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Abstract

Background: Cells in the trabecular meshwork (TM), the tissue responsible for draining aqueous humor out of the eye, are
known to be highly phagocytic. Phagocytic function in TM cells is thought to play an important role in the normal
functioning of the outflow pathway. Dysfunction of phagocytosis could lead to abnormalities of outflow resistance and
increased intraocular pressure (IOP). However, the molecular mechanisms triggered by phagocytosis in TM cells are
completely unknown.

Methodology/Principal Findings: Gene expression profile analysis of human TM cells phagocytically challenged to E. coli or
pigment under physiological and oxidative stress environment were performed using Affymetrix U133 plus 2.0 array and
analyzed with Genespring GX. Despite the differential biological response elicited by E. coli and pigment particles, a number
of genes, including MMP1, MMP3, TNFSF11, DIO2, KYNU, and KCCN2 showed differential expression with both phagocytic
ligands in all conditions. Data was confirmed by qPCR in both human and porcine TM cells. Metacore pathway analysis and
the usage of recombinant adenovirus encoding the dominant negative mutant of IkB identified NF-kB as a transcription
factor mediating the up-regulation of at least MMP1 and MMP3 in TM cells with phagocytosis. In-gel zymography
demonstrated increased collagenolytic and caseinolytic activities in the culture media of TM cells challenge to E. coli. In
addition, collagenolytic I activity was further confirmed using the self-quenched fluorescent substrate DQ-Collagen I.

Conclusions/Significance: Here we report for the first time the differential gene expression profile of TM cells
phagocytically challenged with either E. coli or pigment. Our data indicate a potential role of phagocytosis in outflow
pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling
genes.
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Introduction

Glaucoma is a group of blinding disorders affecting more than

70 million people worldwide, which is characterized by irreversible

damage to the optic nerve. The major risk factor for developing

glaucoma is elevated intraocular pressure (IOP), which results

from the increased resistance to aqueous humor outflow through

the trabecular meshwork (TM) conventional outflow pathway

[1,2].

The TM is a tiny tissue located in the anterior segment of the

eye between the cornea and the sclera. It is structured into three

differentiated layers through which the aqueous humor must pass

before leaving the eye: the inner uveal meshwork, the corneo-

scleral meshwork and the juxtacanalinular tissue (JCT). The uveal

and the corneoscleral meshworks are composed of sheets of

connective tissue beams lined by TM endothelial cells. The beams

attach to each other in several layers forming a porous filter-like

structure [3,4].

Trabecular meshwork cells lining the beams are known to be

able to avidly phagocyte particulate material and debris in vitro

and in vivo [5–11]. Because of this phagocytic activity, the

meshwork has been suggested to function in vivo as a self-cleaning

filter able to keep the drainage channels free of obstructive

material or debris, which otherwise might block the flow of

aqueous humor [6]. Thereby, phagocytosis is thought to have an

important role in the normal functioning of the outflow pathway.

Abnormalities in phagocytosis have been postulated to contribute

to the development of certain types of glaucoma, in particular in

exfoliative, pigmentary, phagolytic, and other obstructive glauco-

mas [12–14].

While a number of studies have shown the detachment of TM

cells from the trabecular beams following phagocytosis in vivo and

in vitro [5,7–9,15], as well as short-term loss in cell-matrix

cohesiveness cell culture conditions [16,17], the molecular

mechanisms encompassing such events have yet to be clarified.
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Here we report for the first time the transcriptome profile of

TM cells phagocytically challenged with either E. coli or pigment

under physiological and oxidative stress conditions. Our data

demonstrate the upregulation of metalloproteinases and extracel-

lular matrix (ECM) remodeling upon phagocytosis in TM cells.

Results

Differential Gene Expression Profile of Human TM Cells
Phagocytically Challenged Under Physiological
Conditions

Confluent cultures of human TM cells were grown for two

weeks under physiological conditions and then challenged for

three days, time-point at which the phagocytic capacity of TM

cells is peaked [17], to saturated doses of either pHRodo-labeled

E. coli or pigment. Changes in gene expression induced by

phagocytosis were evaluated by gene array analysis using

Affymetrix Human Genome U133 Plus 2.0 chips. Comparative

analysis showed 1190 and 728 genes significantly up-regulated and

down-regulated, respectively, more than 1.5-fold in TM cells

phagocytically challenged to E. coli. A complete list of the genes

with differential expression greater than two is included as

Supporting Information (Table S1, Table S2). Phagocytosis of

pigment particles elicited a much lesser biological response. Only

26 and 14 genes were found to be significantly up-regulated (Table

S3) and down-regulated (Table S4) more than 1.5 fold,

respectively, in TM cells challenged to pigment. As shown in

Figure 1, more than 90% of the cells in the culture were

phagocytic cells. Electron micrographs confirmed the presence of

engulfed pigment particles within the cells (Figure 1).

Table 1 lists the genes (21 genes), whose expression was

consistently up-regulated with phagocytosis of both E. coli and

pigment. These could largely be clustered into two different

categories: (i) genes involved in the immune response such as

chemokine ligands (CXCL5, CXCL6), interleukins (IL32, IL33),

complement system (C3), and TNFSF11; and (ii) genes involved in

cell adhesion and extracellular matrix (ECM) remodeling (MMP1,

MMP3, LAMC2, TFPI2). Genes consistently down-regulated with

phagocytosis were more heterogeneous (10 genes, Table 2) and

could not be clustered into known biological categories.

Changes in gene expression of selected genes were quantified by

qPCR (Figure 2, black bars). With the exemption of LAMC2,

which showed a slight but non-statistically significant up-

regulation, quantitative PCR validated the results obtained from

microarray analysis. In addition, differential expression of MMP1,

MMP3, and TNFSF11 in response to phagocytic challenge was

further confirmed in porcine TM cells (Figure 3, black bars). These

changes occurred as early as one day post-challenge in E.coli-

treated cells, but later (day 3) in the cultures exposed to pigment

(Figure S1). Summary of the expression levels obtained in the

qPCR experiments are included as Supporting Information (Table

S5).

Functional Network Analysis of Gene Expression Changes
in Phagocytically Challenged human TM Cells

To identify potential pathways and regulatory elements

associated with changes in gene expression induced by phagocy-

tosis in human TM cells, gene lists obtained from microarray

analysis were further analyzed using the pathway analysis and data

mining software MetaCore (GeneGo). Table 3 summarizes the top

pathways and networks identified in human TM cells subjected to

phagocytic stress. Collectively, functional network analysis of

microarray data showed an enrichment in the immune response

and cell adhesion/ECM remodeling pathways in phagocytically

challenged human TM cells. In addition, SP1 and NF-kB were

identified as the transcription factors most likely to be differentially

active and responsible for the changes in gene expression upon

phagocytosis (Figure 4).

Comparative Gene Expression Profile of Human TM Cells
Phagocytically Challenged Under Physiological and
Oxidative Stress Conditions

Oxidative damage is believed to play a major role in the

pathogenesis of primary open angle glaucoma (POAG) [18–21].

To investigate the potential effect of oxidative stress in phagocy-

tosis, we conducted gene expression profile analysis in confluent

cultures of human TM cells grown for two weeks under 40% O2

and then challenged for three days either to pHRodo-labeled E.

coli or to pigment.

Nine hundred seventy-six and 383 genes were significantly up-

regulated and down-regulated, respectively, more than 1.5-fold in

TM cells phagocytically challenged to E. coli (Table S6 and Table

S7 list genes with fold change .2). Similarly to what we observed

under physiological conditions, a lower number of genes were

differentially expressed upon phagocytosis of pigment particles (23

genes and 12 genes significantly up-regulated and down-regulated,

respectively, more than 1.5 fold, Table S8 and Table S9).

Comparative analysis narrowed to six the number of genes

commonly up-regulated or down-regulated (.1.5 fold, p,0.05)

upon phagocytosis of E. coli and pigment particles under

physiological and oxidative stress conditions (Figure 5, Table 4).

Changes in gene expression of MMP1, MMP3, and TNFSF11

were validated by qPCR in both human (Figure 2, stripped bars)

and porcine (Figure 3, stripped bars) TM cells. Summary of the

Figure 1. Phagocytic activity in TM cells. (A) Fluorescence microcopy image of human TM cells phagocytically challenged with pHRodo-labeled
E. coli (1610 6 particles/mL). Note the puncta red staining indicating the presence of engulfed E. coli particles. (B) Light microscopy image of human
TM cells phagocytically challenged to pigment particles (1610 6 particles/mL). (C) Electron micrograph image of human TM cells phagocytically
challenged to pigment particles. Note the presence of numerous engulfed pigment particles (p) contained in membrane-bound organelles.
doi:10.1371/journal.pone.0034792.g001
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Table 1. Genes Significantly Upregulated (.1.5 fold, p,0.05) in HTM Cells Phagocytically Challenged Under Physiological
Conditions.

Gene Title Gene Symbol UniGene ID E. coli Pigment Chromosomal Location

Fold pValue Fold pValue

acyl-CoA synthetase long-chain family member 4 ACSL4 Hs.268785 3.01 0.009 1.49 0.017 chrXq22.3-q23

calcium binding protein 1 CABP1 Hs.458482 2.62 0.022 1.46 0.039 chr12q24.31

chemokine (C-X-C motif) ligand 5 CXCL5 Hs.89714 54.52 0.002 1.46 0.004 chr4q12-q13

chemokine (C-X-C motif) ligand 6
(granulocyte chemotactic protein 2)

CXCL6 Hs.164021 5.30 0.008 1.51 0.014 chr4q21

chromosome 6 open reading frame 58 C6orf58 Hs.226268 1.64 0.021 1.47 0.038 chr6q22.33

complement component 3 C3 Hs.529053 10.59 0.003 1.48 0.006 chr19p13.3-p13.2

deiodinase, iodothyronine, type II DIO2 Hs.202354 3.83 0.004 1.92 0.006 chr14q24.2-q24.3

ets homologous factor EHF Hs.653859 3.05 0.019 1.49 0.034 chr11p12

interleukin 32 IL32 Hs.943 6.20 0.004 1.56 0.006 chr16p13.3

interleukin 33 IL33 Hs.348390 22.50 0.002 2.16 0.004 chr9p24.1

kynureninase (L-kynurenine hydrolase) KYNU Hs.470126 7.34 0.007 1.75 0.013 chr2q22.2

laminin, gamma 2 LAMC2 Hs.591484 1.97 0.026 1.47 0.046 chr1q25-q31

matrix metallopeptidase 1 (interstitial collagenase) MMP1 Hs.83169 4.61 0.003 1.98 0.006 chr11q22.3

matrix metallopeptidase 3 (stromelysin 1,
progelatinase)

MMP3 Hs.375129 11.20 0.004 2.09 0.006 chr11q22.3

six transmembrane epithelial antigen of
the prostate 1

STEAP1 Hs.61635 6.03 0.003 1.53 0.005 chr7q21

solute carrier family 39 (zinc transporter),
member 8

SLC39A8 Hs.288034 11.27 0.003 1.50 0.006 chr4q22-q24

stanniocalcin 1 STC1 Hs.25590 12.64 0.002 1.51 0.003 chr8p21-p11.2

superoxide dismutase 2, mitochondrial SOD2 Hs.487046 24.05 0.004 1.56 0.006 chr6q25.3

tissue factor pathway inhibitor 2 TFPI2 Hs.438231 8.15 0.007 1.81 0.012 chr7q22

tumor necrosis factor (ligand) superfamily,
member 11

TNFSF11 Hs.333791 2.72 0.005 1.87 0.009 chr13q14

UDP-N-acetyl-alpha-D-galactosamine:polypeptide
N-acetylgalactosaminyltransferase-like 2

GALNTL2 Hs.411308 1.54 0.012 1.59 0.022 chr3p24.3

doi:10.1371/journal.pone.0034792.t001

Table 2. Genes Significantly Downregulated (.1.5 fold, p,0.05) in HTM Cells Phagocytically Challenged Under Physiological
Condition.

Gene Title Gene Symbol UniGene ID E. coli Pigment
Chromosomal
Location

Fold pValue Fold pValue

WAP four-disulfide core domain 1 WFDC1 Hs.36688 2.22 0.002 1.58 0.004 chr16q24.3

Tetraspanin 18 TSPAN18 Hs.385634 2.19 0.003 1.77 0.006 chr11p11.2

potassium intermediate/small conductance
calcium-activated channel, subfamily N, member 2

KCNN2 Hs.98280 2.00 0.028 1.48 0.050 chr5q22.3

hydroxysteroid (17-beta) dehydrogenase 6 homolog (mouse) HSD17B6 Hs.524513 2.52 0.013 1.51 0.023 chr12q13

H19, imprinted maternally expressed transcript
(non-protein coding)

H19 Hs.533566 4.04 0.002 1.47 0.004 chr11p15.5

fibroblast growth factor receptor 3 FGFR3 Hs.1420 1.58 0.010 1.61 0.019 chr4p16.3

endothelin 3 EDN3 Hs.1408 5.78 0.004 1.46 0.006 chr20q13.2-q13.3

ArfGAP with RhoGAP domain, ankyrin repeat and
PH domain 2

ARAP2 Hs.479451 2.27 0.011 1.52 0.020 chr4p14

aquaporin 1 (Colton blood group) AQP1 Hs.76152 2.99 0.006 1.51 0.012 chr7p14

ankyrin repeat domain 6 ANKRD6 Hs.702213 1.99 0.015 1.82 0.027 chr6q14.2-q16.1

doi:10.1371/journal.pone.0034792.t002
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expression levels obtained in the qPCR experiments are included

as Supporting Information (Table S5).

Role of NF-kB in the Transcriptional Activation of MMP1
and MMP3

Metacore analysis revealed NF-kB as the most likely transcrip-

tion factor regulating the transcriptional activation of several genes

whose expression is modified upon phagocytosis, including MMP1

and MMP3. Since chronic activation of NF-kB has been reported

in the outflow pathway of glaucoma patients [22], we were

particularly interested in confirming this data, obtained by

bioinformatics algorithms. For this, we first tested the activation

of NF-kB following phagocytic challenge using a luciferase

reporter assay. As seen in Figure 6A, phagocytic challenge to E.

coli significantly triggered a strong NF-kB activation, which

reached a plateau after 24 hours (.10 fold). A more discrete

activation of NF-kB, (32.565.12% at 24 hours) was observed with

engulfment of pigment particles. We additionally evaluated the

effects of blocking NF-kB activation on the up-regulation of

MMP1 and MMP3 upon phagocytosis. For this, porcine TM cells

were infected with a recombinant adenovirus containing either

LacZ (AdLAcZ) or the dominant negative mutant of IkB (AdDN-

IkB). At two days post-infection (d.p.i.) cells were phagocytically

challenged with either E. coli or pigment. Expression levels of

MMP1 and MMP3 mRNAs were quantified at day three by

qPCR. As shown in Figure 6B, repression of NF-kB translocation

significantly inhibited the up-regulation of MMP1 and MMP3 in

response to phagocytic challenge.

Figure 2. Quantitative real-time PCR confirmation of selected genes with differential expression in phagocytically challenged
human TM cells under physiological (black bars) and oxidative stress (stripped bars) conditions. The expression levels were calculated
using the formula 22DCt, where DCt = Ctgene2Ct average housekeeping. b-Actin, GAPDH, and HPRT1 served as internal standard for normalization. Values
represent mean 6 SD. (*) compares phagocytically challenged versus control cultures; (#) compares oxidatively stressed versus cultures grown under
physiological conditions. *, # p,0.05, **, ## p,0.005, ***, ### p,0.0005 (t-test, n = 3).
doi:10.1371/journal.pone.0034792.g002

Figure 3. Quantitative real-time PCR confirmation of selected genes with differential expression in phagocytically challenged
porcine TM cells under physiological (black bars) and oxidative stress (stripped bars) conditions. The expression levels were calculated
using the formula 22DCt, where DCt = Ctgene2Ct average housekeeping. b-Actin, GAPDH, and HPRT1 served as internal standard for normalization. Values
represent mean 6 SD. (*) compares phagocytically challenged versus control cultures; (#) compares oxidatively stressed versus cultures grown under
physiological conditions. *, # p,0.05, **, ## p,0.005, ***, ### p,0.0005 (t-test, n = 3).
doi:10.1371/journal.pone.0034792.g003
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Collagenolytic and Caseinolytic Activities in
Phagocytically Challenged TM Cells

The proteins coded by MMP1 and MMP3 belong to the matrix

metalloproteinases (MMPs) family, a group of zinc-containing

endopeptidases that actively participate in the degradation of

components of the extracellular matrix (ECM). MMPs have

different but overlapping substrate specificity. In particular,

MMP1 preferentially cleaves collagen I, whereas MMP3 shows

higher specificity for collagen IV [23,24]. To evaluate whether the

observed transcriptional up-regulation of MMP1 and MMP3

might translate into increased collagenolytic activity upon

phagocytosis, we monitored the degradation of collagen I and

collagen IV in phagocytically challenged porcine TM cells using

the quenched fluorescent substrates DQ-collagen I and DQ-

collagen IV, respectively. As seen in Figure 7A, phagocytosis of E.

coli promoted the degradation of collagen I overtime, demon-

strated by the increased in fluorescence resulting from the

proteolytic degradation of the substrate. The presence of pigment

particles, however, caused a slightly decrease in collagenolytic I

activity compared to control. No significant changes in the

degradation of collagen IV were observed with any of the

phagocytic ligands at the time tested (Figure 7B).

We additionally checked MMPs expression in the culture media

by substrate gel zymography (Figure 7C). Collagen I-zymography

revealed two major bands of activity at ,94–100 kDa and ,73–

75 kDa, which correspond to MMP9 and pro-MMP2, respective-

ly. No difference in quantities between the experimental

conditions and the control were observed. An additional band at

,62 kDa was detected in the cultures exposed to E. coli. This

proteolytic activity at ,62 kDa is referred in the literature as

active MMP2 [24]. Casein-zymography identified a lysis band of

,43 kDa in the culture media of cells phagocytically challenged to

E. coli, which is consistent with the molecular weight of active

MMP1 [25,26].

Discussion

Herein, we report for the first time the differential gene

expression profile of cultured TM cells phagocytically challenge to

E. coli or pigment under physiological and oxidative stress

conditions. Our data show the specific transcriptional up-

regulation of MMP1 and MMP3, and increased collagenase

activity in cultured TM cells following phagocytosis. Moreover,

NF-kB was identified as one of the transcription factor mediating

such an up-regulation.

The choice of the phagocytic ligands used in this study was

based on our own observations (unpublished data) and data from

other investigators. Trabecular meshwork cells have been shown

to be capable of ingesting a vast variety of materials, including

collagen fragments, melanin granules, fibrin, red blood cells,

bacteria, zymosan, colloidal carbon, gold particles and latex

microspheres [5–11]. Because of the immune privilege of the eye,

the conventional outflow pathway is not normally exposed to

bacterial or fungal infection, unless in some secondary glaucomas

(uveitis glaucoma and glaucoma associated with keratitis).

However, E. coli constitutes a widely spread and the most

commonly used model to study phagocytosis of biotic substrates in

all types of phagocytic cells, including TM cells. Although TM

cells do not seem to show a marked preference between phagocytic

substrates (opsonized versus non-opsonized, biotic versus non-

biotic), a different biological response to foreign particles has been

noted by a number of investigators. In general, phagocytosis of

biotic degradable material, such as zymosan or E.coli particles,

elicited an inflammatory response, whereas ingestion of nonde-

gradable material, such as latex beads or pigment, was observed to

alter neither trabecular cell function nor morphology [5,8,27].

This is in agreement with the data obtained here.

While comparative gene expression profile and functional

network analyses demonstrated the activation of pro-inflammatory

pathways in TM cells phagocytically challenged to E. coli, we

observed a marked reduction in the number of genes differentially

expressed upon phagocytosis of pigment particles. The reason for

this differential molecular and biological response is currently

unknown. It is possible that despite the fact that cultures were

challenged with saturated doses of E. coli or pigment particles,

they more efficiently phagocytosed E. coli, resulting in higher

differences in gene expression. Electron micrographs showed,

however, the presence of great amount of engulfed pigment

particles within the cells. A more plausible explanation is that the

trabecular cell response to foreign particles may vary with the

cellular ingestion mechanisms [5] or with the phagocytic receptor.

Supporting this, a recent study has shown that the initial receptor-

ligand interactions modulate gene expression and phagosomal

properties during both early and late stages of phagocytosis [28].

Similarly, studies in insects have also shown that distinct signaling

pathways regulate the phagocytic activity of biotic and abiotic

components [29,30].

We identified a number of genes whose expression resulted

significantly up-regulated upon phagocytosis of both pigment

particles and E. coli. Enrichment pathway analysis clustered those

genes into two main categories: immune response and cell

adhesion/ECM remodeling. Since oxidative damage has been

linked to the pathogenesis of glaucoma [18–21], we also evaluated

changes in gene expression in oxidatively stressed TM cells with

Table 3. Top Pathways Identified in Phagocytically
Challenged TM Cells Using GeneGo Metacore Analysis.

Name pValue

Immune response_Complement pathway 3.95E-10

Immune response_IL-17 signaling pathways 3.27E-07

Cell adhesion_Chemokines and adhesion 1.99E-03

Cell adhesion_Cell-matrix glycoconjugates 4.14E-03

Cell adhesion_ECM remodeling 7.65E-03

Inflammation_Complement system 2.93E-06

Immune response_Th17-derived cytokines 1.25E-05

Proteolysis_ECM remodeling 2.47E-03

Immune response_Phagocytosis 5.17E-03

Proteolysis_Connective tissue degradation 6.38E-03

Inflammation_Innate inflammatory response 2.02E-02

Cell adhesion_Cell-matrix interactions 3.04E-02

Rupture 5.07E-13

Encephalomyelitis, Autoimmune, Experimental 1.71E-12

Nervous System Autoimmune Disease, Experimental 1.71E-12

Cicatrix, Hypertrophic 3.39E-11

Hemolytic-Uremic Syndrome 2.44E-10

Encephalomyelitis 4.54E-10

Polycystic Ovary Syndrome 7.06E-10

Central Nervous System Infections 8.67E-10

Inflammation 8.99E-10

doi:10.1371/journal.pone.0034792.t003
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phagocytosis. Cells under oxidative stress demonstrated a slight

decrease in the number of genes with differential expression,

compared to those under physiological conditions. It is feasible

that chronic exposure to oxidative stress might affect the ability of

TM cells to engulf foreign material. We did not observe any

apparent decrease in the phagocytic capacity of oxidatively

stressed TM cells. We believe, however, that the slight reduction

in response is associated with the fact that cells under 40% O2

displayed per se a pro-inflammatory profile, similar to the one

observed upon phagocytic challenge.

A total of five genes, including MMP1, MMP3, TNFSF11,

DIO2, and KYNU were identified to be commonly up-regulated

after phagocytosis of E. coli and pigment particles under

physiological and oxidative stress conditions. Just one gene,

KCNN2, was found down-regulated in all different conditions.

Up-regulation of MMP1, MMP3, and TNSF11 with phagocytosis

was also confirmed in cultured porcine TM cells. The concor-

dance between the data on the two species might imply that the

differences in the post-mortem times at which porcine eyes and

human eyes are procured cause no major changes in the biological

response of TM cells.

The potential roles of DIO2, KYNU, and KCNN2 in

phagocytosis and/or outflow tissue physiology are not clear.

KCNN2 codes an integral membrane protein that forms a voltage-

independent calcium-activated channel. Activation of large-

conductance calcium- and voltage-activated potassium channels

(BKCa) have been shown to increase outflow facility and decrease

cell volume, suggesting that K(+) efflux regulate TM cell function

[31]. The protein encoded by DIO2 gene belongs to the

iodothyronine deiodinase family, which is involved in the

activation of thyroid hormone. Genetic association studies have

identified DIO2 as an osteoarthritis susceptibility gene. It has been

Figure 4. Pathway analysis of the genes showing changes in expression higher than 1.5 fold (p,0.05) in human TM cells
phagocitically challenged to E.coli and pigment. NF-kB and SP1 were identified as the transcription factors with the highest ranking in terms of
P-value and gene ontology interpretation.
doi:10.1371/journal.pone.0034792.g004
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recently shown that inflammatory signals as well as bacterial

lipopolysaccharide up-regulate DIO2 expression via NF-kB

[32,33]. Kynureninase is an enzyme involved in the biosynthesis

of NAD cofactors from tryptophan through the kynurenine

pathway. Although chronic up-regulation of KYNU following

phagocytosis has been also recently reported in brain microglial

cells challenged to alpha beta amyloid [34], its role in phagocytosis

has not been defined. Interestingly, the latter study showed

increased expression of MMP1 and MMP3 mRNAs upon

phagocytosis of alpha beta amyloid [34]. Likewise, up-regulated

MMP3 expression and activity has been described upon

phagocytosis of apoptotic cholangiocytes by macrophages [35].

MMP1 and MMP3 are members of the matrix metalloproteinases

family, a class of proteases that participate in the hydrolysis of

components of the ECM. MMP1, also known as interstitial

collagenase, is able to cleave interstitial collagens I, II, and III, as

well as digest certain other ECM and non-ECM proteins. MMP3

(or stromelysin 1) breaks down ECM components such as collagen

IV, laminin, and fibronectin [23,24,36]. Collagens, in particular

collagen I and collagen IV, are the major components of the

trabecular beams and basal laminal [37].

Quantification of the collagenolytic activity using DQ-Collagen

I and DQ-collagen IV showed increased degradation of collagen I,

but not collagen IV, in porcine TM cells phagocytically challenged

to E.coli, which might presumably result from increased MMP1

activity. Despite the observed higher MMP1 and MMP3 mRNA

levels, increased collagenase activity was not detected with

phagocytosis of pigment particles. Similar results were obtained

by substrate gel zymography. Culture media from porcine TM

cells challenged to E.coli showed caseinolytic and collagenolytic

Figure 5. Venn diagram indicating the overlap between genes with differential expression in human TM cells phagocytically
challenged with E. coli and pigment under physiological and oxidative stress conditions.
doi:10.1371/journal.pone.0034792.g005

Table 4. Common Genes Differentially Expressed (.1.5 fold, p,0.05) in HTM Cells Phagocytically Challenged Under Physiological
and Oxidative Stress Conditions.

Gene Title
Gene
Symbol UniGene ID Reg 5% O2 40% O2

Control E. Coli Pigment Control E. coli Pigment

deiodinase, iodothyronine, type II DIO2 Hs.202354 up 20.26 1.23 0.30 21.13 0.70 20.46

matrix metallopeptidase 1 (interstitial
collagenase)

MMP1 Hs.83169 up 20.65 1.54 0.32 21.11 0.73 20.27

matrix metallopeptidase 3 (stromelysin 1,
progelatinase)

MMP3 Hs.375129 up 21.16 2.31 20.10 20.76 2.04 0.07

tumor necrosis factor (ligand) superfamily,
member 11

TNFSF11 Hs.333791 up 20.03 1.40 0.86 21.60 0.02 20.52

kynureninase (L-kynurenine hydrolase) KYNU Hs.470126 up 21.34 1.52 20.54 20.35 2.00 0.28

potassium intermediate/small conductance
calcium-activated channel, subfamily N,
member 2

KCNN2 Hs.98280 down 0.36 20.63 20.20 0.89 20.18 0.20

doi:10.1371/journal.pone.0034792.t004
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activities at ,43 kDa (MMP1) and ,62 kDa (active MMP2),

respectively. However, these were not observed in the culture

media from control cells or in the cells challenged to pigment.

These findings are not entirely surprising since the activity of

MMPs is tightly regulated at three different levels: transcriptional

regulation, pro-enzyme activation, and inhibition of proteolytic

activity by endogenous inhibitors [23,36]. Additional experiments

aimed at analyzing in more detail the regulation of MMPs with

phagocytosis, as well as the contribution of MMP1 and MMP3 in

the observed collagenolytic and caseolytic activities are required

before reaching further conclusions. Very interestingly, decreased

levels of fibronectin and laminin, as well as increased MMP2

activity has been also reported in bovine TM cells phagocytically

challenged to latex microspheres [16].

Tumor necrosis factor ligand superfamily member 11

(TNFSF11) was also found to be consistenly up-regulated with

E. coli and pigment under physiological and oxidative stress

conditions. TNFSF11, known as receptor activator of nuclear

factor kappa-B ligand (RANKL), is a member of the tumor

necrosis factor cytokine family, which is tightly involved in

mediating the activation of NF-kB [38]. Remarkably, metacore

pathway analysis identified NF-kB as the most likely transcription

factor regulating the transcriptional activation of several of the

genes with altered expression following phagocytic challenge,

including MMP1 and MMP3. A strong activation of NF-kB was

observed in porcine TM cells upon phagocytosis of E. coli.

Phagocytosis of pigment particles elicited a much lesser activation

of NF-kB, which might explain the lower up-regulation of MMP1

and MMP3 with phagocytosis of pigment compared to E. coli. In

both cases, blockage of NF-kB activation using AdDN-IkB

significantly decreased the induction of MMP1 and MMP3 with

phagocytic challenge. Whether TNFSF11 is involved in the up-

regulation of MMP1 and MMP3 via NF-kB needs yet to be

established.

Interestingly, chronic activation of NF-kB and up-regulated

MMP1 expression have been reported in the glaucomatous TM

tissue [22,39]. Moreover, immunohistochemical analysis showed

the protein levels of both, MMP1 and MMP3, to be increased in

the outflow pathway of POAG patients compared to controls.

Strikingly, the staining intensity of MMP1 and MMP3 in the

outflow pathway of exfoliating glaucoma, a type of secondary

glaucoma characterized by the extracellular accumulation of non-

internalized exfoliating material in the angle chamber, was

significantly diminished compared to POAG [40].

In summary, our data demonstrate the up-regulation of several

genes able to modify the ECM content in cultured human and

porcine TM cells following phagocytic challenge. On the one

hand, such an up-regulation of ECM remodeling genes might

Figure 6. Role of NF-kB in MMP1 and MMP3 upregulation in response to phagocytic challenge. (A) Activation of NF-kB in porcine TM
cells phagocytically challenge to E. coli or pigment quantified using a dual luciferase reporter assay. (B) Expression levels of MMP1 and MMP3 mRNAs
in porcine TM cells infected with AdLacZ or AdDN-IkB and phagocytically challenged for three days to either E. coli or pigment particles. The
expression levels were calculated using the formula 22DCt, where DCt = Ctgene2Ct average housekeeping. b-Actin, GAPDH, and HPRT1 served as internal
standard for normalization. Values represent mean 6 SD. **p,0.005, ***p,0.0005 (t-test, n = 3).
doi:10.1371/journal.pone.0034792.g006
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explain the detachment and loss of cell-matrix cohesiveness

reported in TM cells with phagocytosis in vitro and in vivo [5,7–

9,15–17]. This loss of cells with phagocytosis may be a factor

contributing to the decreased in cellularity observed in the TM in

glaucoma [41,42], and have a detrimental impact on the ability of

the TM to function as a biological filter. On the other hand,

because of the relevance of the ECM to the regulation of outflow

facility [43], and the key role of MMPs in the turnover and

maintenance of the trabecular meshwork’s ECM [44,45], our

results suggest a novel role of phagocytosis in the outflow pathway

tissue physiology. Futures studies will be directed at confirming the

expression data obtained in this study using cultured TM cells in in

vivo conditions. Also, based on the differential biological response

elicited with phagocytic challenge to E. coli versus pigment

particles, caution should be taken when analyzing and comparing

experimental data obtained using different phagocytic ligands.

Methods

Cell Culture
Primary cultures of porcine and human TM cells were

prepared and maintained as previously described [46]. Briefly,

the TM was dissected and digested with 2 mg/mL of collagenase

for 1 hour at 37uC. The digested tissue was placed in gelatin-

coated 35 mm dishes and cultivated in low glucose Dulbecco’s

Modified Eagle Medium (DMEM) with L-glutamine and

110 mg/L sodium pyruvate, supplemented with 10% fetal

bovine serum (FBS), 100 mM non-essential amino acids, 100

units/ml penicillin, 100 mg/ml streptomycin sulfate and

0.25 mg/ml amphotericin B; all the reagents were obtained

from Invitrogen (Carlsbad, CA). Cells were maintained and

propagated until passage three at 37uC in a humidified air with

5% CO2 incubator. Cell lines were subcultivated 1:2 when

confluent. Primary cultures of porcine TM cells were prepared

from porcine cadaver eyes obtained from a local abattoir (City

Packing CO, Burlington, NC) less than five hours post-mortem.

Primary cultures of human TM cells were prepared from

cadaver eyes (ages 30–60, no history of eye disease) obtained less

than 48 hours post-mortem from the North Carolina Eye Bank

(NCEB) and National Disease Research Interchange (NDRI).

The protocols involving the use of human tissue were consistent

with the tenets of the Declaration of Helsinki. At least, three

independent batches of TM cells were used in these experiments.

All the cell lines were tested positive for matrix gla protein,

chitinase 3 like-1, and increased MYOC expression in response

to corticoids. Chronic oxidative stress was induced by subjecting

TM cells to normobaric hyperoxia conditions. For this, confluent

cultures of TM cells at passage four were grown for two weeks at

40% O2 and 5% CO2. Control cultures were grown under

physiological oxygen conditions (5% O2, 5% CO2) in a triple gas

incubator [46].

Pigment Isolation
Pigment was harvested from porcine eyes as follows [27]. Eyes

were cleaned and sterilized. The iris and the ciliary body were

dissected and placed in 10 mL sterile water. Tissues were vortexed

and smashed to release the pigment, and then centrifuged at

1206g for five minutes to eliminate cellular debris. The

supernatant containing the pigment was collected and spun at

8406g for 15 minutes. The pigment pellet was resuspended in

sterile PBS and stored at 280uC. The concentration of pigment

particles was calculated using a hematocytometer. The pigment

Figure 7. Collagenolytic activity of porcine TM cells phagocytically challenged to E.coli or pigment in the presence of the self-
quenched fluorescent substrates DQ-Collagen I (A) or DQ-Collagen IV (B). Values represent mean 6 SD. **p,0.005, ***p,0.0005 (t-test,
n = 3). (C) Collagenolytic and caseinolytic activities in the culture media of porcine TM cells phagocytically challenged to E.coli or pigment evaluated
by in-gel collagen I or casein zymography. Lytic activity is shown as clear bands. Zymograms are representative from three independent experiments.
doi:10.1371/journal.pone.0034792.g007
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fraction obtained using this technique was pure and no cells or

tissues debris could be observed under the microscope. Only one

batch of pigment was required to perform all the experiments.

Phagocytic Challenge
Porcine or human TM cells were phagocytically challenged

with either pHRodo-labeled E. coli bioparticles (1610 6 particles/

mL, Invitrogen, Carlsbad, CA) or porcine pigment (1610 6

particles/mL) isolated as described earlier.

Electron Microscopy
Cells were washed twice in PBS and fixed in 2.5% glutaralde-

hyde in 0.1 M cacodylate buffer (pH 7.2). Fixed cells were then

detached by gentle scraping, pelleted, post-fixed in 1% osmium

tetroxide in 0.1 M cacodylate buffer, and processed for transmis-

sion electron microscopy in the Morphology Facility at Duke Eye

center. Thin sections (65 nm) were examined in a JEM-1200EX

electron microscopy.

RNA Isolation
Following the experimental conditions, TM primary cultures

were extensively washed with cold PBS and fixed in RNAlater

(Qiagen). Total RNA was isolated using RNeasy kit (Qiagen,

Valencia, CA), following the manufacturer’s protocol, and then

treated with DNase I. RNA yields were determined using the

RiboGreen fluorescent dye (Molecular Probes, Eugene, OR).

RNA quality was confirmed using the Agilent 2100 Bioanalyzer.

Microarray Analysis
Total RNA (10 mg) from human TM primary cultures

phagocytically challenged for two days to either E. coli or pigment

under physiological or oxidative stress conditions were indepen-

dently hybridized to Affymetrix Human Genome U133 Plus 2.0

microarrays following the manufacturer’s instructions. Data

analysis was performed using the GeneSpring Software 10.0

(Silicon Genetics, Redwood City, CA). Raw data from the twelve

hybridizations were normalized to the 50th percentile per chip and

to the median per gene. Normalized mean values for the six

individual experimental groups (5%O2-Control, 5%O2-E.coli,

5%O2-Pigment, 40%O2-Control, 40%O2-E.coli, 40%O2-Pig-

ment) were generated for the experimental interpretation. The

analysis was performed using the Replicates interpretation. Genes

with a differential gene expression were selected and then filtered

on flags to retain the genes that were presented in at least one of

the conditions. Since some genes were represented in the arrays in

more than one spot, we verified a consistent differential expression

in all the spots to eliminate false positives. The statistical

significance of the differences was evaluated by using the cross-

gene-error model in combination with one-way ANOVA (p,0.05)

and Bonferroni multiple testing correction. Since some genes are

represented in the arrays in more than one spot, we verified a

consistent differential expression in all the spots to eliminate false

positives. Microarray data were deposited in the GEO database

(#GSE32169) and followed MIAME requirements.

Integrated Pathway Enrichment Analysis
Integrated pathway enrichment analysis of the set of genes

differentially expressed upon phagocytosis was performed by using

the knowledge-based canonical pathways and endogenous meta-

bolic pathways in GeneGo MetaCore (http://www.genego.com/

metacore.php). For network analysis, transcription regulation, and

direct interactions the workflow tool was used.

Quantitative PCR
First-strand cDNA was synthesized from total RNA (1 mg) by

reverse transcription using oligo(dT) primer and Superscript II

reverse transcriptase (Invitrogen, Carlsbad, CA). Real-time PCRs

were performed in a 20 mL mixture containing 1 mL of the cDNA

preparation diluted five times, 10 mL iQ SYBR Green Supermix

(Bio-Rad, Hercules, CA), and 500 nm of each primer, in the BIO-

RAD iCycler iQ system (Bio-Rad, Hercules, CA) using the

following PCR parameters: 95uC for 5 min, followed by 50 cycles

of 95uC for 15 s, 60uC for 15 s, and 72uC for 15 s. The

fluorescence threshold value (Ct) was calculated using the iCycle

iQ system software. The absence of nonspecific products was

confirmed by both the analysis of the melt curves and by

electrophoresis in 3% Super AcrylAgarose gels. The average Ct

value of the following housekeeping genes (b-Actin, GAPDH, and

HPRT1) served as internal standard of mRNA expression. The

expression levels were calculated using the formula 22DCt, where

DCt = Ctgene2Ct average housekeeping. The sequences of the primers

used for the amplifications are shown in Table 5.

Table 5. Primer Sequences.

Forward Reverse

Human MMP1 CCAGGCCCAGGTATTGGAGGGG GGCCGAGTTCATGAGCCGCA

TFPI2 GCTGTGGAGGGAATGACAAT TCCGGATTCTACTGGCAAAG

LAMC2 CGCAGCTCTGCAGAATACAG AGACCCATTTCGTTGGACAG

TNFSF11 CGGGGTGACCTTATGAGAAA GCGCTAGATGACACCCTCTC

EDN3 AGGCTGCATGGTGTATGTCA TCTGCCAAAATCCCATAAGC

GAPDH ACAGTCAGCCGCATCTTCTT ACGACCAAATCCGTTGACTC

Porcine MMP1 CCAGGCCCAGGTATTGGAGGGG GGCCCAGTTCATGAGCAGCCA

TNFSF11 GCCCTTTGCCCACCTCACGA TCTTGGCCCAACCTCGGTCA

GAPDH TGTCCCCACCCCCAACGTGT CCCTCGGACGCCTGCTTCAC

Human and Porcine ACT TCCCTGGAGAAGAGCTACGA AGGAAGGAAGGCTGGAAGAG

HPRT1 ACACTGGCAAAACAATGCAA ACACTTCGAGGGGTCCTTTT

MMP3 GGAGGTGACGGGGAAGCTGG GCCAGGAAAGGTGCTGAAGT

doi:10.1371/journal.pone.0034792.t005
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NF-kB Luciferase Reporter Assay
Activation of NF-kB was monitored using a luciferase reporter

assay (Dual-Luciferase Reporter Assay System, Promega). For this,

porcine TM cells were transiently transfected with 1 mg of NF-kB

firefly luciferase and 1 mg of renilla luciferase reporter plasmids,

using the Amaxa Nucleoporation System (Basic Nucleofector Kit,

T23 program). Two days after transfection, cells were phagocy-

tically challenged to E. coli or pigment. Luciferase activity in cell

lysates harvested at the indicated times was quantified following

the manufacturer’s instructions.

Adenoviral Infection of Trabecular Meshwork Cells
Porcine TM cells at passage 4 were infected with replication

deficient adenoviruses encoding either LacZ or mutant IkB

(m.o.i = 5 pfu/cell) [47]. Briefly, viral suspensions diluted in a

small volume of serum-free media were allowed to adsorb to the

cell surface membrane by incubation during 90 minutes at 37uC,

5% CO2 with shaking every 15 minutes to get a homogeneous

distribution of the viral particles in the plate. After the adsorption

period, regular culture medium was added to plates.

Substrate Gel Zymography
Collagenolytic and caseinolytic activities in the culture media

were evaluated by collagen I gel zymography and casein gel

zymography, respectively. Supernatant samples (25 ml) were

mixed with equal volumes of 26 zymography sample buffer

(125 mM Tris-HCl, pH 6.8, 50% glycerol, 8% SDS, 0.02%

bromophenol blue), loaded onto SDS-PAGE gels containing

casein or collagen I under nonreducing conditions, and

electrophoresed with 2.5 mM Tris-HCl, 19.2 mM glycine,

0.01% SDS, pH 8.3, at 100 V. After electrophoresis, gels were

washed with 16renaturing buffer and 16development buffer for

30 minutes each, and incubated overnight in zymogram

development buffer (Bio-Rad). Gels were then stained with

Coomassie blue R-250 followed by destaining with 55%

methanol and 7% acetic acid. Areas of MMP activity appeared

as clear bands. Pre-formulated zymography buffers and pre-cast

casein gels were purchased from Bio-Rad (Hercules, CA).

Collagen I-containing gels were prepared in the laboratory by

adding 1 mL of 0.1% Collagen solution, type 1 from calf skin

(sigma cat.# C8919-20ML) in 10 mL of 10% acrylamide gel

[48].

Collagenase Activity
Collagenase activity was monitored using DQ collagen, type I

and type IV, fluorescein conjugates (Invitrogen, Carlsbad, CA) as

follows. Confluent cultures of porcine TM cells grown in 96-well

plate were phagocytically challenged to either E. coli or pigment

in the presence of vehicle, DQ-Collagen I (10 mg/mL), or DQ-

Collagen IV (10 mg/mL). Fluorescence peptides released by the

enzymatic cleavage of the substrates were measured in a

microplate reader at the indicated times (Em: 495 nm; Exc:

515 nm). All values were corrected for background fluorescence.

Statistic Analysis
All experimental procedures were repeated at least three times

in independent experiments using different cell lines. The

percentage of increase of the experimental conditions compared

to the control was calculated and averaged. Data are represented

as mean 6 SD. Statistical significance was calculated using

Student’s t-test for two groups comparisons using the software

GraphPad Prism. A probability less than 5% was considered

statistically significant.

Supporting Information

Figure S1 Expression Levels of MMP1, MMP3, and
TNFSF11 in Phagocytically Challenged porcine TM cells:
Confluent cultures of porcine TM cells grown for two weeks under

physiological (black bars) and oxidative stress conditions (stripped

bars) were phagocytically challenged to E. coli or pigment

particles. mRNA levels of MMP1, MMP3, and TNFSF11 were

quantified by real-time PCR at day 1, 2, and 3 post-challenge. The

expression levels were calculated using the formula 22DCt, where

DCt = Ctgene2Ct average housekeeping. b-Actin, GAPDH, and

HPRT1 served as internal standard for normalization. Values

represent mean 6 SD. * p,0.05, ** p,0.005, *** p,0.0005 (t-

test, n = 3).

(TIFF)

Table S1 List of the genes significantly upregulated (.2
fold, p,0.05) in HTM Cells phagocytically challenged to E.
coli under physiological conditions. Confluent cultures of

HTM cells were grown for two weeks under physiological 5% O2

atmosphere, and then phagocytically challenged to E. coli

bioparticles. Changes in gene expression at day 3 post-phagocytic

challenge were evaluated by gene array using Affymetrix Human

Genome U133 Plus 2.0 chips, and analyzed by Genespring Software.

(PDF)

Table S2 List of the genes significantly downregulated
(.2 fold, p,0.05) in HTM Cells phagocytically chal-
lenged to E. coli under physiological conditions. Conflu-

ent cultures of HTM cells were grown for two weeks under

physiological 5% O2 atmosphere, and then phagocytically

challenged to E. coli bioparticles. Changes in gene expression at

day 3 post-phagocytic challenge were evaluated by gene array

using Affymetrix Human Genome U133 Plus 2.0 chips, and

analyzed by Genespring Software.

(PDF)

Table S3 List of genes significantly upregulated (.1.5
fold, p,0.05) in HTM Cells phagocytically challenged to
pigment particles under physiological conditions. Con-

fluent cultures of HTM cells were grown for two weeks under

physiological 5% O2 atmosphere, and then phagocytically

challenged to pigment particles. Changes in gene expression at

day 3 post-phagocytic challenge were evaluated by gene array

using Affymetrix Human Genome U133 Plus 2.0 chips, and

analyzed by Genespring Software.

(PDF)

Table S4 List of genes significantly downregulated
(.1.5 fold, p,0.05) in HTM Cells phagocytically chal-
lenged to pigment particles under physiological condi-
tions. Confluent cultures of HTM cells were grown for two weeks

under physiological 5% O2 atmosphere, and then phagocytically

challenged to pigment particles. Changes in gene expression at day

3 post-phagocytic challenge were evaluated by gene array using

Affymetrix Human Genome U133 Plus 2.0 chips, and analyzed by

Genespring Software.

(PDF)

Table S5 Quantitative real-time PCR confirmation of
selected genes with differential expression in phagocy-
tically challenged human and porcine TM cells under
physiological and oxidative stress conditions. The expres-

sion levels were calculated using the formula 2-DCt, where

DCt = Ctgene-Ct average housekeeping. b-Actin, GAPDH, and

HPRT1 served as internal standard for normalization. Values

represent mean 6 SD, t-test, n = 3. (*) compares phagocytically
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challenged versus control cultures; (#) compares oxidatively

stressed versus cultures grown under physiological conditions.

(PDF)

Table S6 List of the genes significantly upregulated (.2
fold, p,0.05) in HTM Cells phagocytically challenged to
E. coli under oxidative stress conditions. Confluent

cultures of HTM cells were grown for two weeks under oxidative

40% O2 atmosphere, and then phagocytically challenged to E. coli

bioparticles. Changes in gene expression at day 3 post-phagocytic

challenge were evaluated by gene array using Affymetrix Human

Genome U133 Plus 2.0 chips, and analyzed by Genespring

Software.

(PDF)

Table S7 List of the genes significantly downregulated
(.2 fold, p,0.05) in HTM Cells phagocytically chal-
lenged to E. coli under oxidative stress conditions.
Confluent cultures of HTM cells were grown for two weeks under

oxidative 40% O2 atmosphere, and then phagocytically challenged

to E. coli bioparticles. Changes in gene expression at day 3 post-

phagocytic challenge were evaluated by gene array using

Affymetrix Human Genome U133 Plus 2.0 chips, and analyzed

by Genespring Software.

(PDF)

Table S8 List of the genes significantly upregulated (.2
fold, p,0.05) in HTM Cells phagocytically challenged to
pigment under oxidative stress conditions. Confluent

cultures of HTM cells were grown for two weeks under oxidative

40% O2 atmosphere, and then phagocytically challenged to

pigment particles. Changes in gene expression at day 3 post-

phagocytic challenge were evaluated by gene array using

Affymetrix Human Genome U133 Plus 2.0 chips, and analyzed

by Genespring Software.

(PDF)

Table S9 List of the genes significantly downregulated
(.2 fold, p,0.05) in HTM Cells phagocytically chal-
lenged to pigment under oxidative stress conditions.
Confluent cultures of HTM cells were grown for two weeks under

oxidative 40% O2 atmosphere, and then phagocytically challenged

to pigment particles. Changes in gene expression at day 3 post-

phagocytic challenge were evaluated by gene array using

Affymetrix Human Genome U133 Plus 2.0 chips, and analyzed

by Genespring Software.

(PDF)
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