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Abstract: The aim of this study was to optimize the adsorption performance of activated carbon (AC),
derived from the shell of Penaeus vannamei prawns, on heavy metal ions. Inexpensive, non-toxic,
and renewable prawn shells were subjected to carbonization and, subsequently, KOH-activation to
produce nanoporous K-Ac. Carbonized prawn shells (CPS) and nanoporous KOH-activated carbon
(K-Ac) from prawn shells were prepared and characterized by FTIR, XRD, BET, SEM, and TEM.
The results showed that as-produced K-Ac samples were a porous material with microporous and
mesoporous structures and had a high specific surface area of 3160 m2/g, average pore size of about
10 nm, and large pore volume of 2.38 m3/g. Furthermore, batches of K-Ac samples were employed
for testing the adsorption behavior of Cd2+ in solution. The effects of pH value, initial concentration,
and adsorption time on Cd2+ were systematically investigated. Kinetics and isotherm model analysis
of the adsorption of Cd2+ on K-Ac showed that experimental data were not only consistent with
the Langmuir adsorption isotherm, but also well-described by the quasi-first-order model. Finally,
the adsorption behaviors of as-prepared K-Ac were also tested in a ternary mixture of heavy metal
ions Cu2+, Cr6+, and Cd2+, and the total adsorption amount of 560 mg/g was obtained.
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1. Introduction

Activated carbon (AC) is a remarkable adsorbent with high specific surface area, high pore
volume, and adjustable surface physical and chemical properties. It is widely used in the remediation
of industrial waste water and contaminated groundwater [1,2]. Heavy metal pollution is a serious
environmental problem [3,4]. Copper is one of the most widely used and most common heavy metals
in industrial production activities [5–8]. Excessive exposure to Cu(II) can lead to the accumulation
of Cu(II) through aquaculture organisms to the human body via food chains [9–11]. Cr(VI) mainly
exists as anions (CrO4

2−, HCrO4
−, and Cr2O7

2−) in solution, and its solubility and mobility are higher
than that of Cr(III) [12,13]. Furthermore, Cr(VI) is a strong carcinogenic and mutagenic agent, and its
antoxicity is 100 times higher than that of Cr(III) [14]. Among heavy metals, Cd, as one of the most
important persistent inorganic pollutants, can generate severe toxicity to plants, animals, and humans,
even at low concentrations [15]. Thus, the removal of heavy metals from water is urgently needed.
In order to enable AC to adsorb various heavy metal ions in wastewater rapidly and effectively,
the internal structure and surface properties of AC can be purposefully modified and altered according
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to the various characteristics of the heavy metal ions to be removed and the differences between the
external environment. However, the high production cost of AC is a major challenge, which has greatly
hindered its practical application. In recent decades, renewable, nontoxic, and low-cost alternative
bio-based materials, such as shells, agricultural residues, and other biomass [16–19] have been paid
much attention. By using a very promising cost-efficient technology, researchers can turn those waste
materials into carbonaceous materials, i.e., ACs. There are many studies that have been devoted to
the manufacturing of high specific surface area carbon adsorbents [20–23]. Basically, two methods,
i.e., physical and chemical activation, are usually employed to produce ACs [24]. It has been reported
that KOH chemical activation is better than steam activation, with respect to the development of
porosity, specific surface area, and total pore volume [25]. A large number of experimental studies
have shown that biomass adsorbents prepared using different raw materials have good adsorption
properties for various heavy metal ions. For instance, a piece of charcoal derived from coconut shell
has a higher Cr adsorption capacity than that of commercial activated carbon after being oxidized
with nitric acid [26]. Activated carbon with a high specific surface area of 2943 m2/g was reported and
prepared from lignin of papermaking black liquor by KOH activation and used for the application
of Ni(II) adsorption [27]. Banana peels were also subjected to carbonization and, subsequently,
KOH-activation, and its maximum adsorption capacity for Cu2+, Ni2+, and Pb2+ was reported to follow
the order: Cu2+ (14.3 mg/g) < Ni2+ (27.4 mg/g) < Pb2+ (34.5 mg/g) [28].

Prawn shell is a kind of food waste and industrial by-product in our daily life, which mainly
contains chitin (polysaccharide), calcium protein, and crude fat, which can be converted to carbon
material by simple pyrolysis [29]. In industrial prawn processing, approximately 20% of the gross
weight of prawn is abandoned as waste. Most prawn shells are discarded, or made into fodder.
Only a small portion can be used to extract chitin, and its preparation process leads to very serious
environmental pollution [30–32]. Research on the use of prawn shell waste to prepare a new type of
biomass carbon material with high specific surface area can not only solve the problem of ecological
environment pollution, but also reduce production costs.

Biochar has attracted widespread attention due to its low cost, high specific surface area,
good stability, and wide range of sources [33]. The adsorption capacity of biological carbon is
mainly determined by its physical and chemical properties, such as elemental composition, surface
chemistry, and structural characteristics, which are usually controlled by preparation conditions,
including calcination temperature, inert gas flow, heating rate, and time [34]. Therefore, in the
process of preparing carbon material with high specific surface areas, some modifiers are usually used
to modify its structure and surface functional groups. Among many activated agents, KOH has
been widely employed for preparing AC materials by many researchers, since it can result in
ACs with defined micropore size distribution, high pore volume, and a very high specific surface
area of up to 3000 m2/g [35–37]. Ru-Ling Tseng [38] produced carbonaceous adsorbents with
surface areas ranging from 841 to 1221 m2/g by using corncobs at 780 ◦C for carbonization and,
subsequently, KOH-activation.

In this study, the preparation of AC derived from prawn shells was designed by processing
carbonization (CPS) and KOH activation (K-Ac). The adsorption performance of as-prepared
adsorbent samples was investigated, and the adsorption efficiency of as-prepared K-Ac was carried
out by using Cd2+ in aqueous solution as a model adsorbate, and the effect of pH value, initial
concentration, and adsorption time on Cd2+ adsorption was systematically investigated. The data of
these experiments were evaluated and simulated by various adsorption kinetics and thermodynamics.
Finally, the adsorption properties of K-Ac in heavy metal ions Cu2+, Cr6+, and Cd2+ ternary systems
were also studied.
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2. Materials and Methods

2.1. Materials

Raw prawn shell (Penaeus vannamei) was provided by Zhoushan Evergreen Seafood Food Co.,
Ltd., Zhoushan, Zhejiang, China. It was washed repeatedly with deionized water to remove various
impurities, and dried at 110 ◦C. A metal ion Cd2+ solution was prepared by using cadmium nitrate,
which was purchased from China Traditional Chinese Medicine Group Chemical Reagents Co., Ltd.
(Shanghai, China). Cadmium stock solution (Cd2+ mass concentration of 0.1 g/L) was prepared by
dissolving 0.2744 g of cadmium nitrate in 1 L deionized water.

All work solutions were obtained by proper dilution with deionized water. Hydrochloric
acid, sulfuric acid, phosphoric acid, potassium hydroxide, copper nitrate, potassium dichromate,
and other chemicals used in this study were all of analytical reagent grade and purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Deionized water was used throughout the
experimental process.

2.2. Preparation of K-Ac Materials

The tubular furnace process carbonization and KOH activation method were employed for
preparing K-Ac adsorbents according to the method reported previously, with some modifications [39].
Firstly, the square crucible containing 20 g of raw prawn shell was placed in a three-zone tube furnace
(Guangzhou Dijiduo Instrument Co., Ltd, Guangzhou, China). Then, nitrogen was introduced at a
flow rate of 100 mL/min for about 1 h, followed by a 10 ◦C/min heating rate. After carbonization at
800 ◦C for 3 h, the residue was mixed with 1 mol/L HCl for 1 h. Subsequently, the residue was filtered,
washed to neutrality, and dried for 8 h at 105 ◦C to give the prawn shell biochar (CPS). For activation,
the mass ratio of potassium hydroxide and CPS 3:1 was uniformly mixed, and ground in a mortar.
The mixture was then placed in a three-temperature zone tube furnace, and activated at 800 ◦C for 1 h.
The residue was mixed with 2 mol/L HCl for 2 h. Finally, the residue was filtered, washed to neutrality,
and dried for 6 h at 105 ◦C to obtain the modified prawn shell biomass carbon (K-Ac). The resultant
K-Ac materials were used for characterization and Cd2+ adsorption studies. The production steps are
illustrated in Figure 1.
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2.3. Adsorbent Characterization

Scanning Electron Microscopy (SEM, JSM-6360LV, JEOL, Japan Electronics Corporation, Beijing,
China) with high resolution was employed to analyze the morphology of the adsorbent surface.
A small amount of the sample with double-sided adhesive was fixed to the sample holder, and then
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sprayed with an ultra-thin gold film in a vacuum-coating machine. Acquired information was obtained
for 100 s at 20 kV and 15 mm scan spacing. Nitrogen adsorption-desorption experiments (BET) were
performed by using the Quantachrome Autosorb NOVA2200e analyzer (American Conta Instrument
Co., Ltd., Shanghai, China) at 77.0 K; the specific surface area was calculated by using the BET method;
the distribution of pore size was determined from the adsorption branch; and the total pore volume was
determined by nitrogen adsorption at p/p0 = 0–1 to obtain nitrogen adsorption desorption isothermal
curves. The elemental mapping image (EMI) was obtained by transmission electron microscopy (TEM)
(JEM-2100F, Beijing Kesi Instrument Co., Ltd., Beijing, China). The DX-2700 X-ray diffractometer (XRD)
(Japan Science Co., Ltd., Shanghai, China) was used to analyze the phase transition of as-prepared
samples. Functional groups and the chemical bond analysis of the sample were carried out using a
Fourier transform infrared spectrometer in a wave-number range of 500–4500 cm−1 by a resolution of
4 cm−1 in transmittance mode (FTIR, IR Affinity-1s, Nikon Corporation, Shanghai, China). The residual
Cd2+ ion concentration after adsorption was determined by a UV-Vis Spectrophotometer (UV-1200,
Shanghai Mapada Instruments, Shanghai, China) at 518 nm. The residual concentration of Cd2+, Cr6+,
and Cu2+ was analyzed using an Atomic absorption spectrophotometer (TAS-990, Shanghai Mapada
Instruments, Shanghai, China).

2.4. Adsorption Experiments

Batch mode adsorption experiments were conducted by agitating 50 mL 10 mg/L of Cd2+ solution
and 0.25 g K-Ac in a sealed reagent bottle. All batch adsorption experiments were first oscillated for
60 min on a shaker (150 r/min) to reach the adsorption equilibrium, and then centrifuged for 5 min
at 8000 r/min. The purpose of centrifugation was to separate the activated carbon from the solution,
because the K-Ac is insoluble in water. After being adsorbed, it needed to be centrifugally separated
from solution; the ion concentration in the solution could be measured accurately. The pH of the
solutions were adjusted to the desired values, with 0.1 mol/L HCl or 0.1 mol/L NaOH solutions.
Some other conditions were researched, including the effect of pH values of adsorbent solutions (pH
= 1.0–7.0) using 10 mg/L of the initial Cd2+ concentration; the contact time (20–200 min) at pH 5.0
using 10 mg/L inital Cd2+ solution and took samples every 20 min; and the influence of cadmium
concentration in the solution (10–400 mg/L) at pH 5.0. The Cd2+ equilibrium adsorption was calculated
using the following equation:

q =
(C0 − C) · V

m
(1)

where q (mg/g) is the adsorption capacity values of prawn shell-based biosorbent for Cd2+, and C0 and
C (mg/L) are the liquid-phase concentrations of Cd2+ before and after the adsorptions, respectively.
V (L) is the volume of the solution and m (g) is the mass of the dry adsorbent used. The experimental
results are the average values from three replicated runs.

A metal ion Cu2+ solution was prepared from copper nitrate and used to study the adsorption
capacities of K-Ac in heavy metal ions Cu2+, Cr6+, and Cd2+ ternary systems. Copper stock solution
(Cu2+ mass concentration of 0.2 g/L) was prepared by dissolving 0.5861 g of copper nitrate in 1 L
deionized water; then, 10 mL of copper stock solution was transferred to a 100 mL volumetric flask to
prepare a Cu2+ standard solution (Cu2+ mass concentration of 2 µg/mL). A metal ion Cr6+ solution,
applied to determine the adsorption amounts of K-Ac in heavy metal ions Cu2+, Cr6+, and Cd2+ ternary
systems, was potassium dichromate. Chromium stock solution (Cr6+ mass concentration of 0.1 g/L)
was prepared by dissolving 0.2829 g of potassium dichromate in 1 L deionized water, and then, 10 mL
of chromium stock solution was transferred to a 1 L volumetric flask to produce a Cr6+ standard
solution (Cr6+ mass concentration of 1 µg/mL).

For the ternary system, batch mode adsorption experiments were conducted by stirring 50 mL of
the desired concentration of metal ion solutions of desired concentrations in sealed reagent bottles in
all of the adsorption experiments. Cu2+ and Cr6+ were added as interfering ions to solutions of various
Cd2+ concentrations (10–400 mg/L), and then corresponding amounts of Cu2+ and Cr6+ standards
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were added. 0.25 g K-Ac sample was added at pH 5.0 and the solution was first oscillated for 60 min on
a shaker (150 r/min) to achieve adsorption equilibrium, and then centrifuged for 5 min at 8000 r/min.

2.5. Thermodynamics and Kinetics of K-Ac

2.5.1. Adsorption Thermodynamics

In order to study the maximum adsorption and adsorption isotherm curves of K-Ac for Cd2+,
the two most common adsorption isotherms, Langmuir and Freundlich, were used to fit the adsorption
process [40]. The Langmuir monolayer adsorption isotherm can be applied to the adsorption of heavy
metals for a certain period of time, while the Freundlich adsorption isotherm model is often used to fit
the interaction between adsorbed molecules on the surface of heterogeneous media. The Freundlich
adsorption isotherm model is often used to fit the interaction between the adsorption and distribution
on the surface of non-uniform medium, and can be used in various non-ideal conditions for the
adsorption process and the multi molecular adsorption process. Therefore, the adsorption process can
be well-described at an appropriate concentration. The expression formulas are given below:

Qe =
KLQmCe

1 + KLCe
(2)

Qe = KFCe
1
n (3)

RL =
1

(1 + KLCe)
(4)

where Qe and Qm (mg/g) are the adsorption amounts when reaching equilibrium and the monolayer
adsorption capacity, respectively. Ce (mg/L) is the liquid phase concentration of Cd2+ at equilibrium.
KL and KF (mg/g) are the Langmuir and Freundlich equilibrium kinetic models, respectively;
n (dimensionless) is a constant related to the nature and the intensity of adsorption; RL is a
non-dimensional separation factor, which can predict whether the adsorption isotherm form is
favorable to the adsorption process between the adsorbate and adsorbent (if RL > 1 indicates that it is
not suitable for adsorption, RL = 1 means that the isotherm form is linear; 0 < RL < 1 indicates that it is
suitable for adsorption; and RL = 0 is irrelevant [41]).

2.5.2. Adsorption Kinetics

In order to study the kinetics of adsorption, the experimental curve was fitted to a quasi-first-order
and quasi-second-order model. The quasi-first-order kinetic model is a Lagergren first-order rate
equation based on the amount of solid adsorption. The quasi-second model is based on the assumption
that the adsorption rate is controlled by the chemisorption mechanism, which involves electron
sharing or electron transfer between the adsorbent and adsorbate. Both models are the difference
between the amount of Cd2+ adsorbed by K-Ac at t-time and the amount of adsorption at equilibrium.
They are the driving force for adsorption. The adsorption rate of the quasi-first-order kinetic
model [42–45] is proportional to the driving force, and the adsorption rate of the quasi-second-order
kinetic model [46–49] is proportional to the square of the driving force. The expression formulas are
given below:

In(Qe − Qt) = InQe −
K1

2.303
t (5)

t
Qt

=
1

K2Q2
e
+

t
Qe

(6)

where Qe and Qt (mg/g) are the adsorption amounts when reaching equilibrium and at time t,
respectively. K1 (1/min) is the first-order kinetic constant. K2 (mg/(g·min)) is the second-order
kinetic constant.
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3. Results and Discussion

3.1. Surface Pore and Morphology Analysis

Identifying the pore structure of adsorbents is the first step before designing the adsorption
processes. The pore diameter of as-prepared samples can be determined from BET measurements.
These characterizations are performed for PS (prawn shell) and CPS samples in order to verify the
possible modification caused by the KOH treatment. The N2 adsorption-desorption isotherms and
the pore-size distribution at 77 K are presented in Figure 2. As seen in Figure 2: (i) The adsorption
isotherms demonstrate a sharp rise and convex curve at low relative pressure ratios because of strong
interactions on adsorbate surfaces; (ii) immediately, there is the appearance of an isotherm inflection
point and a monolayer adsorption; (iii) and then, a multilayer adsorption gradually forms and saturates
the vapor pressure, with the relative pressure continuing to increase. As shown in Figure 2A, PS does
not have significant adsorption capacity, and it increases slowly when the relative pressure is high
(P/P0 ≥ 0.9). The slow growth adsorption curve of CPS indicates that there is a certain amount of
micropores, and a hysteresis loop appears as the relative pressure P/P0 > 0.4. It suggests the presence
of a large number of large pores, or it may be a pseudo-pore formed by stacking [26]. According to the
classification of IUPAC (International Union of Pure and Applied Chemistry), these are type II for PS
and CPS, characteristic of macroporous solids. The adsorption isotherm of K-Ac exhibits an isotherm
profile of type I, as shown in Figure 2B. When P/P0 is very low (P/P0 ≤ 0.1), the amount of adsorption
is directly proportional to a relative pressure, indicating that K-Ac has a larger number of micropores
because of this stage, filled with a nitrogen sample. When P/P0 > 0.1, the curve slowly rises, but does
not reach the level state due to capillary condensation of nitrogen filled with the micropore, indicating
that there is a small number of narrow mesopores or macropores. Furthermore, the condensation of
nitrogen can lead to a rising curve when the relative pressure reaches the saturation pressure (P/P0

> 0.99). Figure 2 shows that at the same diameter, the volume of pores after calcination increases,
indicating that a certain number of pores are generated. Most pore sizes of K-Ac are in the range of
0–10 nm, and the peak value is close to 1.5 nm, indicating that the most developed pore structure is at
1.5 nm. In addition, the BET surface area, total pore volume, and average pore diameter of isotherm
data are analyzed. The results obtained from nitrogen isotherms are presented in Table 1. As indicated
in Table 1, the surface area of K-Ac is 86 times greater than that of CPS, and 835 times that of PS. All the
above results indicate that developing the pore structure of K-Ac results from the KOH activation.
These increases in the value of specific surface area, pore volume, and average pore radius reveal that
K-Ac has stronger adsorption characteristics of heavy-metal adsorption than PS and CPS. In order to
facilitate the movement of adsorbates on the porous structure of adsorbents, high values of surface
area, pore volume, and average pore radius are desirable [50].
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Table 1. The specific surface area parameter of as-prepared samples.

Sample Surface Area (m2/g) Pore Volume (cm3/g) Average Pore Radius (nm)

PS 4 0.014 1.349
CPS 37 0.143 3.831
K-Ac 3160 2.382 1.351

The typical SEM photographs of the as-prepared samples PS (A), CPS (B), and K-Ac (C) are
shown in Figure 3. It can be seen from Figure 3A that there are some organic substances in PS which
appear as a fibrous shape and may act as a binder, and other components are arranged in a layered
structure. The structure of CPS is a porous microsphere-stacking structure, as illustrated in Figure 3B.
In Figure 3B2, it illustrates that after a carbonization process, CPS particles appear as irregular cottony
features. The distribution of pores is homogeneous, rich, and abundant, with diameters ranging
from 100 to 200 nm. As can be seen from Figure 3C, the surface of K-Ac samples becomes a fluffy,
porous microsphere-stacking structure, showing relatively regular pores and an increase in the number
of pores, with diameters ranging from 20 to 100 nm. On the other hand, K-Ac (Figure 3C) has
retained porous microspheres before activation, the crystals are significantly smaller, the nanopore
structure becomes more developed, and the arrangement is more compact, which are key factors for
the adsorption of the adsorbent.
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respectively), (B) CPS (B1–B4: porous microsphere-stacking structures of CPS with different
magnification), and (C) K-Ac (C1–C4: nanopore structures of K-Ac with different magnification).

After treatment with 3 M HCl, morphologies of PS, CPS, and K-Ac could be observed by TEM,
as illustrated in Figure 4. The results show that these three samples appear as a spherical shape with
some sporadic distribution of pores, which is in accordance with the results of SEM. As shown in
Figure 4A, the number of holes on the surface of PS is relatively small, the agglomeration of holes
is not very obvious, and the aperture or pore size is relatively large. As illustrated in Figure 4B,
the distribution of pores is homogeneous and abundant. As indicated by the BET results, the average
pore size of CPS is 3.83 nm. As exhibited in Figure 4C, K-Ac shows a relatively regular aperture and an
increase in the number of pores, with a more compact arrangement to render nanoporosity, and high
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specific surface areas. This is probably due to the interior etching process of KOH activation [51].
It has been indicated that KOH might promote the development of new micropores induced by KOH
activation [28].
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3.2. XRD Crystalline and FTIR Phase Analysis

The crystalline structure of as-prepared samples is characterized by XRD. The XRD spectrum of
CPS and K-Ac is presented in Figure 5. From Figure 5, it can be seen that almost all peaks of CaCO3

in PS became CaO (PDF# 78-0649), and the corresponding peaks are at 2θ = 32.203◦, 37.346◦, 53.854◦,
64.152◦, and 67.373 [52,53]. Since CaO reacts easily with H2O in the air and becomes Ca(OH)2, there is
a characteristic peak of Ca(OH)2 (PDF# 87-0673) in the XRD pattern of the untreated adsorbent [10],
and its corresponding characteristic spectra are at 2θ = 18.089◦, 28.662◦, 34.088◦, 47.123◦, 50.794◦,
54.336◦, 62.538◦, and 64.226◦. In addition, the strong diffraction peak at 26.381 may have been caused
by the partial ordering of carbon, and there is a less pronounced amorphous diffraction peak around
31◦, which may be residual amorphous carbon. Compared with K-Ac, the number and intensity of
characteristic diffraction peaks decreases after KOH activation. The corresponding characteristic peaks
are at 2θ = 23.022◦, 29.405◦, 35.965◦, 39.401◦, 43.145◦, 47.489◦, and 48.512◦, indicating that the degree
of crystallinity decreases. There is a distinct characteristic peak in the spectrum at about 2θ = 25◦,
and a faint characteristic peak at 2θ = 42◦, which are the diffraction peaks of microcrystalline (002)
and (100) crystal planes in the structure of disorder layer graphite, respectively. The diffraction peaks
corresponding the (002) crystal plane are broader in the spectrum, indicating the amorphous state of
K-Ac. The (100) peak of K-Ac is flat or almost disappears, and shows a diffusive shape with a large
diffraction angle, which indicates that through KOH activation, K-Ac has a disordered crystallite layer,
disordered carbon structure, and a smaller size of graphite-like crystallites, which may suggest strong
adsorption capacity [54–56].
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FTIR vibrational spectra of CPS and K-Ac are presented in Figure 6. For CPS, it can be seen from
Figure 6 that CPS peaks at 1440 cm–1 and 1041 cm–1 are characteristic peaks of calcium carbonate,
and the out-of-plane vibrational deformation peak of CO3

2– appears near 872 cm–1. The main intense
bands of K-Ac are observed at 3640 cm–1, 3430 cm–1, 1420 cm–1, and 1040 cm–1. There are no major
changes in the location of main absorption peaks, indicating their specific similar chemical structure.
The peak at 3640 cm–1 is the characteristic infrared peak of Ca(OH)2. At the same time, a large number
of –OH stretching vibration peaks appear at 3430 cm–1, representing hydroxyl groups (vibration
frequencies of water, alcohols, and phenols) and N–H stretching vibrations. Two broad peaks are
located in the range 1620–1380 cm–1, which can be assigned to the vibration of C=C bonds in aromatics
and aromatic C–O stretching. The 1440 cm–1 peak shifts to 1420 cm–1, and the enhanced peak intensity
at 1040 cm–1 is a characteristic peak of calcium carbonate. From the above analysis, it suggests that
the KOH modification does not completely change existing groups on the surface of adsorbent CPS;
however, after modification, the functional groups favoring metal adsorption, such as the hydroxyl
groups, increase greatly, and the adsorption capacity of modified samples (K-Ac) to heavy metals is
enhanced significantly. The reason for this may be that the large specific surface area, porous structure,
and good adsorption properties of K-Ac are increased and promoted by KOH activation at high
temperatures [57–59].
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3.3. Effect of Solution pH

It is well-known that pH value is a key factor for promoting or restraining the adsorption process
because it can affect the existence and the surface charge of the adsorbent [60,61]. As shown in
Figure 7, the adsorption capacity of Cd2+ on K-Ac is significantly dependent on pH values. With the
increase of pH value in the solution, the adsorption capacity of K-Ac to Cd2+ increases. When the
pH value is 7, the adsorption amount of K-Ac is as high as 120 mg/g. The results clearly illustrate
that the pH values have affected the functional groups or charges on the surface of the adsorbent.
Under an acidic condition, the solution contains a large number of H+ ions. These H+ ions will occupy
the adsorption sites on the surface of the adsorbent, which in turn will cause Cd2+ to be unable to
precipitate on the surface of the adsorbent, weakening its adsorption capacity. On the other hand,
the H+ ion concentration decreases as pH increases, the H+ ions do not compete with Cd2+ anymore,
and there are more active groups and active sites available; thus, Cd2+ ions can obtain more OH− ions
in the solution. Generally, the adsorption capacity of heavy metals by an adsorbent increases with
an increasing pH value. When the pH value is higher than the critical pH value of a heavy metal,



Materials 2019, 12, 241 10 of 17

hydrolysis and precipitation are dominant in the solution [62]. The critical pH value of Cd(II) ion is
around 8.0 [63].Materials 2018, 11, x FOR PEER REVIEW  10 of 16 
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3.4. Effect of Contact Time and Adsorption Kinetics

The strong ability of K-Ac interacting with Cd2+ was desirable and beneficial with respect to real
practical application. To investigate the adsorption kinetics of Cd2+ on K-Ac, an initial concentration of
10 mg/L was used, and results are shown in Figure 8. At the initial period (20–80 min), the adsorption
capacity of Cd2+ on K-Ac increased rapidly, as illustrated in Figure 8A; then, it slowly increased and
began to stagnate as its contact time prolonged with K-Ac. This phenomenon could be interpreted by
the fact that a great number of vacant adsorption sites were available for Cd2+ adsorption at the initial
stage, and after that, the remaining effectively adsorption sites were difficult to be occupied due to
repulsive forces from occupied sites nearby or between molecules on the top surface of K-Ac, or from
the bulk solution. In addition, the quasi-first-order (QF) and the quasi-second-order (QS) models were
employed to further understand the characteristics of the adsorption process of Cd2+ on K-Ac. The QF
and the QS models were fitted with the adsorption kinetic data of Cd2+ on K-Ac, and the curves are
shown in Figures 8B and 8C, respectively. The kinetic parameters and correlation coefficients (R2)
determined from these two models are listed in Table 2. We noticed that the experimental data closely
followed the nonlinear regression of QF, and the R2 values (0.99587) of the QF kinetic model was much
higher than that of QS (0.91054), suggesting that the adsorption process of Cd2+ on K-Ac was more
suitable for the QF kinetic model.
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Table 2. The kinetic parameters of the quasi-first-order (QF) and quasi-second-order (QS) models on
the adsorption of Cd2+.

Sample QF QS

K-Ac
K1/(1/min) R2 K2/(mg/g·min) R2

0.066 0.99587 19.723 0.91054

3.5. Effect of Initial Cd2+ Concentration and Adsorption Isotherms

The effect of initial Cd2+ concentration on the adsorption capacity of K-Ac was investigated
by adsorption experiments, and the results obtained are presented in Figure 9. From Figure 9A,
the adsorption capacity of Cd2+ adsorbed on K-Ac was enhanced with the increase of initial Cd2+

concentration from 10 to 400 mg/L and reached up to 258 mg/g, and there was a trend of further
increase. These results showed that, at lower initial Cd2+ concentrations (10–80 mg/L), intense
competition for Cd2+ under aqueous conditions caused these ions to be condensed to a K-Ac host
system with a reticulated porous structure and a rich OH− group on the surface, and the adsorption
rate increased rapidly. When the initial concentration of Cd2+ increased (80–400 mg/L), the adsorption
rate gradually decreased, where the decrease in adsorption rate may have been due to the limited
number of active sites on the K-Ac surface.

In order to further interpret the experimental adsorption data, the adsorption isotherm
characteristics were also employed to investigate the adsorption behaviors of the heavy metals onto
the prawn shell-derived activated carbon. Among a number of isotherm models, Langmuir and
Freundlich’s isotherms are the most commonly used ones for describing the adsorption of heavy
metals and organic compounds on ACs [64]. The adsorption fitting curves of the two models are
described in Figure 9B,C. According to the R2 values of the two isotherm models listed in Table 3,
it was found that the experimental results could be best fitted by the Langmuir model, as shown as
Figure 9B. It was illustrated that this adsorption process was homogeneous, and the active sites on
the K-Ac surface were evenly distributed. The value of the dimensionless separation factor RL, 0.862,
was in the range of 0 < RL <1, indicating that it was within the range of the concentration studied.
In addition, the n value of the Freundlich isotherm model constant was 1.011, within the range of 1–7,
suggesting that the K-Ac is beneficial to the adsorption of Cd2+ after activation.
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Sample Langmuir Freundlich

K-Ac
KL R2 RL n KF R2

0.016 0.9737 0.862 1.011 1.829 0.93716
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3.6. Adsorption Capacity in Cu2+, Cr6+, and Cd2+ Ternary System

The adsorption capacities of K-Ac in the Cu2+, Cr6+, and Cd2+ ternary system and in their single
systems are shown in Figure 10. The experimental results illustrated that the adsorption performance
of K-Ac for metal ions in the multi-component heavy metal ion system was different from those in a
single system. The adsorption amount of metal ions in single systems and the total adsorption amount
of metal ions in a ternary system are shown in Figure 10A. As the initial concentration of the three
metal ions increases, the adsorption amount of K-Ac gradually reaches equilibrium, and the order of
sorption is Cr(VI) (318 mg/g) > Cu (280 mg/g) > Cd(II) (256 mg/g). As shown in Figure 10A, for the
ternary system after equilibrium, the total adsorption amount of K-Ac for the three ions is 560 mg/g,
which is about two times greater than that in the single system, but not the superimposed sum of
ions adsorbed in their single ion system. It is suggested that for the adsorption experiments in the
ternary system, there would be a competitive relationship among the three ions, which will affect the
adsorption of metal ions by K-Ac. Furthermore, in the ternary system, as the initial concentration of
the metal solution increases, the adsorption amount of Cd2+ by K-Ac was almost unchanged, while the
adsorption capacity of Cr6+ was greatly decreased, as shown in Figure 10B, which is the individual
adsorption amount of each metal in a single system and a ternary system. Compared with the single
system, the adsorption amount of Cd2+ by K-Ac in the ternary system was slightly reduced in the same
condition, indicating that the presence of Cu2+ and Cr6+ had little effect on the adsorption of Cd2+ by
K-Ac. The adsorption capacity of K-Ac for Cr6+ in the ternary system was lower than that in the single
system, suggesting that the presence of Cu2+ and Cd2+ had a strong antagonistic inhibition effect on
the adsorption of K-Ac to Cr6+. Meanwhile, the difference in the adsorption capability of K-Ac to each
heavy metal ion can be expressed by the ratio of adsorption amounts, i.e., Q3/Q1 (where Q3 is the
adsorption capacity of K-Ac to a certain heavy metal ion in the ternary system; Q1 is the adsorption
capacity of K-Ac to corresponding metal ions in a single system). The Q3/Q1 ratio of Cd2+ was
approximately equal to 1, and the value of Cr6+ was much less than 1, which indicated that the
adsorption of Cd2+ by K-Ac was not affected by interfering ions Cu2+ and Cr6+, while by the presence
of Cd2+ and Cu2+, the adsorption of Cr6+ by K-Ac was inhibited to some extent; thus, the adsorption
amount of Cr6+ was reduced. However, the total adsorption capacity of K-Ac for three metal ions in
the ternary system could reach up to 560 mg/g, which was higher than that of the single heavy metal
ion. From these data, it can be inferred that in the ternary system, the adsorption capacity of copper
becomes the lowest due to the presence of Cd2+ and Cr6+ ions, and the adsorption capacity of copper
drops from 280 to 24 mg/g.
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The possible sorption mechanism on bioadsorbents can be explained by interactions between the
heavy metal pollutant ions and the functional groups present on the adsorbent surface. Among various
factors that affect the biosorption preferences of a sorbent, binding of metal ions on biomaterials
largely depends on the physicochemical properties of metals [65]. It has been reported that in general,
the greater the atomic weight, electronegativity, electrode potential, and ionic size, the greater the
affinity for sorption will be [66]. The order of sorption will be Cd(II) > Cu(II) > Cr(VI), according to
atomic weight. In the single system, the adsorption amount of K-Ac to Cr6+ is higher than that to
Cu2+ and Cd2+, as shown in Figure 10A. In accordance with electronegativity, the larger the radius
of metal ions, the smaller the electronegativity. Therefore, the order of sorption will become Cr(VI) >
Cu(II) > Cd(II) [67]. The obtained results are consistent with the physicochemical properties of metal
ions under this study. Compared with the adsorption amount in the single system under the same
condition, the adsorption capacity of K-Ac to Cd2+ and Cr6+ in the ternary system is reduced, while the
adsorption capacity of K-Ac to Cr6+ decreases greatly, which can be ascribed to the overlapping of
adsorption sites of respective metal ions. There exist a variety of binding sites on the K-Ac biomass that
are partially specific for individual metal species [68]. The removal efficiency of the same adsorbent
in a multi-component solution is normally lower than that of single-component ones, due to the
less availability of binding sites [69]. Metal ions have been revealed to coordinate in adsorbent
predominantly to carboxylic moieties without excluding hydroxyl groups [67]. Thus, in the present
trimetallic combination, the sorption of metal ions is a competitive process between ions in solution
and those sorbed onto the biomass surface. The results of this study indicate that the presence of
Cu2+ and Cr6+ has little effect on the adsorption of Cd2+ by K-Ac, while Cu2+ and Cd2+ have strong
antagonistic inhibition on the adsorption of K-Ac to Cr6+.

4. Conclusions

ACs with a higher specific area and excellent Cd2+ adsorption performance have been successfully
prepared from prawn shell waste through high-temperature carbonization and KOH activation.
The resultant activated carbons had alarge specific area of 3159.65 m2/g and nanoporosity with
narrow pore size distribution and lower crystallinity, which presented more advantages for adsorption
purposes than PS and CPS, and its specific surface area was also 835 and 86 times higher than
PS and CPS, respectively. After treatment and enhancement, the adsorption capacity of K-Ac to
Cd2+ could reach up to 256 mg/g, and there was a trend of further increase. An analysis of the
kinetic and isotherm models for the adsorption of Cd2+ on K-Ac indicated that the experimental
data were well-described by the quasi-first-order model and Langmuir isotherm. Furthermore, the
adsorption properties of K-Ac in a ternary mixture of heavy metal ions Cu2+, Cr6+, and Cd2+ were also
examined. The sorption preferences of K-Ac were found, that binding of metal ions on biomass largely
depended on the physicochemical properties of the metals. For the ternary system after equilibrium,
the maximum adsorption capacity of K-Ac at 25 ◦C was 560 mg/g. In summary, it is expected that
the inexpensive K-Ac could be used as a promising bioadsorbent to remove heavy metal ions from
industrial wastewater.
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