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A unified approach for quantifying and interpreting
DNA shape readout by transcription factors
H Tomas Rube1, Chaitanya Rastogi1,2, Judith F Kribelbauer1,3 & Harmen J Bussemaker1,3,*

Abstract

Transcription factors (TFs) interpret DNA sequence by probing the
chemical and structural properties of the nucleotide polymer. DNA
shape is thought to enable a parsimonious representation of
dependencies between nucleotide positions. Here, we propose a
unified mathematical representation of the DNA sequence depen-
dence of shape and TF binding, respectively, which simplifies and
enhances analysis of shape readout. First, we demonstrate that
linear models based on mononucleotide features alone account for
60–70% of the variance in minor groove width, roll, helix twist,
and propeller twist. This explains why simple scoring matrices that
ignore all dependencies between nucleotide positions can partially
account for DNA shape readout by a TF. Adding dinucleotide
features as sequence-to-shape predictors to our model, we can
almost perfectly explain the shape parameters. Building on this
observation, we developed a post hoc analysis method that can be
used to analyze any mechanism-agnostic protein–DNA binding
model in terms of shape readout. Our insights provide an alterna-
tive strategy for using DNA shape information to enhance our
understanding of how cis-regulatory codes are interpreted by the
cellular machinery.
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Introduction

A central goal of regulatory genomics research is to understand how

transcription factors (TFs) are recruited to specific regulatory

elements. Popular approaches to quantifying DNA binding by a

particular TF include in vivo profiling using ChIP-seq (Stormo, 2000;

Foat et al, 2006) and high-throughput in vitro assays (Matys et al,

2003; Mukherjee et al, 2004; Maerkl & Quake, 2007; Slattery et al,

2011; Weirauch et al, 2014). DNA binding specificity is often

represented in terms of a scoring matrix [also referred to as “posi-

tion-specific scoring matrix”, “position weight matrix” (Stormo,

2000), or “position-specific affinity matrix” (Foat et al, 2006)],

under the assumption that each base pair position within the bind-

ing site contributes independently to the overall affinity. Scoring

matrices for thousands of TFs are available in online databases

(Robasky & Bulyk, 2011; Mathelier et al, 2014). While many algo-

rithms for constructing scoring matrices exist, the most accurate of

these are based on biophysical models of protein–DNA interaction

that take dependencies between neighboring nucleotide positions

into account (Weirauch et al, 2013; Riley et al, 2015).

Having a scoring matrix available for a particular TF does not

mean that the structural mechanisms the TF employs to bind more

strongly to some DNA sequences than to others are known. This is

not a problem when the goal is to predict the landscape of (relative)

binding affinity along the genome or the impact of non-coding poly-

morphisms on TF binding. However, to understand or predict the

impact of amino acid substitutions in the DNA binding domain of a

TF (Abe et al, 2015; Barrera et al, 2016), structural insight is indis-

pensable.

In this study, we present an approach for analyzing a mecha-

nism-agnostic model (such as a scoring matrix) in order to reveal

the readout mechanisms it implicitly encodes. A classic and well-

understood mechanism is base readout, where TF residues form

stabilizing bonds with specific bases or pairs of stacked bases in

the major groove (Luscombe et al, 2001). A complementary mech-

anism called DNA shape readout, defined as sensitivity of TF bind-

ing to subtle deviations from average B-DNA helical structure

(Hegde et al, 1992; Parkinson et al, 1996; Hizver et al, 2001), has

received significant attention in recent years (Rohs et al, 2009,

2010; Slattery et al, 2011; Zhou et al, 2015). In particular, for the

Drosophila Hox protein Sex combs reduced (Scr) in complex with

Extradenticle (Exd), crystallographic analysis of binding to high-

and low-affinity DNA ligands (Rohs et al, 2010), as well compar-

ison between the binding specificity of Exd-Scr and that of

complexes with a mutated or paralogous Hox protein (Slattery

et al, 2011; Abe et al, 2015), implicates a specific arginine residue

in the N-terminal side chain of Exd in mediating minor groove

width (MGW) readout.

While these structural studies demonstrate how shape readout

can be identified and rigorously validated for specific cases, the

1 Department of Biological Sciences, Columbia University, New York, NY, USA
2 Program in Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
3 Department of Systems Biology, Columbia University Medical Center, New York, NY, USA

*Corresponding author. Tel: +1 212 854 9932; E-mail: hjb2004@columbia.edu

ª 2018 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 14: e7902 | 2018 1 of 16

http://orcid.org/0000-0002-7274-5277
http://orcid.org/0000-0002-7274-5277
http://orcid.org/0000-0002-7274-5277


experimental methods used are both costly and time-consuming.

Statistical methods for detecting signatures of shape readout from

in vitro TF binding specificity data alone have therefore been devel-

oped (Zhou et al, 2015; Yang et al, 2014, 2017; Abe et al, 2015).

Detecting DNA shape readout depends critically on knowing the

detailed shape of potential TF binding sites. The conformation of

the DNA helix is parameterized using two main classes of parame-

ters: (i) base pair parameters that specify the relative location of the

bases in a base pair, and (ii) base pair step parameters that specify

the relative location of two adjacent base pairs (Olson et al, 2001).

Together, these parameters fully specify the location of the bases.

For B-DNA, some of the most important are the base pair parameter

Propeller Twist (ProT), and step parameters Slide, Roll, and Helix

Twist (HelT; Calladine & Drew, 1992). Derived quantities that are

more closely related to specific readout mechanisms, such as

MGW and electrostatic potential (Rohs et al, 2009), are also used.

Studying the sequence dependence of DNA shape and deformabil-

ity has a long history (Calladine, 1982; Calladine & Drew, 1992).

While early studies used crystal structure data to tabulate the

shape and flexibility of dinucleotide steps (Olson et al, 1998), a

more recent study used Monte Carlo simulations to predict HelT,

Roll, ProT, and MGW in all pentameric sequence contexts (Zhou

et al, 2013). Unlimited by the availability of experimental struc-

tures, these tables have proven highly useful, as the shape profile

along any DNA sequence can be predicted quickly using a simple

sliding window.

Recent years have seen flurry of computational work relating to

DNA shape readout (Gordan et al, 2013; Zhou et al, 2015; Yang &

Ramsey, 2015; Mathelier et al, 2016; Ma et al, 2017). One of two

main approaches is typically utilized. The first is to contrast the

shape of high- and low-affinity binding sites and interpret the

observed differences as evidence for shape readout (Joshi et al,

2007; Gordan et al, 2013; Zhou et al, 2013). Methods for

assessing the statistical significance of such differences,

however, have not yet been developed. The second approach is

to use DNA shape features as predictors in mathematical models

of TF binding. The rationale is that shape readout gives rise to

specific dependencies between nucleotide positions that cannot

be captured by a simple scoring matrix. Adding DNA shape as

a predictor to TF binding models based on mononucleotide

features alone indeed improves to ability to predict TF binding

in vivo and in vitro (Zhou et al, 2015; Mathelier et al, 2016), as

well as the ability to predict gene expression (Peng & Sinha,

2016). However, this improvement is similar to that observed

when di- and trinucleotide features instead are added as

predictors to the binding models. This equivalence has been

interpreted to reflect that dinucleotides capture base-stacking

interactions and trinucleotides capture short structural elements

such as A-tracts (Zhou et al, 2015; Yang et al, 2017). However, it

has not been systematically explored to what extent the variation

in the pentamer-based shape tables can be explained in terms of

effects associated with simpler DNA sequence features such as

mono- and dinucleotides.

Identifying DNA shape readout when TF binding specificity data

are available requires one to dissect specificity in terms of base and

shape readout (Fig 1A–I). Base readout (Fig 1D) is commonly

parameterized using a scoring matrix (Fig 1G), and the correspond-

ing contribution to the binding affinity is computed by combining

this matrix with base identity indicators (Fig 1A) along the binding

site (we reserve the term scoring matrix for TF binding models that

only have mononucleotide predictors). Shape readout (Fig 1F) is

parameterized using a profile of shape-sensitivity coefficients along

the protein–DNA interface (Fig 1I), which have the interpretation of

change in (normalized) binding free energy (ΔΔG/RT) per unit (an-

gular degree for Roll, HelT, ProT; Ångström for MGW) of change in

shape-parameter value. The corresponding affinity contribution can
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Figure 1. Quantifying base and shape readout.

A–I A transcription factor (TF) (H) recognizes a DNA molecule (B) either through base readout (D) or through readout of other biophysical characteristics such as DNA
shape (F). Base readout is quantified using DNA sequence feature indicators (A) and a scoring matrix (G). Similarly, shape readout is quantified in terms of shape
parameters (C) and shape-sensitivity coefficients (I) along the DNA molecule. Structures for PDB/2R5Y were generated using PyMOL.
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be computed by multiplying these coefficients with the shape

parameters along the binding site (Fig 1C; Zhou et al, 2015). Since

sequence determines shape, shape sensitivity at a specific position

should be equivalent to readout of a specific combination of (possi-

bly higher-order) sequence features. However, representing DNA

shape using pentamers, as is the current standard, makes it difficult

to see exactly what these equivalent sequence features are. A more

parsimonious sequence-to-shape model with fewer parameters

could in turn facilitate analysis of the relationship between shape

readout and binding specificity and, ideally, allow for statistical

hypothesis testing based on specific signatures of DNA shape

readout.

In the present study, we revisit the problem of attributing

DNA shape readout and address a number of open questions.

We start by asking what the distinctive signatures are of shape

readout and how different they are from the signatures of base

readout. Based on a simple analysis, we show that standard

scoring matrices that ignore any dependencies between nucleo-

tide positions within the binding site can capture shape readout

to a surprising extent. Prompted by this observation, we show

that the sequence-to-shape relationship encoded in commonly

used pentamer-based shape tables can be almost perfectly param-

eterized in terms of mononucleotide and dinucleotide features.

We next develop a practical two-step approach in which quan-

tification of DNA binding specificity is based on a strictly mecha-

nism-agnostic model, and interpretation in terms of shape

readout is implemented as a post hoc analysis of this model. We

show that this approach prevents numerical instabilities that

hinder the direct interpretation of shape-sensitivity coefficients in

hybrid models in which sequence and shape features compete to

explain binding data. Importantly, our approach also provides a

natural way to assign statistical significance to the readout of a

particular shape parameter at a particular position within the

binding site.

Results

Scoring matrices encode known associations between DNA shape
and binding affinity

Whenever binding affinity has been quantified for a large number

of DNA sequences in a high-throughput assay, and these

sequences can somehow be aligned with each other, one can look

for associations between binding and shape that are indicative of

shape readout. Indeed, several studies have compared the shape

profile for high-affinity TF binding sites (determined either using

the crystal structure of protein–DNA complexes or by computing

the shape of individual high-affinity sequences using the

pentamer tables) with that of lower-affinity sites (Joshi et al,

2007; Slattery et al, 2011; Zhou et al, 2013; Shazman et al, 2014;

Yang et al, 2014), or looked for correlations between binding and

shape (Gordan et al, 2013). In particular, the binding specificity

of the Exd-Scr complex was previously determined using SELEX-

seq, a high-throughput in vitro assay (Slattery et al, 2011); it was

found that high-affinity binding sites have a shape where the

minor groove is narrowed in the center of both the Exd and the

Scr half-site (Fig EV1A).

When a scoring matrix is available for a particular TF, it can

be used to rank sequences by binding affinity. This made us

wonder to what extent associations between DNA shape and

binding affinity might already be encoded in a scoring matrix

(which completely neglects dinucleotide and higher-order depen-

dencies). To answer this question, we fit a simple free-energy

model with additive mononucleotide effects only to the published

SELEX-seq data for Exd-Scr (Materials and Methods; Fig 2A); this

was done using a novel algorithm named No Read Left Behind

(NRLB), which maximizes the likelihood of the entire set of

SELEX probes sampled after one round of affinity-based selection

(C. Rastogi, H. T. Rube, J. F. Kribelbauer, J. Crocker, R. E. Loker,

G. D. Martini, O. Laptenko, W. Freed-Pastor, C. L. Prives, D. L. Stern,

R. S. Mann, H. J. Bussemaker, in preparation; see Materials and

Methods for details).

To see what associations between DNA shape and binding

affinity are encoded in the NRLB mononucleotide model for Exd-

Scr, we randomly sampled DNA sequences, computed their bind-

ing affinity, segregated the sequences into affinity bins, and

computed the average MGW profile for each bin using the MGW

pentamer table (Fig 2B). This revealed that the binding sites iden-

tified by the scoring matrix had a narrowed minor groove in the

center of both the Exd and the Scr half-site, consistent with the

original analysis (Slattery et al, 2011), which was based on

oligomer count tables (Fig EV1A). Repeating the same analysis for

ProT, Roll, and HelT also gave good agreement with the average

shape profile of a set of high-affinity SELEX probes aligned based

on their sequence. SELEX-seq data are also available for the Hox

factor Ultrabithorax (UbxIVa) in complex with Exd, a complex

that does not select a narrow groove in the Hox half-site but

instead prefers it to be slightly widened. Repeating the analysis

for this dataset indeed revealed an increased MGW in the UbxIVa

half-site (Figs 2C and D, and EV1B). We also reanalyzed SELEX-

seq data for MAX and found good agreement (Figs 2E and F, and

EV1C).

A large body of publicly available TF binding data has also

been generated using protein binding microarray (PBM) technol-

ogy (Mukherjee et al, 2004). A recent study reanalyzed PBM data

curated in the JASPAR (Mathelier et al, 2014) and UniPROBE

(Robasky & Bulyk, 2011) databases and computed the average

DNA shape profile of high-affinity sequences for a large number of

transcription factors (Yang et al, 2014). To see whether these pro-

files can be derived using PBM-based scoring matrices, we arbi-

trarily focused on the nuclear receptor HNF4A, downloaded the

scoring matrix and binding PBM probe sequences for from Uni-

PROBE, repeated the above analysis, and found that the scoring

matrix (Figs 2G and H, and EV1D) indeed encodes the previously

reported mean shape of high-affinity probes (Yang et al, 2014).

We also downloaded PBM data for the arbitrarily chosen Droso-

phila nuclear hormone receptor Ftz-F1 from CIS-BP (Weirauch

et al, 2014), repeated the analysis, and found good agreement

(Figs 2I and J, and EV1E). Thus, our approach is generally useful

across multiple high-throughput in vitro profiling platforms. Alto-

gether, these results show that while SELEX-seq and PBM can

identify preferences for complex higher-order sequence features, a

simple scoring matrix somehow already encodes known dif-

ferences in DNA shape between high- and low-affinity binding

sequences.

ª 2018 The Authors Molecular Systems Biology 14: e7902 | 2018 3 of 16

H Tomas Rube et al Post hoc analysis of DNA shape readout Molecular Systems Biology



A mononucleotide model captures two-thirds of the variance in
DNA shape parameters

The fact that a simple scoring matrix can parameterize a significant

part of the shape readout by the Exd-Scr complex made us wonder

to what extent similar models might be used to capture the informa-

tion contained in the pentamer-based shape tables themselves in a

more compact and interpretable manner (Fig 3A). In other words,

we wished to consider the precise nature of the relationship

between DNA sequence and shape in more detail. To this end, we

predicted the shape parameters across all pentamers using linear

regression models that only included mononucleotide features. Our

models for the step parameters Roll and HelT used a 4-bp sequence

window centered at the base pair step (with 7 degrees of freedom,

DOF) and explained 74 and 71%, respectively, of the variance when

hold-one-out cross-validation was used (Fig 3B and C). For the base

pair parameter ProT and for the MGW, our models used 5-bp

sequence windows centered at the base pair (with 8 DOF) and

accounted for 67 and 60% of the variance, respectively (Fig 3B

and C).

We used a sequence logo representation to visualize the

sequence-to-shape model regression coefficients (Fig 3D). For the

step features (Roll and HelT), the coefficients were largest immedi-

ately before and after the step. A model in which only these coeffi-

cients were allowed to be nonzero performed almost as well,

explaining 73 and 61% of the variance, respectively; since reverse-

complement symmetry relates the regression coefficients on either

side of the step with each other, the sequence dependence in these

reduced models can be parameterized by three independent parame-

ters and an intercept. For ProT, the regression coefficients were

largest at the central base pair. A model using only the central base

pair accounted for 54% of the variance. Reverse-complement

symmetry maps the central base pair to itself; the sequence depen-

dence of this model therefore is set by as single parameter encoding

the G/C dependence. G:C base pairs have less (negative) ProT than

A:T base pairs, due to the additional stabilizing hydrogen bond in

the former. This association has also been noted previously

(Hancock et al, 2013; Dror et al, 2015).

The MGW regression coefficients were small at the central

base pair but large one and two base pairs away. At each posi-

tion, A and T had much larger values than G and C. The A and

T coefficients had opposite signs at each base pair and (therefore,

following reverse-complement symmetry) opposite signs on the 50

and 30 sides of the central position. The shape of A-tracts has

been studied extensively, and our MGW model recapitulated

earlier observations (Haran & Mohanty, 2009; Rohs et al, 2010);

the A4T4 octamer is curved and has narrowed minor groove

around the ApT step, whereas the T4A4 octamer is straight and

has wider minor groove around the TpA step (Burkhoff & Tullius,

1987, 1988; Haran & Mohanty, 2009). The difference in curvature

between these two octamers has been attributed to a negative

Roll in the ApT step and a positive Roll in the TpA step (Stefl

et al, 2004), both of which can be seen in the Roll model. The

minor groove of A-tracts is progressively narrowed in the 50-to-30

direction (Burkhoff & Tullius, 1987, 1988), and this is recapitu-

lated by applying our MGW model across sequences of type

A

B

C

D

E

F

G

H

I

J

Figure 2. Scoring matrices encode associations between DNA shape and binding affinity.

A Free-energy scoring matrix for the Exd-Scr complex derived from SELEX-seq data using NRLB. Letter height indicates the magnitude of the position-specific free-
energy contribution, and inverted lower letters indicate destabilizing bases (Foat et al, 2006). Shaded rectangles indicate known sites of MGW readout.

B Mean MGW, ProT, Roll, and HelT profiles of Exd-Scr binding sites identified using the scoring matrix in (A), stratified by affinity. Red and blue lines indicate high-
and low-affinity sites, respectively. The profiles were generated by drawing random 18mer sequences, computing the free energy of the sequences using the
scoring matrix, sorting them into free-energy bins of equal size, and finally computing the average shape of the sequences in each bin.

C, D The same as (A, B) but for the Exd-UbxIVa complex.
E, F The same as (A, B) but for the MAX homodimer complex (Zhou et al, 2015).
G, H The same as (A, B) but using BPM-based scoring matrix for HNF4A downloaded from UniPROBE (ID: 2640).
I, J The same as (A, B) but using BPM-based scoring matrix for Ftz-F1 downloaded from CIS-BP (ID: M1470_1.02).
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N2A5N2. The base pairs in A-tracts are also strongly propeller-

twisted (Nelson et al, 1987); this is recapitulated by the large

(negative) values for A/T bases in the ProT model.

Visualizing the sequence dependence encoded in the pentamer

tables as sequence logos clarifies how they are reflected in the TF

scoring matrices. For concreteness, consider the ProT profile of

A

C

D

E

F

B

Figure 3. Mononucleotide models describe sequence-to-shape relationships well.

A Schematic diagram showing how pentamer tables currently are used to evaluate the DNA shape parameters and how we alternatively evaluate them using sequence
feature-based models.

B Fraction of variance explained (R2) for models with mononucleotide predictors only (green) and models with mono- and dinucleotide predictors (increase shown in
blue). Leave-one-out cross-validation was used.

C Scatter plots of true vs. predicted shape parameters. Green dots indicate predictions by the mononucleotide models, whereas blue dots indicate predictions by models
that also include dinucleotide interactions.

D Regression coefficients of mononucleotide-only sequence-to-shape models, shown as logos. The models were trained on the shape pentamer tables of Zhou et al
(2013). B0 and P0 indicate the positions of the central base and base pair step, respectively.

E Regression coefficients for an all-by-all interaction model (red, above average; blue, below). Diagonal blocks indicate self-interactions (equivalent to mononucleotide-
based predictors), and off-diagonal blocks indicate interactions.

F Logo representation of dinucleotide interactions using the representation in (D). Dashed lines separate columns of dinucleotides.

ª 2018 The Authors Molecular Systems Biology 14: e7902 | 2018 5 of 16

H Tomas Rube et al Post hoc analysis of DNA shape readout Molecular Systems Biology



Exd-Scr (Fig 2B) and note how the peaks and troughs align with the

G/C preferences in the scoring matrix. The ProT profile may look

like an impressive signature for shape readout, but it should be kept

in mind that other mechanisms such as direct base recognition may

also confer a preference for G/C nucleotides. This example illus-

trates how inspecting the sequence-to-shape model logos in Fig 3

can help judge signatures of shape readout.

Dinucleotide features predict shape parameters with
high precision

While dependency on mononucleotide features alone captured most

of the variance in the shape tables as discussed above, the neglected

higher-order sequence dependence is thought to also be biophysi-

cally important. Indeed, including shape features as predictors can

boost the performance of TF binding models, suggesting that shape

and mononucleotide features at least partly complement each other

(Abe et al, 2015; Zhou et al, 2015). Models that include di- and tri-

nucleotide rather than shape features as additional predictors have

roughly similar performance (Zhou et al, 2015; Yang et al, 2017).

Together, these observations have led to the notion that shape

features mostly encode these higher-order sequence features.

However, to what extent dinucleotide features help explain varia-

tion in the shape features themselves has not, to our knowledge,

been directly addressed.

To investigate the nature of the higher-order sequence dependen-

cies in the shape table, we used multiple linear regression to fit

sequence-to-shape models that included all pairwise interactions

between nucleotide positions, adjacent and non-adjacent. These

models performed even better than the mononucleotide-only models,

respectively explaining 93, 97, 99, and 98% of the variance for MGW,

ProT, Roll, and HelT. Repeating the analysis with permuted tables

gave models explaining less than 1% of the variance, showing that

the performance of the models is not due to overfitting. The regression

coefficients were on average 6.2-fold larger for interactions between

neighboring nucleotides than for interactions between non-adjacent

positions (Fig 3E), indicating that these dinucleotide features are the

most important. Indeed, model performance barely degraded when

only dinucleotide features were included (explaining 92, 97, 99, and

98%, respectively, of the variance for MGW, ProT, Roll, and HelT).

These models had 26 and 22 DOF for the base and step parameters,

respectively. For the step parameters Roll and HelT, the interaction

coefficients were small outside base pair steps (Fig 3F). TT and AA

interactions in the ProT model increase the (negative) twisting angle,

an effect due to a cross-strand hydrogen bond (Nelson et al, 1987;

Calladine & Drew, 1992). Dinucleotide interactions also increased the

Roll angle for the pyrimidine–purine step, an effect due to a cross-

chain purine clash (Calladine & Drew, 1992). While the mononu-

cleotide MGW model had small coefficients for the central nucleotide,

the dinucleotide interactions for the central base were quite large.

Including these interactions further captured narrowing of the minor

groove of A-tracts and widening for the TpA step.

Direct modeling of shape readout

We now turn to the problem of identifying shape readout by examin-

ing the sequence-to-affinity relationship of a TF. Biophysically, we

expect shape readout to be manifested in this relationship as a

dependence on the shape parameters that is independent of the base

readout (cf. Fig 1). However, because the shape cannot vary without

changing the base sequence, shape and base readout must be treated

in a unified manner. We therefore model the TF binding energy

using both sequence and shape features (Fig 4A): Binding energy is

computed by (i) scoring the sequence using a scoring matrix which

encodes base readout, and (ii) computing the shape parameters

along the binding site and multiplying these values by corresponding

sensitivity coefficients that encode shape readout. After fitting such a

model to the TF binding data, we may be able to identify shape read-

out either by examining the inferred shape-sensitivity coefficients or

by comparing the performance of this model to a model that does

not include shape readout. Because the binding model is fit directly

to the data, we call this approach direct shape regression.

Models of TF binding specificity utilizing linear combination of

base and shape features have been used previously in the literature,

including a study that used linear support vector regression to

model the logarithmic PBM probe intensity (Zhou et al, 2015) and a

study that used L2-penalized multiple linear regression to model the

binding affinity inferred from HT-SELEX data (Yang et al, 2017).

Both these studies found that including shape features as predictors

improves the performance of models of in vitro binding.

Revisiting the Exd-Hox SELEX-seq data, we used NRLB (C.

Rastogi, H. T. Rube, J. F. Kribelbauer, J. Crocker, R. E. Loker, G. D.

Martini, O. Laptenko, W. Freed-Pastor, C. L. Prives, D. L. Stern, R.

S. Mann, H. J. Bussemaker, in preparation) to fit binding models

that included both mononucleotide and shape features as predictors

of binding free energy (see Fig 4A and Materials and Methods). We

quantified model performance by first tabulating the occurrence of

10mers in the SELEX-seq library by sliding a window across each

probe (for SELEX round one), then computing the 10mer frequen-

cies predicted by the models, and finally using the Pearson correla-

tion coefficient of the log-transformed counts to compare the

observed and predicted values (Fig 4B and C). Comparing the

mononucleotide-only model for Exd-Scr (cf. Fig 2A) to a direct

shape regression model that included MGW as an additional predic-

tor, we found that predictive performance increased modestly but

statistically significantly (r2 = 0.752 vs. r2 = 0.789, P = 1 × 10�16, z-

test; see Materials and Methods), consistent with the prior observa-

tion that DNA shape parameters are useful for TF binding prediction

(Zhou et al, 2015). Repeating the analysis using the Pearson and

Spearman correlation coefficients for the (non-transformed) counts

gave similar results (Fig EV2A and B).

What implications does the fact that mono- and dinucleotide

sequence features together predict the shape parameters almost

perfectly have on the problem of identifying DNA shape readout?

Earlier studies compared the predictive power of the DNA shape

parameters (MGW, ProT, HelT, and Roll, together with four quadratic

interactions between adjacent parameter values) to the predictive

power of di- and trinucleotides (Zhou et al, 2015; Yang et al, 2017).

Since these two sets of parameters have similar predictive power, it

was previously conjectured that the reason why di- and trinucleotides

partially capture readout is that dinucleotides describe stacking inter-

actions and trinucleotides describe short structural elements such as

A-tracts. To explicitly test whether the predictive power of the shape

parameters is fully encapsulated by dinucleotide features, we repeated

the NRLB fit using the shape parameters predicted by the dinucleotide-

based sequence-to-MGW model (cf. Fig 3F), thereby ignoring all
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possible higher-order contributions. The resulting model performs

virtually identically to that obtained using the original MGW table

(r2 = 0.789, P = 0.788; Fig 4D), consistent with the above observation

that over 90% of the shape variance in the pentamer tables can be

accounted for without including trinucleotide features.

Detecting shape readout through post hoc analysis of
mechanism-agnostic models

The direct shape regression approach outlined above has some

drawbacks. First, the shape-sensitivity coefficients will only be

nonzero insofar as the resulting dinucleotide effects complement the

scoring matrix. However, we observed in Fig 3 that two-thirds of

the variance in shape can be captured using mononucleotide

features alone. It would therefore be preferable to also use the infor-

mation in the scoring matrix to identify shape readout. Second,

while including shape readout improved performance, the inferred

sensitivity coefficients often appeared unstable (Fig EV3A), suggest-

ing that the problem was poorly conditioned. Third, mechanisms

other than shape readout can also contribute to dinucleotide effects

in the binding specificity model. This makes it desirable to have a

framework for assessing the statistical significance with which part

A

B

C

D

E

Figure 4. Analyzing DNA shape readout through direct shape regression.

A Schematic diagram showing the workflow of direct shape regression. The shape of individual DNA probes is first determined using the standard pentamer tables.
Next, a protein–DNA recognition model that uses both mononucleotide and shape features along the probes as predictors (as in Fig 1) is fit to the binding data.

B Scatter plots showing observed vs. predicted 10mer counts for Exd-Scr binding models with different sets of predictors. The predictor combinations used were as
follows: mononucleotide only (cf. scoring matrix in Fig 2A); mono- and dinucleotide (mechanism-agnostic readout model); and mononucleotide and MGW from
pentamer table. 10mers with count 100 or greater are shown.

C Performance of the binding models in (B) as quantified by the Pearson correlation (r2) between the logarithm-transformed counts. Error bars show 95% confidence
interval computed using the Fisher z-transformation. 50% of the reads in SELEX round one were held out for this validation.

D The same as (C) but with the mononucleotides and the dinucleotide component of MGW (cf. Fig 3F) as predictors.
E The same as (C) but with the mononucleotides and 100 randomly permuted MGW pentamer tables (top) or 100 complexity-matched random pentamer tables

(bottom, cf. Materials and Methods and Fig EV4B) as predictors.
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of the binding specificity can be attributed to readout of a specific

shape feature at a specific position within the binding site.

In the following sections, we will develop an alternative two-step

method for shape-readout analysis that addresses these issues by

fundamentally changing the way in which the sequence-to-shape

models are used: The first step is to quantify TF binding specificity

using a mono- and dinucleotide binding model that is agnostic about

the underlying molecular readout mechanisms. The second step is

to identify the weighted combination of readout modes that best

explains the mechanism-agnostic model. We will call this post hoc

analysis step shape projection (Fig 5A); we implemented it as soft-

ware we named Shapelizer (Materials and Methods). An advantage

of our two-step approach is that it completely separates quan-

tification of TF binding specificity from interpretation in terms of

readout mechanism. In practical terms, this means that the post hoc

analysis can be performed without revisiting the underlying data,

for example, when additional shape parameters become available

(Chiu et al, 2017; Li et al, 2017), or when assessing statistical signif-

icance by fitting a large number of readout models with parameters

drawn from an appropriate null distribution (as we will do below).

Sequence-only representation of shape readout

For the shape projection approach to be feasible, we need to know

how shape readout manifests itself through the mono- and dinu-

cleotide preferences of the mechanism-agnostic model (Fig EV4A).

To illustrate this relationship, consider a TF preferring a narrow

minor groove at a specific position in a binding site. Since the minor

groove will be narrowed by adenines directly 50 and thymines

directly 30 to this position (cf. sequence-to-MGW model logo in

Fig 3D), the preference for a narrowed minor groove should be

reflected at corresponding positions in the sequence-to-affinity

model. The mechanism-agnostic model would similarly include

contributions that reflect the dinucleotide interactions in the

sequence-to-MGW model (cf. Fig 3F). Shape readout at additional

positions, or of additional features, can be accounted for by adding

corresponding values in the sequence-to-shape model at the appro-

priate offset and amplitude. This procedure for expressing shape

readout can be formulated mathematically as a convolution between

the profile of shape sensitivity along the binding site and the

sequence-to-shape regression coefficient for a particular mono- or

dinucleotide feature. Expressing shape readout in terms of recogni-

tion of mono- and dinucleotide features is thus straightforward.

However, as we will see below, solving the inverse problem of infer-

ring shape readout from the mechanism-agnostic mono- and dinu-

cleotide model requires more sophisticated computational methods.

Shape projection: from binding quantification to
readout interpretation

In this section, we will solve the inverse problem of inferring shape

readout from a given mechanism-agnostic model. We first define a

loss function that quantifies the disagreement between the mecha-

nism-agnostic model that was learned from the binding data and the

specific shape sensitivities that we are estimating. We then optimize

this loss function with respect to the latter (Fig 5A). The choice of

loss function was motivated by how a TF samples binding

sequences with a probability that is proportional to the binding

affinity. The Kullback–Leibler (KL) divergence is an information-

theoretic measure of how well an approximate probability distribu-

tion recapitulates a true distribution. We define the loss function as

the KL divergence between the (approximate) base- and shape-

readout model and the (true) mechanism-agnostic model.

One difficulty in distinguishing between shape and base readout

is that the scoring matrix already encodes part of shape readout, as

we demonstrated above. Had the mononucleotide-based sequence-

to-shape models been perfect, base and shape readout would have

been perfectly collinear and the inference problem ill-conditioned.

In a strict sense, breaking the degeneracy between base and shape

readout therefore requires knowledge about binding preferences for

higher-order sequence features. For the problem at hand—where

shape readout at a single base is equivalent to a specific signature of

base readout across multiple bases (Fig EV4A)—we prefer parsimo-

nious solutions where the shape and base readout both are as local-

ized as possible and mutual cancelation is minimal. We accomplish

this by adding regularization terms to the loss function (see Materi-

als and Methods). This introduces competition between the parame-

ters to explain the data and therefore leverages both the mono- and

dinucleotide binding preference to identify shape readout.

To demonstrate that this approach is feasible, we again returned

to the Exd-Scr SELEX-seq dataset, fit a mechanism-agnostic readout

model with mono- and dinucleotide predictors using NRLB, and

then used L2-regularized shape projection to infer the shape-sensi-

tivity coefficients (Fig 5B). This produced robust shape-sensitivity

profiles with distinct preferences for narrow minor grooves in the

central Exd and Scr half-sites. Repeating the analysis for the Exd-

UbxIVa complex yielded sensitivity profiles that lack narrowing in

the UbxIVa half-site (Fig 5C). These results are consistent with

previous findings (Slattery et al, 2011). Our fits were relatively

insensitive to the details of how the penalization was implemented

and to using an alternative least-squares loss function (Fig EV6).

However, dropping the penalty term from the model altogether gave

inconsistent results due to the same issues of poor conditioning that

plague the direct shape regression approach described above

(Fig EV3A and B). We conclude that penalized shape projection

procedure successfully overcomes the confounding between base

and shape readout that arises due to their inherent similarity, by

making the mathematical symmetries that connect them explicit.

Statistical significance of shape-readout attribution

Modeling MGW readout clearly improves model performance, and

the MGW sensitivity coefficients inferred using the projection meth-

ods discussed above agree with previously validated instances of

MGW readout. However, it is not immediately obvious how statisti-

cally significant these signatures are. We therefore asked whether

the observed performance boost was larger than expected had we

instead added a random sequence feature. This same issue was

previously addressed by generating random shape tables where the

association between pentamers and shape parameters was randomly

permuted (Zhou et al, 2015). These permuted tables did not give

the same predictive advantage, suggesting that the performance

increase observed for the true shape tables is biophysically relevant.

We similarly generated 100 randomly permuted MGW tables (keep-

ing reverse-complement symmetry) and found that none gave a

performance increase as large as that of the true MGW table
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(Fig 4E). Repeating the analysis for Exd-UbxIVa gave the same

result (Fig EV2C).

Given the relatively simple structure of the shape tables revealed

by our analysis (cf. Fig 3), however, we worried that random

permutation of pentamers may not yield a proper null distribution.

We reasoned that in order to stringently assess whether the shape

parameters play a privileged role as predictors of TF binding by a

purely statistical criterion, they should be compared to randomized

shape features of similarly lower complexity. Thus, we developed a

procedure to generate random pentamer tables whose distribution

of mono- and dinucleotide dependencies and the symmetry under

reverse-complement transformation matched the real shape tables

A B

C

D E F

G

Figure 5. Shape-sensitivity profiles inferred using shape projection.

A Schematic diagram showing the workflow for post hoc shape-readout analysis.
B Mechanism-agnostic model for Exd-Scr (logos) and shape-sensitivity profiles (b) inferred using penalized shape projection in (A). Shaded areas indicate percentile levels

(2.5, 25, 75, and 97.5%) of the distribution of shape-sensitivity profiles inferred using random sequence-to-shape models (see Materials and Methods and Fig EV4B).
C The same as (B) but for Exd-UbxIVa.
D, E The same as (B) but using SMiLE-seq data for the Drosophila homeodomain factor Bcd and the human ETS factor GABPa (Isakova et al, 2017).
F NMR structure (1ZQ3, model 1) for Bcd showing an arginine residue (colored by electrostatic potential) inserted into the minor groove. The identified base pair 5 is

highlighted in red. Two additional N-terminal arginine residues were not cloned for the structure but may extend along the minor groove (see dashed yellow circle).
G Crystal structure (1AWC) for GABPa (right) in complex with GABPb (left, blue). GABPa is colored by b-factor, which highlights a flexible loop (red–orange). The lysine

residue, colored by electrostatic potential, is positively charged and inserted into the minor groove. The identified base pair at position 9 is highlighted in yellow.
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(Materials and Methods and Fig EV4B). Repeating the unpenalized

direct shape regression fits for Exd-Scr using these more sophisti-

cated randomized tables outperformed the fit that used the true

MGW table in 11% of the cases (Fig 4E), and therefore was unable

to provide statistical significance for shape readout. Similarly, for

Exd-UbxIVa 33% of random tables outperformed the real MGW

table (Fig EV2C).

We reasoned that this lack of statistical significance could be

due to poor conditioning of the unpenalized fits. Regularization

tends to suppress overfitting and can help separating signal and

background. Indeed, when we computed Exd-Scr shape-sensitivity

profiles using L2-regularized shape projection and repeated the

analysis for five thousand random shape tables with matched

complexity (Fig 5B), MGW readout in both the Exd and the Scr

half-site was statistically significant even after multiple-testing

correction across positions in the binding site (Benjamini–Hoch-

berg FDR = 0.02 and 0.03, respectively). For Exd-UbxIVa, the

readout was statistically significant in the Exd half-site but not in

the UbxIVa half-site (FDR = 0.04; Fig 5C). Not all shape parame-

ters showed statistically significant sensitivity; performing a simi-

lar analysis for propeller twist (ProT) revealed no significant

sensitivity to variation in this parameter for either Exd-Scr or

Exd-UbxIVa.

To more comprehensively assess our two-step approach of first

building a mechanism-agnostic binding specificity model using

NRLB followed by a statistical test of evidence of shape readout in

this model using the Shapelizer tool introduced in this work, we first

analyzed SELEX-seq data for MAX and found that no shape-sensi-

tivity coefficients were significantly different from zero (Fig EV5A);

the closest-to-significant coefficient was Roll at the central base pair

step (FDR = 0.3), a position previously highlighted by Zhou et al

(2015). We also analyzed HT-SELEX data for CEBPb and found that

the closest-to-significant coefficient was ProT at positions 5 and 10

(FDR = 0.12; Fig EV5B). Next, we analyzed SMiLE-seq binding data

for the Drosophila transcription factor Bcd, and the human factors

GABPa, GR, SP4, YY1, and ZEB1 (Isakova et al, 2017). Of these,

GR, SP4, YY1, and ZEB1 did not have any shape-readout coefficients

with an FDR below 0.1 (Fig EV5C–F).

For Bcd, the strongest preference for a narrowed minor groove

was located at the underlined position in GGATTA (FDR = 0.087;

Fig 5D). Intriguingly, inspection of a structure for the Bcd–DNA

complex solved using NMR spectroscopy (Baird-Titus et al, 2006)

revealed that the N-terminal arm of Bcd is unstructured and makes

contacts with the minor groove close to the base pair identified

by Shapelizer (Fig 5F). In addition, the full-length protein used in

the SMiLE-seq experiment had two additional arginine residues in

the N-terminal domain that are in a suitable position to explain the

identified MGW readout, but which were not cloned for the NMR

structure.

For GABPa, the preference for a minor narrow groove was

located at the underlined position in CCGGAAG (FDR = 0.002;

Fig 5E). Inspection of a crystal structure of the GABPa–GABPb
heterodimer in complex with DNA (Batchelor et al, 1998) revealed

that a leucine residue in the loop between a-helices 1 and 2 is inter-

acting with the minor groove (Fig 5G). This again provides a possi-

ble structural rationale for the MGW readout inferred by Shapelizer.

Taken together, these results illustrate how penalized shape

projection combined with a complexity-matched null model allows

for robust identification of MGW readout, and how accounting for

the precise nature of the sequence-to-shape relationship is necessary

to assess the statistical significance of putative shape readout.

Discussion

In this study, we revisited the problem of identifying DNA shape

readout using TF binding data. Our insight that scoring matrices

implicitly capture associations between DNA shape and binding

affinity may not be necessarily perceived as surprising: A scoring

matrix by definition summarizes the binding affinity of the highest-

affinity sequence and the effect of single-base substitutions; since

each of these sequences has a well-defined average shape, it follows

naturally that the scoring matrix captures the difference in shape

between the high-affinity sequences and random sequences, which

have uniform average shape profiles. Nevertheless, we believe this

insight to be important: Our analyses clearly show that associations

between shape and binding affinity do not complement the scoring

matrix, but rather are encodable in terms of mononucleotide

features alone to a large extent (cf. Fig 3). This implies that model-

based quantitative analysis of shape readout can be extended to

transcription factors for which only a traditional scoring matrix is

known (cf. Fig 2). To the best of our knowledge, this has not been

shown explicitly before.

The feasibility of identifying shape readout using binding data

alone is largely determined by how distinctive the signatures of

shape and base readout are. Consider two extreme cases: In the

first, DNA shape readout is fully captured by a mononucleotide

sequence-to-shape model with no dependencies. Distinguishing

shape and base readout will then be impossible without further

context, such as structural information or binding data for mutated

TFs. In the second extreme case, highly specific higher-order

sequence features such as individual pentamers might determine

DNA shape. Shape readout could then be attributed with high statis-

tical confidence, since the set of equivalent higher-order features is

large. In the real world, we are somewhere between these two

extremes; our observation that most of the variation of DNA shape

with base sequence can be explained using linear models based on

mononucleotide features, analogous to scoring matrices, and that

almost all residual variance can be explained by including interac-

tions between neighboring nucleotide positions puts an upper limit

on our ability to distinguish between base and shape readout based

on DNA binding specificity alone. Depending on the TF and shape

feature under consideration, it may or may not be possible to come

to a clear conclusion without additional information.

As a practical conclusion, we advocate based on our overall

insights that TF binding specificity first be quantified using a mecha-

nism-agnostic mono- and dinucleotide readout model and that

shape-readout analysis be implemented as post hoc analysis step

which we refer to as “shape projection”. In the cases of Exd-Scr and

Exd-UbxIVa, this method identified previously known readout of

minor groove narrowing. An argument against including dinu-

cleotide terms in TF binding models is that it increases the number

of parameters to be estimated (Zhou et al, 2015). However, while

there are four mononucleotides and 16 dinucleotides, the number of

independent parameters required to parameterize mono- and dinu-

cleotide substitution effects equals 3 and 9 per position,
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respectively. The advantage of including shape readout in reducing

the number of model parameters is therefore more modest than one

might think.

That there are only nine independent dinucleotide parameters is

also important for understanding how much statistical power one

has to distinguish between shape readout and incidental similari-

ties of the TF binding specificity and the sequence dependences of

the shape tables. In the case of Exd-Scr, we found that the perfor-

mance improvement in the unpenalized binding model with MGW

readout was not significantly larger than when matched random

sequence features were used instead. In contrast, our penalized

shape projection procedure identified statistically significant read-

out at the expected positions. What explains this apparent discrep-

ancy? The lack of significance of the unpenalized shape regression

can be understood by noting, first, that most shape readout is

encoded in the scoring matrix; second, that this mononucleotide

shape-readout component is collinear with base readout; and,

finally, that the performance boost in the unpenalized model there-

fore is determined by the smaller dinucleotide shape-readout

component and the degree to which it stands out to other unrelated

dinucleotide interactions. In the unpenalized model, the shape-

sensitivity coefficients can freely take any value and the nine inde-

pendent dinucleotide interactions can easily be overinterpreted. By

introducing penalization, the inferred shape sensitivity has to both

explain the observed dinucleotide interactions and compete with

the base readout to explain the mononucleotide preferences in the

mechanism-agnostic model, all while keeping the parameter values

as small as possible. The penalized shape projection therefore

focuses on the most robust signatures of shape readout, and this

improves significance.

In a recent study, Yang et al (2017) introduced “DNA shape

logos” as a visualization of DNA shape readout. These logos show

the improvement in model performance—as measured in terms of

the improvement in R2—that is observed when individual DNA

shape features are introduced as predictors along the TF-DNA inter-

face. The shape-sensitivity profiles instead show the change in bind-

ing free energy ΔΔG/RT per unit change in shape parameter. One

practical difference between these measures is that the sign of the

shape-sensitivity coefficient indicates whether a deviation in DNA

shape is stabilizing or destabilizing, whereas the shape logo ΔR2,

which always is positive, does not. A second difference is that the

shape-sensitivity coefficient is a dimensionful quantity and therefore

links the magnitude of a deviation in DNA shape to the resulting

change in binding affinity. Finally, at least in our own (unpenalized)

implementation of direct shape regression (cf. Fig 4), the shape

coefficient values themselves occasionally showed unstable behav-

ior due to confounded sequence and shape features (cf. Fig EV3).

Our shape projection methodology (cf. Fig 5) addresses this prob-

lem and makes it possible to report stable shape coefficient values,

along with measures of statistical significance. This is a useful

improvement over existing methods.

While this manuscript was in review, two studies generated

pentamer lookup tables for additional DNA shape parameters and

for the electrostatic potential in the minor groove (Chiu et al, 2017;

Li et al, 2017). It should be straightforward to use our Shapelizer

software to analyze readout of these additional structural features.

In summary, studies integrating structural information with bind-

ing data for mutated proteins have in recent years unambiguously

demonstrated that shape readout is an important sequence-readout

mechanism. We here systematically examined the sequence depen-

dences of the DNA shape parameters, how these dependences relate

to signatures of shape readout, and how base and shape readout

can be distinguished using TF binding data. We hope that our

insights and methods will help expand knowledge of DNA shape

readout.

Materials and Methods

SELEX binding-model inference using NRLB

No Read Left Behind (NRLB) is a software package that builds

biophysical models of TF binding specificity directly from sequenc-

ing data generated using modern SELEX methods (SELEX-seq,

HT-SELEX, and SMiLE-seq; Isakova et al, 2017; Jolma et al, 2010;

Slattery et al, 2011; Zhao et al, 2009). A detailed description of

NRLB, along with benchmarking results and biological applications

of such models, is being prepared for separate publication.

The SELEX process starts with a library of DNA probes contain-

ing a L-bp random region flanked by constant adaptor sequences

(Jolma et al, 2010; Slattery et al, 2011). This library is incubated

with the TF of interest, and bound DNA probes are isolated. The

bound probes (called round one) and a set-aside fraction of the

initial library (called round zero) are then sequenced. NRLB infers

sequence-to-affinity models using the sequenced round-zero and

round-one probe counts. It does so by assuming (i) that the selec-

tion ji of probe i in round one is proportional to the total binding

affinity of the probe (see below), and (ii) that the observed counts

in both rounds follow a multinomial distribution:

Lðround r dataÞ ¼
Y
i

p
ci;r
i;r :

Here, r = 0,1 denotes the SELEX round, and the index i runs over

all 4L probes; for each probe i, ci,r is the probe count. The probe

frequency pi,r in round zero and round one, respectively, are related by

pi;1 ¼ pi;0ji
Z1

;

where Z1 = ∑ipi,0ji is a normalizing partition function. The goal of

NRLB is to learn a sequence-to-affinity model that optimally

predicts probe selection ji.
In an ideal experiment, the probability of observing probes in the

initial round pi,0 would be constant across probes. However, actual

experiments have significant round-zero bias. To correct for this,

NRLB learns a bias model of the form

pi;0 ¼ wi

Z0
;

wi ¼ exp
X
u2U0

bð0Þu Xiu

" #
;

where Z0 = ∑iwi. Here, φ runs over the set Φ0 of all hexamers, Xiφ

represents the number of times each hexamer φ occurs in probe i,
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and bð0Þu is a bias model parameter to be estimated from the round-

zero data. NRLB first estimates bð0Þu by maximizing the likelihood

of the round-zero sequencing data defined above. For the HT-

SELEX data, the bias model used tetramers as predictors (instead

of hexamers) as this described the round-zero data better. For the

SMiLE-seq data, the bias model used dimers as predictors since the

variable region is 30 bp long and total probe length was restricted

to 32 bp in the version of NRLB that we used for this study.

Next, we need to specify how the probe selection ji depends on

the probe sequence. Probe selection is modeled in terms of binding

free energy by additively considering non-specific and specific bind-

ing contributions over all possible offsets and orientations v within

the probe:

ji ¼ eb
ð1Þ
NS þ

X
v

exp
X
u2U1

bð1Þu Xivu

" #
:

Here, eb
ð1Þ
NS represents non-specific binding. For each binding view

v, the free energy of binding (i.e., the exponent) is a linear function

of the mono- and dinucleotide and shape features φ evaluated in a

window of width k. Thus, each term in sum over φ is a product of

predictor Xivφ, which is a binary indicator for mono- or dinucleotide

features and a continuous value for shape features; a binding-model

parameter bð1Þu corresponds to the free-energy contributions of each

feature. NRLB estimates these binding-model parameters by maxi-

mizing the round-one likelihood using its gradient and dynamic

programming methods. In addition, NRLB can impose reverse-

complement symmetry on the binding model when analyzing SELEX

data for homodimers such as MAX. In this study, we model binding

affinity with three different sets of features Φ1: mononucleotide

sequence; mononucleotide and dinucleotide sequence; and mononu-

cleotide sequence and DNA shape features.

Note that while earlier methods have modeled TF binding using

non-specific binding and summation over binding modes (Foat

et al, 2006; Zhao et al, 2009; Riley et al, 2015; Ruan et al, 2017)

and others have inferred TF binding models from SELEX data

(Jolma et al, 2010; Slattery et al, 2011; Alipanahi et al, 2015; Zhou

et al, 2015), NRLB has two distinct advantages: Firstly, it models the

full set of SELEX probes without reducing the data to k-mer count

tables (which makes analysis of wide binding sites infeasible since

the number of k-mers increases exponentially with k), and secondly,

it can include shape parameters in the free-energy model. Also note

that while methods utilizing k-mer enumeration benefit from

performing multiple rounds of SELEX selection, NRLB can infer reli-

able binding models after a single SELEX round, thus increasing its

sensitivity to low-affinity binding.

Metropolis–Hastings sampling of binding sequences

To investigate how scoring matrices encode associations between

binding affinity and DNA shape, we wished to sample random

sequences, sort them into free-energy bins, and compute the mean

shape in each bin (cf. Fig 2B). Given a free-energy scoring matrix

wj,c of width k, where j = 1 . . . k is the position within the binding

site covered by the matrix and c is the base at position j, we thus

sampled sequences s of length k from the uniform distribution

p(s) = 1/4k and binned them using the free-energy score

WðsÞ ¼ P
j wj;sj 2 ½Wmin; 0�, where sj is the base at position j in s.

Because it is exceedingly rare to sample sequences in the extreme W

bins from the uniform distribution, we instead used the Metropolis–

Hastings algorithm to sample sequences from the Boltzmann distri-

bution p(s; bT) / exp(bTW(S)) for different values of the inverse-

temperature parameter bT (this populates all W bins for positive and

negative values of bT) and then used rejection sampling (for each W

bin and bT value independently) to retain sequences following the

uniform distribution within each bin. Altogether, 10 uniform W bins

and 13 uniformly spaced values bT 2 log 4k

�Wmin
� ½�2; 2� were used. This

sampling algorithm is implemented in the program sampleSequen-

ces.py.

Shape of high-affinity SELEX-seq and UniPROBE probes

To identify high-affinity SELEX-seq probes, we computed the binding

affinity of all 10mers using the SELEX package (Riley et al, 2014,

2015; http://bioconductor.org/packages/SELEX), retaining all

10mers with count 100 or greater and relative affinity 0.1 or greater.

We then selected all full-length probes containing a high-affinity

10mer. To align the selected probes, we first aligned the high-affinity

10mers by maximizing the number of bases matching the top 10mer,

then constructed a frequency matrix from these alignments, and,

finally, used this frequency matrix to align the retained SELEX

probes. For the UniPROBE and CIS-BP PBM datasets, we selected the

100 probes with the strongest binding signal and aligned these to the

curated scoring matrix. We finally used the pentamer tables to

compute the mean shape-parameter profile of the aligned SELEX and

UniPROBE sequences. The method for computing the mean shape of

sequences is implemented in the program kMerLinearRegression.py.

Multivariate linear regression analysis of shape tables

Let φa(s) denote the value of shape parameter a for the pentamer

sequence s. This was modeled using multiple linear regression

models of the form ûaðsÞ ¼ X~ðsÞ � c~a, where ûaðsÞ is the predicted

value of φa(s), while X~ðsÞ represents row s in the design matrix and

b~a the parameters shown in Fig 3. The mononucleotide model has a

design matrix X~
ð0;1ÞðsÞ ¼ 1; ds1A ; . . .d

s5
T

� �
, where dmn is the Kronecker

delta function and si is the base at position i. The design matrix for

the dinucleotide model, X~
ð0;1;2ÞðsÞ, was constructed by appending

ds1:2AA ; . . .; d
s4:5
TT

� �
to X~

ð0;1ÞðsÞ, where si:i+1 is the dinucleotide starting at

positon i. Finally, each row in the design matrix for the all-by-all

model was constructed using the tensor product X~
ðaÞðsÞ ¼

X~
ð0;1ÞðsÞ � X~

ð0;1ÞðsÞ:
The model parameters were then computed using the formula

ca ¼ XT � Xð Þ�1
XT � ua, where dot products indicate sums over

pentamer and the inverse was computed by inverting all nonzero

eigenvalues. For the step parameters Roll and HelT, the original

shape tables report two values for each pentamer: the value at the

step between the second and third base pair, and the value between

the third and fourth. To get a reverse-complement symmetric

tetramer table centered on the relevant base pair step, we computed

the average of these two values after marginalizing over the right-

and leftmost bases to align the step.

The zero eigenvalues in XT � Xð Þ are due to redundancies in the

parametrization. The number of independent parameters is

dð3kþ 1Þ=2e in the reverse-complement symmetric mononucleotide

model and 4b3k=2c � 2 in the dinucleotide model. This can be
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checked by counting the nonzero eigenvalues in XT � PRC � Xð Þ, where

PRC is a matrix that projects onto the space of symmetric k-mer tables.

To control for the possibility of overfitting, we used an exhaustive

leave-one-out cross-validation scheme where each pair of sequences

related through reverse-complement transformation (which have the

same value in the table) were left out separately. Linear regression on

k-mer tables is implemented in the program kMerLinearRegres-

sion.py. The shape tables were generated by querying the DNAshape

webserver for all pentamer sequences (Zhou et al, 2013).

Quantifying binding-model performance

While the log-likelihood of the NRLB model in principle measures

how well a binding model fits the SELEX-seq data, this value is diffi-

cult to interpret since even the true model cannot predict the

sequencing shot noise and therefore has low log-likelihood. We

instead quantified the “true” TF binding by sliding a 10-bp window

across all SELEX probes, tabulating the counts, and retaining 10mers

with count 100 or higher (for which the shot noise is small). While

the 10mer table can be difficult to interpret since a strong binding

site contributes to multiple shifted 10mers, note that a 10mer table

can serve as a “fingerprint” for arbitrary sequence-to-affinity rela-

tionships (assuming nucleotide positions spaced 10 bp or more apart

do not interact) and that accurate prediction of it indicates good

model performance. We therefore quantified model performance by

first tabulating the expected 10mer counts by sliding a 10-bp window

over all possible probes weighted by the NRLB probe probability

a si; b~
� �

p0 sið Þ, and then computing the Pearson correlation r between

the observed and modeled counts. To control for overfitting, half of

the reads from SELEX round one were held out from the NRLB fitting

and used for this calculation. To test whether differences in r

between models were significant, we applied the Fisher r-to-z trans-

formation to the r-values and then used a two-tailed z-test for signifi-

cance.

Shape projection

Given a mechanism-agnostic mono- and dinucleotide binding

model, shape projection is a post-processing step that identifies the

mononucleotide-plus-shape model that best approximates the mech-

anism-agnostic model. For the latter, the free energy of binding to a

sequence s is given by (cf. “Mechanism-agnostic model of TF binding

specificity” in the lower left box in Fig 5A),

�DDGagnðsÞ
RT

¼ bagn;ð0Þ þ
X
i

bagn;ð1Þi;si
þ
X
i

bagn;ð2Þi;si:iþ1
� X~

ð0;1;2ÞðsÞ � b~agn
;

where bagn;ð1Þi;si
is the scoring matrix and bagn;ð2Þi;si:iþ1

parameterizes the

dinucleotide interactions; the vector representation

b~
agn ¼ bagn;ð0Þ;b~

agn;ð1Þ
;b~

agn;ð2Þn o
was used on the right-hand side.

The projected model (cf. “Projected model” in the top right box in

Fig 5A) has a free energy of binding given by

�DDGprojðsÞ
RT

¼ bproj;ð0Þ þ
X
i

bproj;ð1Þi;si
þ
X
i

bproj;ðuÞi u si�2:iþ2ð Þ;

where bproj;ðuÞi denotes the shape-sensitivity coefficient for feature φ

at position i (step features, which use tetramers instead of

pentamers, are suppressed for brevity). It is convenient to formu-

late the projected model using mono- and dinucleotide variables;

substituting in the mono- and dinucleotide sequence-to-shape

model

u si�2:iþ2ð Þ ¼ cð0Þ þ
X2
d¼�2

cð1Þd;siþd
þ

X1
d¼�2

cð2Þd;siþd:iþdþ1
;

and reordering the terms yields (cf. “Sequence-only representation

of shape and base readout by TF” in the lower right box in Fig 5A)

�DDGprojðsÞ
RT

¼ bseq;ð0Þ þ
X
i

bseq;ð1Þi;si
þ
X
i

bseq;ð2Þi;si:iþ1
� X~

ð0;1;2ÞðsÞ � b~seq
;

where

bseq;ð0Þ ¼ bproj;ð0Þ þ
X
i

bproj;ðuÞi cð0Þ;

bseq;ð1Þi;c ¼ bproj;ð1Þi;c þ
X2
d¼�2

bproj;ðuÞi�d cð1Þd;c ;

bseq;ð2Þi;c:d ¼
X1
d¼�2

bproj;ðuÞi�d cð2Þd;c:d;

and b~
seq ¼ bseq;ð0Þ; bseq;ð1Þi ;bseq;ð2Þi

n o
. Because shape readout at the

first and last two positions of the binding model gives rise to

mono- and dinucleotide specificity beyond of the mechanism-

agnostic binding model, these readout coefficients were put to

zero.

We next defined a loss function V b~
seq

;b~
agn

� �
to quantify how

well the projected model b~
seq

approximates the mechanism-agnostic

model b~
agn

. Two choices of V were considered:

(i) Affinity projection: The projected model is defined to minimize

the squared affinity error across all probes:

Vaffinity b~
seq

;b~
agn

� �
¼

X
s

eX
~ð0;1;2ÞðsÞ�b~agn

� eX
~ð0;1;2ÞðsÞ�b~seq� �2

¼
X
s

e2X
~ð0;1;2ÞðsÞ�b~agn

þ e2X
~ð0;1;2ÞðsÞ�b~seq

� 2eX
~ð0;1;2ÞðsÞ� b~

agnþb~
seq

� �� 	

¼ r 2b~
agn

� �
þ r 2b~

seq
� �

� 2r b~
agn þ b~

seq
� �

:

Here, the sums r b~
� �

� P
s
eX
~ð0;1;2ÞðsÞ�b~, which each contain 4k

terms, can be evaluated in O(k) steps using dynamic programming.

The gradient of the sums, r~r b~
� �

, is also straightforward to evaluate

using dynamic programming.

(ii) KL projection: The Kullback–Leibler divergence

DKLðPjjQÞ ¼
P
i

Pi log Pi=Qi measures how much information is

lost when the probability distribution Q is used to approximate

the true distribution P. In the context of multinomial regres-

sion, the KL divergence corresponds to the change in the

expected model likelihood when the true probabilities P are

approximated with Q. To compare the mechanism-agnostic

model and the projected model, we therefore consider the

probability of drawing sequence s assuming the sequences

are sampled according to the binding affinities predicted in

model b~:
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p s;b~
� �

¼ eX
~ð0;1;2ÞðsÞ�b~P

r
eX~

ð0;1;2ÞðrÞ�b~
:

We define the loss function to be the DL divergence between the

mechanism-agnostic and projected sampling probabilities:

VKL b~
seq

; b~
agn

� �
¼

X
s

p s; b~
agn

� �
ln

p s;b~
agn

� �
p s; b~

seq
� �

¼ b~
agn � b~

seq
� �

�
r~r b~

agn
� �

r b~
agn

� � � ln
r b~

agn
� �

r b~
seq

� � :

Penalized regression

L1 and L2 regularization of a model with parameter vector b~ is

accomplished by adding a penalty term k k b~ kp to the loss function

V b~
� �

. We here consider two distinct types of parameter, namely the

(mononucleotide) scoring matrix bproj;ð1Þi;c and the shape-sensitivity

profile bproj;ðuÞi . We therefore computed the p-norm and penalized

these parameters separately:

k bproj;ð1Þ kp¼
X
i;c

bproj;ð1Þi;c




 


p;

k bproj;ðuÞ kp¼
X
i

bproj;ðuÞi




 


p:
Scale parameters k determine the importance of these penalty

terms relative to the loss function. Because these terms can have dif-

ferent units, it is convenient to normalize them to the same refer-

ence scale. As a reference, we used the binding model inferred

using the unpenalized projection, bproj,k=0, and finally used the

combined loss function:

V b~
seq

;b~
agn

� �
V b~

seq;k¼0
;b~

agn
� �þkshape

kbproj;ðuÞ kp
kbproj;ðuÞ;k¼0 kp

þkmono
kbproj;ð1Þ kp

kbproj;ð1Þ;k¼0 kp =4
:

By default, we set kshape = kmono = 1, but we also consider other

values (cf. Fig EV6). The penalty term is not smooth in the case

p = 1, and we instead solved the dual problem. For minimization, we

used the SLSQP method from the SciPy library in Python. The penal-

ized shape projection method is implemented as shapeProjection.py.

Randomized k-mer tables

To generate random k-mer tables where the sequence-to-number

relationship is of similar complexity as that observed in the true

shape tables, recall that a linear mono- and dinucleotide model

ûðsÞ ¼ X~ðsÞ � c~ described the shape parameter φ(s) well. We thus

generated random k-mer tables by drawing parameter vectors c~

from a random distribution. We initially drew vector components

from the standard uniform distribution. However, this does not

preserve important structures in the shape tables; it does not

preserve the reverse-complement symmetry, it does not preserve

strong localization of the dependence at the central base or base pair

step, and it does not preserve the relative strength of mono- and

dinucleotide dependencies. To solve the first issue, we simply

reverse-complement-symmetrized the table. To solve the second

two issues, we quantified how the sequence dependence is distrib-

uted along the k-mer (see below) and then scaled the c~ component,

so the distributions matched between the random and true tables.

To characterize (and match) the sequence-to-shape relationship

in a table φ, recall that the coefficient of determination, defined as

the proportion of variance explained by a model, is a measure of

model performance. Inspired by this, we asked: How much of the

variance in shape-parameter values Vars uðsÞ½ � remains after condi-

tioning on the base identity c at position i (i.e., how large is

Vars uðsÞjsi ¼ c½ �)? How much remains if two bases are conditioned

upon? The conditioned variance should be much smaller than the

full variance if the conditioned-upon bases are important, and

unchanged if the base is unimportant. We therefore used the

expected conditional variance

Ci;jðuÞ � Ec;d Vars uðsÞjsi ¼ c; si ¼ d½ �½ �;

as a measure of how strongly k-mer table φ depends on the bases

at positions i and j. To match the complexity of the sequence-to-

shape relationship between the true table φ(s) and the modeled

table ûðsÞ, we finally scaled the components in the parameter

vector c~ to minimize the difference between the expected condi-

tional variances

D ¼
X
i;j

Ci;jðuÞ � Ci;j û c~ð Þð Þ

 

2:

Specifically, the mono- and dinucleotide components of c~ were

scaled according to cð1Þi;c ! að1Þi cð1Þi;c and cð2Þi;c:d ! að2Þi cð2Þi;c:d, and the scal-

ing parameters að1Þi and að2Þi were optimized to minimize the dif-

ference D under the constraint of reverse-complement symmetry.

The method for generating matched random k-mer tables, as well as

the method for permuting k-mer tables, is implemented in the

python script randomKmerTable.py available at https://github.

com/BussemakerLab/Shapelizer/.

Data availability

The analyses in this study were based on publicly available DNA

shape tables (Zhou et al, 2013); SELEX-seq data for Exd-Scr and

Exd-UbxIVa (Slattery et al, 2011), as well as MAX (Zhou et al,

2015); HT-SELEX for CEBPb (ID: CEBPB_ESW_TCAACC20NCAA;

Yang et al, 2017); SMiLE-seq data for Bcd, GABPa, GR, SP4, YY1,
and ZEB1 (Isakova et al, 2017); PBM data and a scoring matrix for

HNF4A from UniPROBE (Robasky & Bulyk, 2011); and PBM data

and a scoring matrix for Ftz-F1 from CIS-BP (Weirauch et al, 2014).

The code is available at http://github.com/BussemakerLab/Sha

pelizer.

Expanded View for this article is available online.
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