm. Based on studies on anchor sources [17,18], these anchors likely
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activate accessible semantic information used for valuation. This semantic priming process is
consistent with the “expectation and ‘perceptual’”model [26] for human value construction.
This model assumes that individuals make inferences from contextual information (including
anchors), which then influences their experience with the judging targets. Related neuroscience
studies of the context-dependency of valuation have validated this model and indicate that
external references or labels with valuation targets can alter expectations and/or experiences in
value construction processes, which are reflected in brain activities [27–34]. Therefore, we
hypothesized that an anchor in our study should act as a hint/cue recognized by the subjects
that would influence both their belief prior to listening and their sensory experience while lis-
tening to the noise, thus eventually biasing their WTA. In other words, the subjects would be
primed by the arbitrary anchors, and their expectations and real hedonic experiences would be
assimilated to what the anchors semantically indicated. A difference in the anchor-consistent
semantic information activated by higher or lower anchors would produce a discrepancy in the
subjective feelings of the aversiveness of the noise. Furthermore, the neural activity would
reflect this priming process by manifesting emotions during expectancy and real experience
consistent with the anchors’ semantic labels. A larger anchor number perceived as a cue that
preceded a more painful audio stimulus should elicit electroencephalography (EEG) responses
indicating the anticipation of a more unpleasant experience. In addition, the EEG underpin-
nings of valuation formation when the noise was played should indicate that the subjects feel
the noise as less tolerable after a larger number. Previous findings suggested that anticipation
to various aversive or unpleasant events is associated with ERP components such as P2 and late
positive complex (usually including P3 and late positive potential (LPP)). Cues of electrical
shock threats or upcoming negative affective pictures usually induce larger P2 amplitude over
frontal lobe and enhanced P3 or LPP over more posterior regions [35–39]. Since annoying
sounds in our experiment were comparable to shocks or negative pictures in the way that they
were all hedonic experience which are sensorially or emotionally aversive, we could expect to
see difference of these ERP components if different anchor numbers were perceived as different
cues to the following sounds. Besides the studies on phase locked ERP components, researchers
have also delved into the non-phase locked neural oscillations involved in various cognitive
processes (see reviews: [40,41]. Event-related oscillatory activities are characterized as relative
power increase or decrease in certain frequency bands caused by event-related synchronization
(ERS) or desynchronization (ERD) [42]. Studies taking the perspective of event-related band
power have shown that theta band ERS is associated with processing of emotional stimuli.
Larger theta band ERS is proved to be associated with higher arousal [43–46] and relatively
negative valence in emotion [47] or negative appraisal [48]. If the anchors in our study did
modulate subjects’ perception on the painfulness of the noise, then theta band power, which is
a highly probable EEG correlate of emotional valence and arousal, would also differ in whether
subjects were primed by high or low anchors.

Materials and Methods

Ethics Statement
This study was approved by the Internal Review Board, Neuromanagement Lab, Zhejiang Uni-
versity. All participants were fully informed of the study protocol and provided written consent.

Participants
Twenty-four subjects were recruited for the experiment (10 females, 14 males; mean age: 22.68
years old, standard deviation (SD) = 2.60). They were registered students of Zhejiang Univer-
sity. All participants were right handed by self-report, had normal or corrected to normal
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vision and reported no history of neurological or mental diseases. One subject reported feeling
itchy on her scalp during the EEG recording and withdrew from the study. Two subjects quit-
ted the study because the experiment procedure could not be implemented based on their
behavior in the pilot session (see: the Stimuli and procedure section). Other two subjects were
also excluded from data analysis because of substantial EEG artifacts. As a result, the following
analysis was performed using the data obtained from 19 (7 females) subjects.

Stimuli and procedure
We adopted a design that was similar to but modified from the tasks in the research of Ariely
et al. [2]. In the current study, the subjects would first sample a piece of noise in each trial and
then provide their WTA for undergoing the noise in an intensified volume. They would see a
random anchor number from the high or the low anchor experiment condition in each trial
and compare this number with the WTA before providing the final answer.

Noise stimuli. Each of the noise pieces used in the experiment lasted 4 seconds and was
constructed by a two-step process. First, two 4-second-long dissonant sound waves were gener-
ated using oscillator functions in MATLAB R2008b (MathWorks, Massachusetts, USA). Sec-
ond, the waves were synthesized by an audio recording/processing software WaveCN (http://
wavecn.com/, China). By this process we had a dataset with 80 candidate noise pieces and
those 45 pieces of noise played in the main session of our experiment were selected from this
dataset. The selection was based on the ratings of the annoyance of each candidate noise piece
on a 9-point Likert scale (1 = not annoying, 9 = extremely annoying) by a calibration group of
48 participants. The annoyance of each noise piece in the candidate set was computed by aver-
aging the ratings of all participants (mean = 5.08, SD = 0.57). The final set comprised the
sound pieces with the least variances, i.e., the smallest SD, on the annoyance rating. This proce-
dure ensured that the sound pieces were annoying (mean = 5.24) and similar in annoyance
(SD = 0.48) to avoid confounding effects of differences in annoyance.

Pilot and anchor value generation. In our experiment, a within-subject design was used
for the concerned factor (anchor: high vs. low). Anchor values, though arbitrary, were selected
using certain rules. As stated by Tufano [11], noise is a “private-value good”. Each subject’s tol-
erance and sensitivity to noise is different, and the same sound piece might induce different lev-
els of unpleasantness. Therefore, the average WTA should also vary among the subjects. Thus,
it was important that the anchor values in the high and low conditions were generated based
on an individual subject’s WTA range prior to the main session. In this pilot session, the sub-
jects were asked to provide their WTA for 10 pieces of noise from the sound dataset without
viewing any anchors, and this session was instructed as a practice of the pricing task because it
was quite novel to the subjects. The mean (meanpilot) and SD (SDpilot) of WTA of each subject
were obtained from this pilot session to compute the individual intervals from which high,
medium and low anchors in the main session were drawn. The high anchors were 40 random
integers from an interval of

Rangehigh ¼
½meanpilot þ 2SDpilot; meanpilot þ 4SDpilot�

½meanpilot 2SDpilot; 30�; if meanpilot þ 4SDpilot > 30
ð1Þ

(

and the low anchors were also 40 random integers drawn from an interval of

Rangelow ¼
½meanpilot � 4SDpilot; meanpilot � 2SDpilot�

½1; meanpilot � 2SDpilot�; if meanpilot � 4SDpilot < 1
ð2Þ

(
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To ensure the randomly drawn integers were more successive and thus natural to the sub-
jects, 10 medium random anchors were also drawn from an interval of

Rangemedium ¼ ½meanpilot � SDpilot; meanpilot þ SDpilot� ð3Þ

However, the trials with the medium anchors were not used for the subsequent EEG analy-
sis. An upper limit (Chinese Yuan (CNY) ¥30) of the price range was set because of the limita-
tion of the experimental procedure, which will be explained later. The subjects were instructed
that we set an upper limit of CNY ¥30 because we did not have additional money to compen-
sate their unpleasant experiences; however, it was fair if they asked for more than CNY ¥30. In
this case, they could provide an answer equal to 30. Given the rules of anchor generation, two
subjects did not complete the experiment and were excluded from the study. The upper limits
of their Rangelow were negative; thus, the experimental design could not be implemented.

Experimental task in the main session. The main session consisted of 90 trials (high: 40;
medium: 10; and low: 40). In each trial, the subjects listened to a piece of noise and provided
their WTA for listening to this same noise at quadruple volume. They also fully understood
that after all 90 trials, only one trial would be randomly drawn and counted and that every sin-
gle trial should be treated seriously because any trial might be selected. For the later chosen
noise piece, a Becker-DeGroot-Marschak auction was used to determine if they had to endure
the unpleasantness and obtain the compensation or experience a no pain, no “compensate” sit-
uation [49]. Following this rule, the WTA of the chosen trial was compared with a random
integer N written on a price tag drawn by the subject from a carton. N followed a triangle-dis-
tribution that ranged from CNY ¥1 to CNY ¥15 [2]. If WTA� N, the subject would listen to
the same noise with an intensified volume and receive a compensation equal to N. By contrast,
if WTA> N, the subject would leave. This auction was adopted to ensure and motivate the
subjects to provide the true WTA [50]. The optimal strategy of providing the true WTA was
explained in detail to the subjects.

During the main session, the participants sat in a comfortable chair in front of and approxi-
mately 1 meter away from a 17-inch CRT screen and in an electrically shielded and acoustically
isolated room, while their EEG was simultaneously recorded. The stimuli were presented by
the E-Prime 2.0 Software Package (Psychology Software Tools, Pittsburgh, USA) with a maxi-
mum visual angle of ~18.4° × 13.6°. The paradigm is illustrated in Fig 1. During each trial, a fix-
ation cross was presented for 500 ms. Next, similar to the “spinning wheel” used in Tversky
and Kahneman [51], a rotating clover was shown on the screen, and the subjects could click
the mouse at any time within 2 seconds to draw a random number from the computer. This
rotating clover was explained as a “spinning wheel”mechanism to the subjects in the experi-
ment instruction. After a random interval between 800 and 1200 ms after the mouse click, the
anchor number was shown for 2000 ms, followed by a 1000-ms prompt phrase for the upcom-
ing noise during which the number continued to be displayed. Then, after listening to the noise

Fig 1. Experimental paradigm in the main session. Subjects first drew a random number and then listened
to a piece of noise. After comparing their WTA with the drawn number, they reported their WTA.

doi:10.1371/journal.pone.0139954.g001
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for 4000 ms, the subjects were asked to judge the unpleasantness that resulted from that noise
and decide the lowest amount of monetary compensation they would accept for listening to the
same noise at quadruple volume. When the noise ended, the subjects compared and answered
whether the previously drawn number was equal to their WTA and clicked on the “Yes” or
“No” button. Finally, they clicked on a price axis with a range of 1 to 30, moved the cursor to
the position that represented their WTA, and clicked the “Confirm” button to submit (see:
experimental instruction in S1 Text, for the instruction of the whole procedure to the subjects).
The inter-trial interval was 500 ms. We investigated multiple ways to obtain the subjects’WTA
input via several pilot studies and adopted this “cursor-on-axis”method. This method was cho-
sen because pressing the numeric keyboard in their hand proved to be difficult for the subjects
because they had to continue to watch the screen and because pressing the keyboard to increase
or decrease the price from the anchor may create the confusion of a status quo bias [52] in the
experiment. For a viable procedure, the numeric axis could not be unlimited; thus, we set an
upper limit of 30 CNY based on a WTA range from a preliminary experiment. The noise piece
played in each trial was randomly chosen and assigned to a certain anchor condition. Forty-
five noise pieces other than the pieces used in the pilot session were played twice in the main
session.

EEG recording
EEG was continuously recorded with a Neuroscan Synamp2 Amplifier (Scan 4.3.1, Neurosoft
Labs, Inc. Virginia, USA) with 64 Ag/AgCl electrodes positioned according to the International
10–20 System (band pass: 0.05–100 Hz; sampling rate: 1000 Hz). All electrodes were first refer-
enced to the left mastoid and later digitally re-referenced to the linked mastoids. Vertical and
horizontal electrooculograms (EOGs) were recorded with two pairs of electrodes. One pair was
placed above and beneath the left eye in parallel with the pupil, and the other was placed at the
outer canthus of each eye. All electrode impedance was maintained below 5 kO. The offline
processing of the vertical ocular artifact correction used the regression approach described by
Semlitsch et al. [53]. The recorded data with blocks contaminated by amplifier clippings and
bursts of electromyographic activity were rejected.

Data analysis
WTA data. The WTAs provided by each subject were averaged within each anchor condi-

tion (high, medium and low). The WTAs in these three anchor conditions were analyzed using
repeated-measures analyses of variance (ANOVAs). The Greenhouse-Geisser correction was
applied for the violation of the sphericity assumption in ANOVA (uncorrected degrees of free-
dom are reported with corrected p-values and epsilon values (ε)), and multiple comparisons
were corrected with the Bonferroni method when appropriate.

To test for the effect size of anchors in our experiment and compare it with those in the pre-
vious studies, we analyzed this index in two ways. First, we computed the effect size as a per-
centage using the method described in Simonsohn et al. [14]. Second, we measured the effect
size with Cohen’s d (Cohen’s dav, see: [54], which is a commonly used metric in psychological
research.

ERP data. The EEG recordings for the ERP analysis were digitally low-pass filtered below
30 Hz (24 dB/Octave) and were segmented into epochs of 1000 ms, from 200 ms before to 800
ms after the anchor number stimuli and the noise onset, respectively, with the pre-stimuli
period as the baseline. The epochs with baseline-to-peak deflections that exceeded ± 80 μV
were excluded from averaging. The averaged ERPs were then created for each electrode of each
subject under both high and low anchor conditions.
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Similar to previous research [38,55,56], we observed components of P2 (160–260 ms) in the
frontal and central regions and LPP (350–600 ms) over the parietal and occipital lobes when
the anchor numbers were displayed. We also identified typical cortical auditory evoked poten-
tials (CAEPs) [57,58] as the N1-P2 complex (120–210 ms, peak-to-peak) from the frontal to
occipito-parietal regions at noise onset. For the P2 and LPP components, we used the mean
amplitudes of the previously mentioned time windows. For the N1-P2 complex, we first
defined two time windows of 100 to 150 ms and 180 to 240 ms for N1 and P2, respectively, by
visual inspection of each subject’s data and identified the individual time points of extrema in
these windows. Second, the peak amplitudes of N1 and P2 were then computed by the root
mean square maximum with an interval of 50 ms centered at the extrema time points. The
N1-P2 complex peak-to-peak amplitude represented the difference between these root mean
squares [58,59].

Based on the relevant literature and visual inspection of topographic maps, we identified
each component’s region of interest (ROI) that demonstrated the waveforms of the compo-
nent. To examine the effects of caudality and laterality, as well as the anchor condition, we
focused our statistical tests on certain electrodes that provided a good scalp distribution within
the ROI of each ERP component. The statistical analysis included 9 electrodes of F3, Fz, F4,
FC3, FCz, FC4, C3, Cz, and C4 in the frontal and central regions for P2; 12 electrodes of CP3,
CPz, CP4, P3, Pz, P4, PO3, POz, PO4, O1, Oz and O2 for LPP; and 15 electrodes of F3, Fz, F4,
FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz and P4 for the N1-P2 complex. Repeated-
measures ANOVAs were performed to assess the effects of three factors, anchor (high, low),
caudality (anterior to posterior) and laterality (left, middle, right), on these three components.
The Greenhouse-Geisser correction was applied for the violation of the sphericity assumption
in ANOVA (uncorrected degrees of freedom are reported with corrected p-values and epsilon
values (ε)), and multiple comparisons were corrected with the Bonferroni method when
appropriate.

Band power data. To explore the potential non-phase locked neural oscillations involved
in the valuation of the unpleasantness created by the noise, we examined the event-related
band power changes. For the purpose of the time-frequency analysis regarding band power, a
band-pass filter between 1 and 40 Hz (24 dB/Octave) was applied. The epoched data from 500
ms before and 4000 ms after the onset of the noise was baseline-corrected on the pre-stimulus
interval, and the epochs with baseline-to-peak deflections that exceeded ± 80 μV were
excluded. A short-term Fast Fourier Transform (FFT) with a fixed Hanning window of 250 ms
was used for the spectrogram. We used ERS and ERD to characterize the power changes [42].
ERS/ERD was computed as the percentage of increase/decrease of power during the post-stim-
ulus interval compared with baseline from -500 to -100 ms preceding noise onset [60]. The
averaged ERS/ERD was obtained for each electrode of each subject under each condition (high
and low).

A pronounced power increase between 1 and 9 Hz was identified shortly after noise onset
(~80–280 ms) from the frontal to parietal regions. Similar to previous research regarding the
emotion induced by and appraisal of various stimuli [45,47,48], a theta band ERS was observed
when the subjects listened to the noises. Following an inspection of the electrodes’ time-fre-
quency maps and the scalp topography of the band power change, we analyzed the theta band
(4–8 Hz) ERS on 45 electrodes within the above time window. Similar to the methods for ERP
statistics, the ERS data for these electrodes were analyzed according to their caudality and later-
ality. The electrodes were collapsed into 15 clusters according to their caudality and laterality
(Table 1). A 2 (anchor: high, low) × 5 (caudality: F, FC, C, CP, P) × 3 (laterality: left, middle,
right) three-way repeated measures ANOVA was applied to the cluster mean ERS. The Green-
house-Geisser correction was applied for the violation of the sphericity assumption in ANOVA
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(uncorrected degrees of freedom are reported with corrected p-values and epsilon values (ε)),
and multiple comparisons were corrected with the Bonferroni method when appropriate.

Results

Behavioral results
The analysis identified a significant effect of anchor on the subjects’WTA for the noise (F(2, 36)
= 29.881, p< 0.001). The post hoc pair-wise comparisons indicated that the average WTA was
significantly higher for the high anchor condition (M = 14.178, SD = 1.233) than for the low
condition (M = 10.576, SD = 0.987; phigh, low < 0.001), and the WTA in the medium condition
(M = 12.505, SD = 1.102) fell between the high and low conditions with significant discrepan-
cies (phigh, medium = 0.001, pmedium, low = 0.002). The effect size as percentage was 29.10% and
the effect size as Cohen’s d was 0.744.

ERP results
The grand average ERPs under the three anchor conditions are presented in Figs 2 and 3.
Repeated-measures ANOVAs of the mean amplitudes of P2 identified a significant main effect
of the anchor (F(1, 18) = 15.368, p = 0.001), whereas no main effect of the other factors or inter-
actions of the factors was identified (caudality: F(2, 36) = 2.324, p = 0.139, ε = 0.597; laterality:
F(2, 36) = 1.903, p = 0.164; anchor × caudality: F(2, 36) = 0.334, p = 0.718; anchor × laterality: F(2,
36) = 2.117, p = 0.135; caudality × laterality: F(4, 72) = 0.400, p = 0.704, ε = 0.582;
anchor × caudality × laterality: F(4, 72) = 0.825, p = 0.456, ε = 0.552). The high anchors induced
larger P2 amplitudes relative to the low anchors. The statistics for the mean LPP amplitude
indicated similar results: only the main effect of anchor (F(1, 18) = 7.289, p = 0.015) was signifi-
cant; the main effect of the other factors and the interactions of the factors was not significant
(caudality: F(3, 54) = 1.911, p = 0.182, ε = 0.382; laterality: F(2, 36) = 0.998, p = 0.379;
anchor × caudality: F(3, 54) = 0.331, p = 0.699, ε = 0.602; anchor × laterality: F(2, 36) = 0.244,

Table 1. Electrode clusters for theta band ERS repeated-measures ANOVA.

Clusters Laterality

Left Middle Right

Caudality F AF3, F7, F5, F3 F1, Fz, F2 F4, F6, F8, AF4

FC FT7, FC5, FC3 FC1, FCz, FC2 FC4, FC6, FT8

C T7, C5, C3 C1, Cz, C2 C4, C6, T8

CP TP7, CP5, CP3 CP1, CPz, CP2 CP4, CP6, TP8

P P5, P3 P1, Pz, P2 P4, P6

doi:10.1371/journal.pone.0139954.t001

Fig 2. Grand-average P2 waveforms from channels Fz, FCz and Cz in two anchor conditions (high,
low) time-locked to anchor onset.

doi:10.1371/journal.pone.0139954.g002
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p = 0.785; caudality × laterality: F(6, 108) = 0.400, p = 0.366, ε = 0.621; anchor × caudality × later-
ality: F(6, 108) = 1.314, p = 0.257). LPP amplitudes were larger in the high anchor condition.

The mean amplitude of the N1-P2 complex elicited by the noise did not differ significantly
between the high and low anchor conditions (F(1, 18) = 2.689, p = 0.118). However, both factors
of the electrode distribution had significant effects on the N1-P2 complex amplitude (caudality:
F(4, 72) = 23.079, p< 0.001, ε = 0.323; laterality: F(2, 36) = 66.607, p< 0.001). The amplitude was
larger in the central region and the midline and reached a maximum at Cz. No interaction
effects were identified (anchor × caudality: F(4, 72) = 1.291, p = 0.278, ε = 0.310;
anchor × laterality: F(2, 36) = 1.226, p = 0.294, ε = 0.663; caudality × laterality: F(8, 144) = 2.908,
p = 0.076, ε = 0.218; anchor × caudality × laterality: F(8, 144) = 0.510, p = 0.615, ε = 0.265).

Band power results
The theta band ERS results are illustrated in Fig 4. A significant main effect of the anchor on
the theta band ERS shortly after noise onset was observed (F(1, 18) = 4.576, p = 0.046). The
noise pieces in the high anchor condition induced a larger ERS in the theta band than those in
the low anchor condition. Moreover, the effect of scalp distribution on theta oscillatory activi-
ties was evident because the main effects of caudality (F(4, 72) = 23.747, p< 0.001, ε = 0.417)
and laterality (F(2, 36) = 18.793, p< 0.001) were both significant (Fig 4). The post hoc pair-wise
comparisons with Bonferroni correction indicated that the theta powers were significantly
larger in the frontocentral (FC, C) than the other (F, CP, P) regions (pFC,F < 0.001, pFC,CP =
0.007, pFC,P < 0.001; pC,F = 0.024, pC,CP < 0.001, pC,P < 0.001). The effect of laterality indicated
that the theta ERS in the midline was significantly larger than those in the left and right hemi-
spheres (pmiddle, left = 0.004, pmiddle, right < 0.001); however, there was no significant disparity in
the ERS between the left and right hemispheres (pleft, right = 0.485).

The interaction effect between the anchor and caudality was significant (F(4, 72) = 10.320,
p< 0.001, ε = 0.493). An additional simple effect analysis suggested that the theta ERS

Fig 3. Grand-average LPPwaveforms from channels CPz, Pz, POz and Oz in two anchor conditions
(high, low) time-locked to anchor onset.

doi:10.1371/journal.pone.0139954.g003
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difference under the two anchor conditions was significant from the central to posterior
regions (C: F(1, 18) = 6.44, p = 0.021; CP: F(1, 18) = 9.13, p = 0.007; P: F(1, 18) = 8.07, p = 0.011);
however, it was not pronounced in the more anterior regions (F: F(1, 18) = 0.70, p = 0.415; FC:
F(1, 18) = 1.02, p = 0.325). There was also a significant interaction between the anchor and later-
ality (F(2, 36) = 3.352, p = 0.046). A simple effect analysis demonstrated that the ERS was signifi-
cantly different in the midline and on the right hemisphere (middle: F(1, 18) = 6.18, p = 0.023;
right: F(1, 18) = 6.64, p = 0.019). The interaction between the anchor and laterality is illustrated
in Fig 5.

In addition, a significant interaction effect between caudality and laterality was observed
(F(8, 144) = 10.661, p< 0.001). However, a three-way interaction was not observed (F(8, 144) =
0.778, p = 0.537, ε = 0.473).

Fig 4. Theta band ERS differences. (A) The time-frequency map shows the subtraction of the ERS of the low anchor condition from that of the high anchor
condition over time (x-axis; 0 is onset of the noise stimulus) and frequency (y-axis) at Cz where ERS reached its maximum. The dotted contour corresponds
to the window of 80–280 ms, 4–8 Hz from which the topographical map data in (B), (C) and (D) were obtained. (B) Average theta band ERS (high and low
anchors) scalp map. (C) Difference in the theta band ERS (high anchor minus low anchor) scalp map. (D) Scalp map of the p-value of the one-tail t-test (high
anchor > low anchor) for the theta band ERS. Blue colors indicate p < 0.05.

doi:10.1371/journal.pone.0139954.g004
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Discussion
Although substantial research has demonstrated the omnipresence of anchoring effects,
whether arbitrary anchors exert effects on consumer WTA for hedonic experiences remains
controversial (see debates: [13,14]. Here, we utilized annoying sounds as judgment targets to
investigate anchoring effects. Because WTA for listening to annoying sounds was novel to the
subjects, there were no established market prices for this experience, and the subjects had a lim-
ited ability to use a specific pricing strategy based on previous knowledge or experience [11].
Moreover, the noise comprised a simple sensory experience with few confounding factors,
such as utilitarian aspects or aesthetics, which are typically tied to common consumer goods.
Finally, there was little satiation or sensitization throughout the repeated trials [2]. Thus, this
paradigm allowed us to explore the potential effects that could be predominately contributed
to the anchor. Consistent with Ariely et al. [2], our study demonstrated that the subjects’WTA
for noise pieces were assimilated to randomly drawn numbers. First, the statistics indicated
that the WTA was significantly larger in the high anchor condition than the low condition. Sec-
ond, to compare with previous studies, we further analyzed the anchoring effect size using the
methods of Simonsohn et al. [14]. The effect size was lower than that observed by Ariely et al.
[2] but higher than that reported by Maniadis et al. [13]. This effect size can be considered siz-
able according to Simonsohn et al. [14]. The effect size based on Cohen’s d also suggests that
the anchoring effect in our study approaches a large size (i.e., Cohen’s d = 0.8, [14]. These tests
further validate our findings and increase their comparability to existing studies. Thus, our
research provides evidence of the robustness of the anchoring effect in the domain of economic
value construction. Since initially demonstrated by Brown (1953, as cited in [20], the anchoring
effect has been considered to be among the most striking phenomena regarding value forma-
tion [61], and our research has again verified its universality in a specific judgment domain.
From another perspective, in the case of monetary valuation, prices attached to certain prod-
ucts or experiences can be affected by non-economic but psychological factors, including

Fig 5. Comparisons of the theta band ERS when the noise was played between the high and low
anchor conditions on the left, middle and right hemispheres. Data were collapsed within five caudalities
(F, FC, C, CP and P). Asterisks indicate significant (*p < 0.05) differences between the high and low anchor
conditions.

doi:10.1371/journal.pone.0139954.g005
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reference positions in the endowment effect [62], as well as irrelevant information in the
anchoring effect.

In the investigation of the potential cognitive mechanism of the anchoring phenomenon,
the EEG data suggested that random numbers affected the subjects’ final judgment by acting as
primes. The activated semantic information of these anchors biased the WTA because it
primed both the subjects’ expectations for the subsequent hedonic experience and the actual
perceptions of the experience. First, higher anchors induced larger frontal to central P2 and
posterior LPP amplitudes when the subjects viewed the numbers. In our experimental settings,
these two components can be interpreted as indicators of the extent to which the subjects per-
ceived the aversiveness of the subsequent experience, consistent with several ERP studies [35–
38,56]. Prior to exposure to images with negative emotional valence, increased P2 amplitudes
were observed in the subjects with a high intolerance of uncertainty, suggesting that P2 is asso-
ciated with cue-evoked worry [55]. A positive correlation between P2 amplitude and threat
anticipation intensity was also observed in a study of children [63]. In viewing picture cues for
potential subsequent electric shocks, the threat-of-shock pictures induced enhanced P2 and
LPP amplitudes [38]. Earlier ERP research regarding the emotional and attentional aspects of
P2 and late positive components has suggested that more affectively intensive stimuli elicited
larger amplitudes because they recruited more attention [64–67]. This finding may explain the
association between these two ERP components with various emotion-loaded stimuli in a sub-
stantial body of research. Therefore, it can be implied from our results that the semantic infor-
mation of anchor numbers was activated and led to anchor-consistent anticipatory emotions,
i.e., larger numbers indicated that more annoying noise pieces would follow. Moreover, exist-
ing studies have generally used explicit cues to inform subjects of the upcoming emotional sti-
muli; these cues consequently induced P2 or LPP because of their established associations with
certain emotions in the subsequent events. However, here, the elicitation of the same ERP com-
ponents should be primarily attributed to the activated anchors’ semantic information, which
shaped the subjects’ anticipation. Based on previous findings regarding the relationship
between anticipation and P2/LPP, these ERP components should demonstrate the association
of the anchors, perhaps implicitly but strongly, with the aversive upcoming experience, and
that the degree of anticipatory aversiveness corresponded with the semantic information acti-
vated by these anchors.

Second, the noise pieces induced theta band ERS, which was most pronounced in the central
regions and along the midline, and the noise pieces following higher anchors induced an over-
all larger ERS compared with those following lower anchors. Furthermore, the theta band ERS
difference was more pronounced in relatively posterior areas and lateralized to the right. Theta
band ERS is thought to reflect human brain activity enhancement by stimuli that are more
arousing or attract more attention, as suggested by Başar et al. [40] as “‘Orienting’—a coordi-
nated response indicating alertness, arousal or readiness, is related to theta oscillations. . .”.
Previous studies of affective visual [43–46] or audio [47] stimuli and dislikeness ratings in con-
sumer judgment [48] have suggested that larger theta band power in cortical regions, including
the frontal, central and parietal lobes, can be interpreted as an indicator of higher arousal of
negative emotion, and our data indicate that anchors also alter subjects’ unpleasantness toward
the noises they are subjected to. In addition, the theta ERS discrepancy between the high and
low anchor conditions was significant on the right but not the left hemisphere. Previous
research has suggested that power enhancement in the right frontal cortices may represent the
neural correlates of defensive or withdrawal motivation [68–70]. In alignment with this hemi-
sphere theory, several studies have identified larger overall theta band power of more negative
affective responses in the right hemisphere [47,48]. Thus, the larger ERS in high compared
with low anchor conditions over the right hemisphere may further indicate more negative
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experiences when subjects listened to noise following higher numbers in this experiment. This
interpretation is supported by a study that demonstrated greater activation in the right hemi-
sphere in response to negative cues in emotion perception [71]. Within the domain of second-
ary reward value coding, studies have also provided evidence for a correlation between theta
band ERS and monetary valuation. Enhanced theta band synchronization has been demon-
strated to be related to monetary losses during the feedback stage of gambles [72–74], which
indicates that theta power may denote brain coding for negative outcome valuation. Our results
may also suggest a similarity of brain coding between negative primary and secondary values.
There was no difference between the two anchor conditions in the typical auditory evoked
potential N1-P2 complex, which was a vertex potential consistent with previous research [75].
This result indicates that there was no distinction between the spectral and temporal properties
of the noise pieces played in the two conditions [59,76], and differences in annoyingness should
not be ascribed to physical factors, such as frequency and loudness. The EEG evidence suggests
that anchors modulated the neural basis of the formation of the hedonic experience valuation.
During the process of target judging, previously activated semantic information consistent
with the anchors remained strong and accessible to prime the subjects’ judgments in an assimi-
latory way.

These EEG results support the semantic priming model of anchoring effects on WTA, in
which activation of anchor-consistent semantic information is increased and a judgment is
formed overly based on this more accessible type of information [21]. By directly observing the
EEG when the subjects encountered arbitrary anchors and were exposed to the judgment tar-
gets, we demonstrated that the anchor numbers were immediately processed as primes that
activated various levels of anticipatory negative emotion, even though the subjects had not
begun to utilize the anchor numbers as a price reference within the time interval of several hun-
dred milliseconds. Semantic information may have anchored the subjects’WTA as early as in
the evaluation stage before the final value elicitation of the target because our data demon-
strated that the emotional responses to listening to the noise were consistent with what the
anchors had cued. Compared to existing EEG research on anchoring effects [24], we consider
it is not probable that the anchors’ influence on WTA can be attributed to an insufficient
adjustment process. If the anchor numbers were used as starting points of adjustment, they
should not have produced disparity of expectation to the noise as reflected by the ERP compo-
nents here under different anchor conditions. Neither should they bias the actual feeling,
which was indicated by the ERS difference, when subjects underwent the painful experience.
Furthermore, as put forward in previous anchoring research [77], the adjustment process itself
is likely to be the same in both high and low anchor conditions. Thus, even if the adjustment
exists in the valuation formation or presentation on an explicit scale and is represented by the
EEG data, there should be no significant differences of the EEG indices under the two anchor
conditions. Clearly this is not the case in our results. Our EEG results also suggest that the
anchoring effect here should not be attributed to a numeric priming process where judgments
are simply primed by the numeric magnitudes of the anchors, because we didn’t observe differ-
ence in those ERP components (i.e. N1, N2, P2p and P300) that were proved to be related to
numeric magnitude processing (cf. [78–81]. Nevertheless, this interpretation must be treated
cautiously. In our study, the numeric magnitude is not dissociable from the anchors because
they are essentially numbers. Therefore, future research is still required to address the compari-
son of the numeric and semantic priming models. Previous studies have typically inferred the
cognitive mechanisms from the anchored judgment results. Researchers have exerted certain
manipulations that could change participants’ cognitive styles or information processing and
thus modulate the anchoring effect and conjectured the causes of anchoring effects from the
results (e.g., [17,82]. Few studies have observed the process of judgment formation [20,83] or

An EEG Study of the Anchoring Effect

PLOS ONE | DOI:10.1371/journal.pone.0139954 October 6, 2015 13 / 18



brain activities that reflect this process [84]. The current study is the first to primarily address
the mechanisms of anchoring effects on valuation using neuroscientific methods to explore the
anchoring process.

Moreover, our finding that irrelevant anchors act on WTA via the modulation of subjective
hedonic experiences supports the theories of context dependency in human valuation by pro-
viding direct evidence of brain activities in the value coding process. Plassmann et al. [32] dem-
onstrated that increasing prices of wines could increase the reported ratings of the pleasantness
of tasting, as well as the neural activation in the medial orbitofrontal cortex, an area associated
with pleasantness for hedonic experiences. Research regarding the subjective affective rating of
odors also demonstrated that the reported pleasantness of the same odor varied when labeled
with different names, and the modulation of labels was reflected in the rostral anterior cingu-
late and medial orbitofrontal cortex activities [85]. Wager et al. [28,86] investigated the placebo
effects of pain and demonstrated that the actual pain perception was biologically modulated by
placebos, as reflected by the activation in pain-related brain regions (thalamus, insula, and
anterior cingulate cortex) and laser-evoked potentials. Similarly, in our experiment, randomly
drawn numbers influenced the electrophysiological response induced by aversive stimuli,
which suggests that the subjective ratings regarding the hedonic experience represented by
WTA were sensitive to external references of different forms. However, the contextual factors
in this current research were evidently random numbers rather than attached price tags or
labels as in previous studies, which were naturally perceived to possess information of products
or hedonic experience. Thus, our findings further imply that this sensitivity to the judgment
context remains even when information appears as a very subtle hint.

Researchers have noted that in contrast to classical economic theories, individuals lack an
inherent, stable preference and a value scale that is immune to the judgment context and pres-
ence of prior cues [87,88]. The human brain often constructs value in a relative manner in
which relative coding and adaptive scaling may occur [26]. This study supports previous
research by demonstrating the arbitrariness [2] of the hedonic experience valuation created by
random anchors. More importantly, the neural processing during the valuation was directly
examined to investigate the potential cognitive models that underlie anchoring effects, and the
electrophysiological responses suggested that anchors primed the subsequent valuation via the
activation of semantic information that both updated prior beliefs and altered the experience
of the judgment targets.
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