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Abstract

It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated
with a range of neurodegenerative disorders such as Alzheimer’s and Parkinson diseases. Computer simulations of the
processes that lead to the formation of these oligomeric species are starting to make significant contributions to our
understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but
with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy
of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite
size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and
the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a
probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis.
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Introduction

A major field of study in protein science is the understanding of

the causes, and implications of protein aggregation. The misfold-

ing of proteins often results in aggregates and in the formation of

highly regular structures called amyloid fibrils [1–3]. Amyloids are

best known for their involvement in pathological conditions such

as type II diabetes systemic amyloidosis and neurodegenerative

disorders such as Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob

diseases [3–7]. Increasing evidence is showing that indeed it is the

soluble pre-fibrillar or oligomeric species, rather than the insoluble

amyloid fibrils themselves, which are responsible for toxicity and

neuronal disfunction [8–10]. Even if highly complex processes are

associated with oligomer toxicity, a view is gaining support

according to which the ability to form toxic oligomeric species

represents an intrinsic property of polypeptide chains at some

stage of their oligomerization process [8,10]. Despite this growing

interest in the role of peptide and protein oligomers in disease, the

molecular mechanism by which they are formed is still the object

of investigation of several in vivo, in vitro, and in silico studies [4,11–

19]. However, since it is challenging to describe the early stages of

aggregation of polypeptide chains experimentally, primarily

because of the difficulties in detecting and characterising the

small, structurally heterogeneous and transient species that are

involved, a detailed description of this process at the molecular

level remains in large part elusive. In particular the heterogeneous

nature of these species implies that their free energy landscape is

very rugged. Theoretical studies are starting to make important

contributions to the understanding of these diseases by investigat-

ing the partially unfolded intermediates and the structural features

of the oligomeric species [15,16,18,20–24].

Due to limitations in computers power, simulations are usually

performed in the NVT ensemble on systems ranging form a couple

of peptides with detailed all atom models to several hundred with

very coarse grained models [15–35]. We will discuss how these

studies can be affected by the finite size effect and how this has

repercussions on the underlying free energy of the system. This is

indeed a major difference between in silico and in vitro studies, as in

the latter the number of proteins is in the order of the Avogadro

number. This effect has been studied in the case of proteins of

different lengths [36]. In the following we will discuss in detail the

finite size effect specifically in the case of simulations of protein

aggregation and we will underline some strategies to deal with it.

Results

Free Energy Calculations in Systems with Different Sizes
We study how the actual number of proteins or peptides in our

simulation, irrespectively of their concentration, affects the

underlying free energy landscape of the system. In particular we

investigate six systems of three, four, six, eight, nine and twelve

‘‘Gly-Phe-Phe’’ (GFF) peptides at constant concentration and for

eight different temperatures using the parallel tempering technique

and with periodic boundary conditions (see Methods). A similar

peptide (Phe-Phe), was studied experimentally by the group of

Gazit [37] and it was found to form nanotube-like structures. We

choose however to add a Gly to the peptide to increase its

propensity to form inter-peptide hydrogen bonding.

For each system we calculate the free energy as a function of the

inter-chain hydrogen bond interaction energy normalised over the

number of peptides for each different temperature used in the

parallel tempering. In this way we can monitor the formation and

stability of the aggregated state alone. Our computationally

efficient Monte Carlo sampling allow us to calculate easily the

free energy landscape for systems up to twelve GFF peptides. In

Fig 1, Fig 2, and Fig 3 we plot such landscapes and we can notice

how in each system the aggregated state becomes more stable as

the temperature decreases and how by increasing system size the
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aggregates become stable for increasingly higher temperatures.

The influence of the number of particles on the free energy of the

system for a given concentration can be explained by the following

example. If we consider a system where all N proteins are

aggregated (e.g. N = 3 in Fig 4, left) the probability of another

protein to be added to the oligomer is zero simply because there

are no monomers left. For this given set of conditions (temperature

and concentration), therefore, the proteins in the aggregated state

Figure 1. Free Energy landscape as a function of inter chain hydrogen bond energy for a system of 3 peptides for temperatures
ranging from T = 0.588 to T = 0.322. In the lower right corner we show a characteristic oligomeric configuration at T = 0.322.
doi:10.1371/journal.pone.0002641.g001

Figure 2. Free Energy landscape as a function of inter chain hydrogen bond energy for a system of 6 peptides for temperatures
ranging from T = 0.588 to T = 0.322. In the lower right corner we show a characteristic oligomeric configuration at T = 0.322. By comparing the
free energy profile for T = 0.4 in the present and in Fig: 1, we can notice the increase in stability of the aggregated phase that results by simply
increasing the number of peptide in the system and the volume of the system so that the concentration remains constant.
doi:10.1371/journal.pone.0002641.g002
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have just a probability of becoming monomers. If the number of

proteins and the volume of the system are increased so that the

concentration in unchanged (Fig 5 right) the probability of the

proteins in the oligomers to go back in solution is the same as before

but this time the probability of the aggregate to grow is also different

from zero, because there is one more monomer left in the solution.

As a result the stability of the oligomer of size N is increased. In other

words, by increasing the number of proteins for a given

concentration and temperature, the free energy barrier between

the monomeric and the aggregated phases also increases and the

stability of the aggregates increases as we can see for example from

comparing the free energy at T = 0.4 in Figs 1 and 2.

Another reason for this change in stability is related to the

change in the relative size of the fluctuations of the energy of the

system. Being the energy an extensive quantity its expectation

value (mean) is proportional to the number of particles in the

system while its root mean square fluctuations (standard deviation)

are proportional only to the square root of that number.
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In small systems therefore, this ratio is not negligible, so the

energy fluctuations can destabilise the system, while a system with

large N having more degrees of freedom, has also more ways to

absorb the energy and therefore its fluctuations are smaller. Small

Figure 3. Free Energy landscape as a function of inter chain hydrogen bond energy for a system of 12 peptides for temperatures
ranging from T = 0.588 to T = 0.322. In the lower right corner we show a characteristic oligomeric configuration at T = 0.322.
doi:10.1371/journal.pone.0002641.g003

Figure 4. Schematic change in the probability of aggregation
in two systems with different number of proteins. If the proteins
in the system are all aggregated (left) the stability of an oligomer
formed by three proteins is limited by the probability of one protein to
go back in solution. In another system (right) both the number of
proteins and the volume are increased so that the concentration is left
unchanged but since there is one monomer still in solution that can
potentially aggregate, the stability of the oligomer is increased.
doi:10.1371/journal.pone.0002641.g004

Figure 5. Finite size scaling analysis. We fitted the average internal
energy in each system to the equation: e(N) = e‘+ANa and we plotted
the results as a function of N20.82, where 20.82 is the value of a
obtained from the fit using all our available data.
doi:10.1371/journal.pone.0002641.g005
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systems have larger spontaneous fluctuations and the stability of

their aggregated phase changes consequently. This latter effect

should be expected to be smaller for larger proteins [36] in which

the large number of amino acids (degrees of freedom) will reduce,

already in the monomer, the energy fluctuations. Indeed this

would also be the case if the simulations are performed in explicit

solvent as the number of degrees of freedom is increased and

therefore the energy fluctuations become smaller.

Finite Size Scaling
In Fig 5 we discuss the finite size analysis to this problem. This

type of analysis is commonly used to estimate the typical systematic

errors introduced by the finite size of the system on the calculation

of various observables. The analysis starts by simulating systems of

different sizes at equilibrium and calculating an observable (e.g. the

internal energy). Following the procedure used in [38], we fit the

average internal energy per peptide with an equation of the form:

e(N) = e‘+ANa, where e‘ is the asymptotic value of the internal

energy for infinite systems, N is the system size (i.e. the number of

peptides or proteins used in the simulation) and a is the scaling

exponent. For this particular example we do not have estimates for

e‘ and a, as was the case in [38], therefore we fit all three

parameters to the average internal energy calculated for the lowest

temperature, T = 0.322, in which we know from our free energy

profiles that the peptides are aggregated. Since we have three

parameters to fit with only 6 points, our estimates will not be very

reliable so by fitting our equation to all possible combinations of

5 points we obtain a rough estimate of their range of validity:

212.5#e‘#29.5, 0.01#A#0.05, 21.1#a#20.6. These values

are obviously too broad and a more precise estimate, in particular

of the exponent a, should be obtained, either by using a more

coarse grained model that will allow simulations of large systems,

or by an explicit analytical calculation. In Fig 5 we plot our data

along with the best fit over the entire set of data as a function of

N20.82, where 20.82 is the value of a taken from this fit. Future

work will be required to understand more deeply the precise

nature of the exponent a, particularly to understand if it belongs to

the class of critical exponents [39] and has therefore a high degree of

universality i.e. its value is constant for a class of different proteins

having similar characteristics.

Discussion

In the present paper we have discussed the how the number of

protein present in the system, if small, influences the underlying

free energy and therefore shifts the equilibrium between the

different species. We have discussed two independent causes of this

problem; the first being that the stability of an oligomer is related

to the number of monomers or other oligomers still present in the

system, the second related to the relative fluctuations of the system

being proportional to N21/2.

The presence of this finite size effect has very important

implications for the in silico studies of protein aggregation, e.g. it is

the reason why usually the protein concentration in these studies is

taken to be much larger than the concentration used in the

corresponding in vitro studies and, more importantly, implies the

presence of a systematic error in every estimate of the stability or

the rate of formation of one specific aggregate configuration. A

way to deal with these problems is to perform a finite size scaling

analysis. This type of analysis allows to correct one observable (as

we did for the internal energy in section ‘‘Finite Size Scaling’’) for

the systematic error introduced by the finite size of the system. We

have outlined how this analysis works, how to carry it out, and we

have estimated the values of the parameters within a small range.

A more precise estimate of these parameters would be needed and

to this end a coarse grained model should be employed to be able

to study a much larger number of peptides and to obtain a precise

estimate of the parameters of the scaling analysis. More work will

also be required to investigate the degree of universality of such

analysis i.e. whether a class of proteins with similar characteristics

have the same critical exponent [39]. If verified this would

represent a leap forward in our understanding of the generic

physical properties of protein aggregation. The theory behind

critical exponents was object of intensive studies in physics in

between the 1964–1976. Nowadays, at least from a physical point

of view the problem is essentially solved, although in many cases

only approximate solutions are available.

Some biological problems require, however, the use of models

with a detailed geometrical representation [15,18,20,23,40]. The

use of these models makes the finite scaling analysis computation-

ally very difficult, particularly for the study of large systems of

medium or large peptides. In these cases a special care should be

taken in the interpretation of the theoretical results. A useful

approach is the one we have taken in a recent study [40] where we

calculated the free energy as a function of the b-sheet size for two

systems of 20 and 30 Ab25–35 peptides, under the same conditions

of temperature and concentration. A comparison between the free

energy of the two systems allowed us to estimate up to which point

our calculations were reliable, and the trend of the errors on the free

energy due to the finite size effect. Understanding in detail the

systematic error induced by the finite size effect in simulations of

aggregation is becoming an issue of the utmost importance as

theoretical studies are becoming more precise and their descrip-

tion of the process is becoming more quantitative. We believe

therefore, that the results that we have presented in the present

study and the results of [36] represent a very important initial step

towards the formulation of a more general theory of finite size

scaling for protein aggregation.

Methods

Simulations were carried out with ProFASi (Protein Folding and

Aggregation Simulator) [41], which implements an implicit water

all-atom model [41–45] for protein folding and aggregation

studies. The model assumes fixed bond lengths, bond angles, and

peptide torsional angles, so that each amino acid has only has the

Ramachandran torsional angles and the side chains torsional

angles as its degrees of freedom. The interaction potential

E~EloczEevzEhbzEhp ð1Þ

is composed of four terms. The Eloc term is local and represents an

electrostatic interaction between adjacent peptides along the chain

and the Eev term is an 1/r12 repulsion between pairs of atoms. The

hydrogen bonding contributions to the energy are calculated by a

term, Ehb, in which the distance dependence is modelled through a

Lennard-Jones potential between pairs of NH and C’O groups

within a given cutoff of 4.5 Å, and the angular dependence is

expressed as a function of the NH � � �O and H � � �OC0 angles.

The hydrogen bonds between the backbone NH (C’O) groups and

the C’O (NH) groups on each side of them are disallowed. The GFF

peptide used in this study, therefore, does not form intra-chain

hydrogen bonds and the hydrogen bonding term of the energy

monitors only the formation of intra-chain hydrogen bonds. The

hydrophobicity term Ehp is defined by a contact potential between

hydrophobic side chains, the latter being proportional to the

fraction of atoms in contact in the two amino acids. The

parameters of the potential were chosen by optimizing the

Finite Size Effect
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agreement with the melting temperature of the Trp. Cage mini-

protein; the resulting force field has been shown to reproduce

accurately the folded states and the melting temperatures of a

range of polypeptide chains of both a and b structures, including

Betanova, GB1p, LLM and Fs, with excellent agreement with both

CD and NMR data. In addition, properties such as the content of

a-helix and the relative population of folded species was also found

to be in excellent agreement with experimental data. ProFASi has

also already been applied to study the aggregation of a series of

short peptides, including the Ab16–22 and Ab25–35 peptides

[15,30,40]. We performed simulations of six systems composed

of three, four, six, eight, nine and twelve GFF three-peptides, using

the parallel tempering technique [46–47] using 8 temperatures

ranging from T = 0.322 to T = 0.588 (Fig 1, Fig 2 and Fig 3). We

choose not to map the Monte Carlo temperature in Kelvin units as

was done by Irbäck and co-workers [42] for the folding of small

peptides because in the case of aggregation being the underlying

free energy changed due to the finite size effect, it should be tested

experimentally whether any such mapping still holds true. The

simulations were performed in a cubic box with periodic boundary

conditions of sizes respectively: 20, 22.01 25.2, 27.72, 28.84 and

31,74 Å. We changed the volume for different for systems with

different number of peptides so to keep the concentration constant.
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