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Abstract: Filtration loss control under high-temperature conditions is a worldwide issue among
water-based drilling fluids (WBDFs). A core–shell high-temperature filter reducer (PAASM-CaCO3)
that combines organic macromolecules with inorganic nanomaterials was developed by combining
acrylamide (AM), 2-acrylamide-2-methylpropane sulfonic acid (AMPS), styrene (St), and maleic
anhydride (MA) as monomers and nano-calcium carbonate (NCC). The molecular structure of
PAASM-CaCO3 was characterized. The average molecular weight of the organic part was 6.98 × 105

and the thermal decomposition temperature was about 300 ◦C. PAASM-CaCO3 had a better high-
temperature resistance. The rheological properties and filtration performance of drilling fluids treated
with PAASM-CaCO3 were stable before and after aging at 200 ◦C/16 h, and the effect of filtration
control was better than that of commonly used filter reducers. PAASM-CaCO3 improved colloidal
stability and mud cake quality at high temperatures.

Keywords: filtration reducer; high temperature; water-based drilling fluid; nanomaterials;
calcium carbonate

1. Introduction

With the deep exploration and development of oil and gas resources, high-temperature
water-based drilling fluid (WBDF) technology has become one of the key technologies in
drilling engineering [1–3]. As the most commonly used high-temperature drilling fluid
additive for a long time, additive materials (such as sulfonated phenolic resin, sulfonated
lignite, sulfonated tannin) have been widely used to control rheology or filtration perfor-
mance [4–7]. However, sulfonated materials still decompose easily at high temperatures [8],
and some need to be used together to achieve the best results [9], most of which are en-
vironmentally unfriendly [10,11]. In view of the above disadvantages, since the 1980s,
researchers have started to develop the application of multicomponent copolymers in
high-temperature drilling fluids and have achieved good results [12–14].

As early as the 1980s, Giddings et al. [15] developed a terpolymer filtrate reducer. This
agent was copolymerized with acrylamide, 2-acrylamide-2-methylpropanesulfonic acid,
and 2-mercaptobenzoic acid as monomers. The rigid side chain and the large number of
sulfonic acid groups in its molecule improve its high-temperature effect. Dickert et al. [16]
developed a pH-adaptive high-temperature filtrate reducer by aqueous solution polymer-
ization with acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, and n-vinyl-alkyl
amide as monomers. On the basis of Giddings, American scholar Patel [17] successfully
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prepared a high-temperature and high-salinity filtration reducer with 2-acrylamide-2-
methylpropionic acid as the monomer and 2-mercaptobenzoic acid as the cross-linking
agent based on precise control of the molecular structure. The agent can resist Ca2+ and
Mg2+ ion pollution and has a good effect against temperatures exceeding 200 ◦C.

As the research progressed, the shortcomings of the descending agents of the polymers
formed by copolymerization of AM monomers with alkene monomers and sulfonic acid
monomers were gradually exposed [18–20]. Therefore, researchers began to develop
environmentally friendly high-temperature and -salinity WBDF loss reducers on the basis
of ethylene sulfonic acid monomer/acrylamide (or its derivatives). Thaemlitz et al. [21]
developed a fluid loss reducer with high-temperature resistance and high salinity with N-
vinyl carbazole (NVC), polystyrene sulfonic acid (PSS), and AMPS as monomers. Drilling
fluids using it as a key additive can maintain good rheology and filtration after aging at
high temperatures, and also have good anti-pollution and some shale inhibition effects.

In 2019, Soric and Heier [22] developed a high-temperature and high-salinity fluid
loss reducer by aqueous solution polymerization. Its relative molecular weight was about
1 million and its temperature resistance exceeded 180 ◦C. The drilling fluid system con-
structed with it as a key treatment agent has been successfully applied to shale gas blocks
in the Republic of Herwazka and exhibits a reservoir protection effect. The Exxon company
has prepared an environment-friendly, high-temperature, and high-salinity WBDF system
with synthetic polymer as the key treatment agent, which can resist the high temperature
of 210 ◦C, and the waste drilling fluid can be directly discharged into the sea after being
tested by the U.S. Environmental Protection Agency (EPA); Schlumberger also developed
drilling fluid systems with a density of 2.20 g/cm3 and temperature resistance exceeding
220 ◦C. It has been used in some sensitive areas such as marine blocks in the United States
and is environmentally friendly. Bagum et al. used aloe additive to form four representa-
tive drilling fluid formulations along the base bentonite. A complete rheological test and
filtration test of mud additives with different concentrations were carried out to study the
feasibility of this new additive.

The team of Prof. Zhengsong Qiu at the University of Petroleum, China, thoroughly
studied the mechanism of action of high-temperature, high-density, and high-salinity
drilling fluids and developed a HTP-1 filtration reducer using amps, NVP, DAAC as
monomers [23]. It worked well at 240 ◦C with a NaCl content of 20%wt and a density
of 2.0 g/cm3. Based on this, a novel filtrate reducer, FLR-1, was developed by introduc-
ing nanotechnology [24]. Its filtration loss effect is significant, and the HTHP filtration
at 200 ◦C/16 h is only 20.5 mL. In addition, FLR-1 can also significantly improve the
rheological properties of the drilling fluid system with excellent salt tolerance and meet
the environmental protection standards. Researchers [25] have shown that nanomaterials
can significantly improve the performance of drilling fluids and broaden their service
conditions. Scientists have [26] applied zinc oxide nanoparticles prepared in the laboratory
to WBDF. The results show that nanoparticles improve the rheological properties of WBDF.
Adding a single nanomaterial to the WBDF will not significantly affect the API filtration
volume. However, the mud cake thickness decreases with the concentration of nanopar-
ticles. The results show that nanoparticles can improve the rheological properties. The
application of waste nanomaterials [27,28] was summarized in rheological and lubricity
testing, adequate rheological and filtration checks were performed on water-based drilling
fluids, and the effect of waste as an additive was evaluated on drilling fluid performance.
Minakov et al. [11] found that the yield stress and consistency index of nanoparticle drilling
fluids increase with temperature. As particle size increases, their influence on the tem-
perature dependence of drilling fluid viscosity increases. The addition of nanoparticles
stabilizes the viscosity of drilling fluids relative to temperature.

In summary, great progress has been made in WBDF filtration reducer technology at
high temperature in recent years, but the problems still exist [29,30]. At present, some vinyl
copolymer drilling fluid reducing agents are nontoxic and environmentally friendly [31,32],
but are easily (partially) degraded under high-temperature conditions [33,34]. Some of
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the degraded products may be toxic/lowly toxic, which will affect their eco-friendly
performance [35–37].

Recent studies have shown [38–40] that nanoparticles have the advantages of high
surface energy, thermal stability, and rigidity. By assembling block copolymers into the grid
holes formed by polymer frameworks, the rigidity and thermal stability of nanomaterials
can be combined with the advantages of salt resistance and toughness of polymers [41],
thus further improving the high-temperature stability of modifiers, which also provides a
new idea for the development of high-temperature WBDF agents.

Therefore, this paper summarizes the design concept of the molecular structure of
the high-temperature WBDF filtration reducer (PAASM-CaCO3), which has excellent prop-
erties. The rigidity and thermal stability of inorganic nanomaterials were combined, the
nanoparticles were embedded into the grid pores formed by the polymer framework, and
the organic–inorganic nanocomposites with excellent properties were developed.

2. Materials and Methods
2.1. Materials

The main reagents for the reaction are detailed in Table 1.

Table 1. Major Materials for Synthesis of PAASM-CaCO3.

Materials Purity Suppliers

Acrylamide (AM) CP Shanghai Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China

2-Acrylamido-2-Methyl
Propanesulfonic Acid (AMPS) CP Aladdin Reagent Co., Ltd., Shanghai, China

Styrene (St) CP Aladdin Reagent Co., Ltd., Shanghai, China

Maleic anhydride (Ma) AR Shanghai Sinopharm Chemical Reagent Co., Ltd.

K2S2O8 AR Shanghai Sinopharm Chemical Reagent Co., Ltd.

NaHSO3 AR Shanghai Sinopharm Chemical Reagent Co., Ltd.

NaOH AR Shanghai Sinopharm Chemical Reagent Co., Ltd.

Span 80 AR Shanghai Sinopharm Chemical Reagent Co., Ltd.

Tween 60 AR Shanghai Sinopharm Chemical Reagent Co., Ltd.

N-amyl alcohol AR Shanghai Sinopharm Chemical Reagent Co., Ltd.

Dimethyl sulfoxide GC Aladdin Reagent Co., Ltd., Shanghai, China

NanoCaCO3 (NCC, particle
size: 15 nm) Ind GreenSource Biotech Co., Ltd., Jinan, China

In addition, common filter reducer products were purchased to compare PAASM-
CaCO3 with PAASM-CaCO3 from Shida Innovative Technology Co., Ltd., Dongying, China:
Driscal D and D-4; high-temperature polymer filtration reducer, 80A51; high-temperature
calcium-resistant fluid loss reducer, jt888; high-temperature salt-resistant filtration reducer,
PJA-2; bitumen filtration reducer, FT-A; sulfonated phenolic resin, SMP-1.

2.2. Methods
2.2.1. Synthesis of Poly (AM-AMPS-St-MA)-CaCO3

According to the designed molecular structure, monomers such as acrylamide (AM),
maleic anhydride (MA), 2-acrylamide-2-methylpropanesulfonic acid (AMPS), and styrene
(St) were used to prepare the high-temperature-resistant molecular framework, and then the
pre-dispersed inorganic nanoparticles (NCC) were embedded into the prepared framework
to ensure good temperature resistance. The reaction schematic of poly (AM-AMPS-St-MA)-
CaCO3 (PAASM-CaCO3) is shown in Figures 1 and 2.
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Figure 2. Schematic diagram of PAASM-CaCO3 reaction.

An amount of 30 mL of sodium tetraborate buffer solution was prepared in beaker 1,
and then 17.5 g of NCC was added. After high-speed stirring at 12,000 rpm for 15 min, 5 mL
of dimethyl sulfoxide was added dropwise and placed in an ultrasonic cell disintegrator for
dispersion. An amount of 50 mL of deionized water was added in beaker 2, and then 43.5 g
of AMPS was added to dissolve with sufficient stirring. In beaker 3, 20 mL of deionized
water was added and 29.8 g of AM was dissolved with stirring under heating. White
oil, 1.25 g of tween 60, and 3.75 g of span 80 were added to beaker 4 and stirred well to
homogeneity with a glass rod. The solutions in beaker 2 and beaker 3 were poured into
a four-port flask, the pH values were adjusted to 6.0 with 15 mol/L of NaOH solution,
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10.3 g of MA and 21.8 g of St were added, and the reaction system was stirred under the
protection of N2. Beaker 2 and beaker 3 were cleaned with deionized water and added to
a four-port flask. The liquid in beaker 4 was added into the flask and stirred for 15 min.
Then, 0.336 g of K2S2O8 and NaHSO3 was added in beaker 5, dissolved by deionized water,
and then added dropwise to the four-port flask. The reaction system began to heat up. The
suspension in beaker 1 was dripped into the reaction system after 2 h and then continued
to react for 5 h. Then, it was rapidly cooled to room temperature. Ethanol and acetone were
added to filter the resulting sediment and quickly washed out with dilute hydrochloric
acid. A novel polymer-based NCC with a core–shell structure as a high-temperature filtrate
reducer for drilling fluid (PAASM-CaCO3) was obtained.

2.2.2. Characterization of PAASM-CaCO3

(1) FTIR: 1 mg of dry PAASM-CaCO3 powder and 20 mg of KBr were mixed fully. The
mixture was loaded into the mold and compacted with 50 MPa of pressure. FTIR
spectra of the compacted tableting were obtained on a NEXUS FTIR spectrometer.

(2) TGA: The thermogravimetric analysis of PAASM-CaCO3 was carried out by a Mettler
Teledo thermogravimetric analyzer in Switzerland. The temperature range was from
room temperature to 1000 ◦C, the heating rate was 10 K/min, the atmosphere was
nitrogen, and the gas flow rate was 50 mL/min.

(3) GPC: The relative molecular mass of PAASM (without NCC) was determined by the
German SFD gel permeation chromatograph (GPC). The mobile phase was phosphate-
buffered solution. The column was a SHODEX (K-806 M chloroform system) and the
filler was styrene and two vinyl benzene copolymers.

(4) Surface hydroxyl number test: 18 mL of sodium dihydrogen phosphate-buffered
solution was prepared, and then 12 mL of NaCl solution with a mass fraction of 0.2%
was added.

After full mixing, the pH value of 0.5 mol/L of dilute hydrochloric acid sodium
dihydrogen phosphate-buffered solution was adjusted to 5.5. The 0.6 g sample was fully
stirred and dispersed, and the pH value of the liquid was measured with a precision pH
meter. The suspension was titrated dropwise by a 1.5 mol/L NaOH solution to pH 9.0 for
20 s, which was the end point of the titration. The amount of NaOH consumed during this
period was recorded

The hydroxyl number N on the surface of NCC can be calculated according to
formula (1):

N = CVNA10−3/Sm (1)

where C is the concentration of NaOH solution, mol/L; V is the amount of NaOH used
from the start of the titration to the end point, mL; NA is the Avogadro constant, 6.02 × 1023;
S is the specific surface area of the particles, nm2/g; m is the mass of sample involved in
the titration, g.

2.2.3. Performance Evaluation of PAASM-CaCO3

(1) Drilling fluid preparation and aging

An amount of 16 g of sodium-based bentonite was added to 400 mL of clear water
and stirred at 8000 rpm on a high-speed blender for 30 min, and then 0.8 g of Na2CO3 was
added, stirred for 20 min, and then pre-hydrated for 24 h. A certain amount of polymer
was then added to the fluid, which was stirred at 8000 rpm for 30 min on a high-speed
blender. The composites were aged at a set temperature for 16 h by aging and were cooled
to room temperature before stirring at high speed for 20 min. Rheological and filtration
properties of drilling fluid before and after rolling at a specific temperature/16 h were
tested according to the drilling fluid performance evaluation standard SY/t5621-1993.16 g.

(2) API Static Filtration Test

The static API filterability of drilling fluid was tested with a ZNZ-D3 API medium
pressure filter (Qingdao Haitong Instrument Co., Ltd.). A certain amount of drilling fluid



Gels 2022, 8, 322 6 of 18

was loaded into the filter kettle, the top was covered with API filter paper, and it was placed
under 100 psi. The filtered volume (FL or FLAPI) of the drilling fluid was recorded for 30
min, which is recommended by the API.

(3) High-temperature high-pressure static filtration loss test

The static HTHP filterability of drilling fluid was tested with a GGS424A high-
temperature and high-pressure static filter instrument (Qingdao Haitongda Instrument Co.,
Ltd., Qingdao, China). A certain amount of drilling fluid was loaded into the filter kettle,
the top cover was covered with HTHP filter paper, the top cover was tightened, and the
difference between the upper and lower pressure was 3.5 MPa. The test temperature was
the hot roll temperature (the test temperature is 180 ◦C when the hot roll temperature is
higher than 180 ◦C). The filtered volume (FLHTHP) of the drilling fluid was recorded for
30 min, which is recommended by the API.

(4) Rheological property test

The rheological parameters of the drilling fluid were tested according to the drilling
fluid performance evaluation standard SY/T5621-1993. The apparent viscosity, plastic
viscosity, and yield point of drilling fluid were measured with the ZNP-M7 6-speed rotating
viscometer (Qingdao Haitongda Instrument Co., Ltd.). They measured the apparent
viscosity, plastic viscosity, and yield point of drilling fluid with ϕ600 and ϕ300. The value
of 300 was calculated according to the test program recommended by the API.

AV = ϕ600/2 (2)

PV = ϕ600 − ϕ300 (3)

YP = ϕ300 − ϕ600/2 (4)

where:

AV is the apparent viscosity (mPa·s);
PV is the plastic viscosity (mPa·s);
YP is the yield point (Pa);
ϕ600 is the dial reading of the 6-speed rotational viscometer at 600 r/min (dia);
ϕ300 is the dial reading of the 6-speed rotational viscometer at 300 r/min (dia).

2.2.4. Study of Filtrate Control Mechanism

(1) Zeta potential test

A Brookhaven zeta potential tester (Brookhaven instruments Ltd., New York, NY,
USA) was used to test the zeta potential of drilling fluid before and after aging. An amount
of 8 g of sodium montmorillonite was added to 400 mL of deionized water and placed
on a magnetic stirrer for 24 h. Then, a certain amount of PAASM-CaCO3 was added and
stirred for 24 h to ensure that the various components of the mixed material were mixed
sufficiently. Then, the drilling fluid was placed at a certain temperature and rolled for 16 h.
When tested, drilling fluids were equipped with a microprocessor unit that automatically
calculates the electron mobility of particles and converts them into ζ Potential. The average
of the three tests was taken as the zeta potential of the drilling fluid.

(2) Particle size distribution test

An amount of 8 g of Na montmorillonite in 400 mL of deionized water was added
and placed on a magnetic stirrer to stir for 24 h; then, a certain amount of PAASM-CaCO3
was added, stirring was continued for 24 h to ensure the various components in the mixed
material were fully mixed, and the particle size distribution of drilling fluid before and after
aging was tested by a bettersize2000 laser particle size distribution instrument (Dandong
baited Instrument Co., Ltd., Dandong, China).
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3. Results and Discussion
3.1. Structural Characterizations
3.1.1. Fourier Transfer Infrared (FTIR) Analysis

The results of the infrared spectroscopic analysis of PAASM-CaCO3 and NCC are
shown in Figure 3. It can be seen from (a) that 3380 cm−1 is the O-H vibration absorp-
tion peak, 3195 cm−1 is the N-H stretching vibration absorption peak of the amide group,
and 3004 cm−1 is the stretching vibration absorption peak. = C-H on the benzene ring,
2923 cm−1, is the C-H stretching vibration absorption peak on the saturated carbon
atoms, 1796 cm−1 is the stretching vibration absorption peak of C=O in the carboxyl
group; 1664 cm−1 can be attributed to the stretching vibration of C=O in the amide group;
1604 cm−1 is for the stretching vibration of the C=C skeleton of the benzene ring; 1429 cm−1

can be assigned to C-O antisymmetric stretching vibration; S=O symmetric contraction
vibration in sulfonic acid groups appears at 1120 cm−1. The absorption peak at 875 cm−1

is assigned to the in-plane bending deformation vibration peak of CaCO3 C-O, and the
absorption peak at 632 cm−1 is assigned to the in-plane deformation vibration peak of
O-C-O, which indicates that the product contains NCC. There are no vibrational peaks
of olefin double bonds at 1000 cm−1~900 cm−1, indicating no residual monomers in the
products. The FTIR analysis result shows that the chains of the synthesized products have
chains bearing all comonomers.
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Figure 3. The FTIR analysis results. (a) PAASM-CaCO3; (b) NCC.

3.1.2. Surface Hydroxyl Number Test

The results of the surface hydroxyl number test before and after NCC inlay copolymer-
ization are shown in Table 2. From the test results, the number of surface hydroxyl groups
of NCC is 0.1506/nm2 before modification, and the number of surface hydroxyl groups of
PAASM-CaCO3 is drastically reduced to 0.0448/nm2 after modification, indicating that a
large number of hydroxyl groups on the surface of NCC participate in the reaction and the
size of the nanoparticles matches well with the size of the network structure.

Table 2. Surface hydroxyl number test of NCC before and after modification.

NCC PAASM-CaCO3

V/volume (mL) 0.411 0.129
N/Hydroxyl Number 0.1506 0.0448



Gels 2022, 8, 322 8 of 18

3.1.3. Gel Permeation Chromatography (GPC) Test

The GPC experimental results of PAASM (without NCC) are shown in Table 3 and
Figure 4. The results show that the weight-average molecular weight (Mw) of the polymer
main chain is 6.98 × 105, and the number-average molecular weight (Mn) is 2.84 × 105,
which gives PAASM a suitable relative molecular weight. It will be detrimental to the
rheological regulation control of drilling fluid if the relative molecular weight of additive
agents is too large. If the relative molecular weight is too small, it will be difficult to increase
the viscosity, which will affect the effect of colloidal protection and filtration reduction,
and it will be difficult to guarantee high-temperature stability. The relative molecular mass
of PAASM is moderate and has the potential to overcome the above drawbacks. At the
same time, it can be found that the relative molecular weight distribution of PAASM is
narrow and the polydispersity coefficient is 2.45, which indicates that the molecular mass
distribution of PAASM polymer is relatively uniform.

Table 3. Relative molecular weight test results of PAASM.

Weight-Average Molecular
Weight (MW)

Number-Average
Molecular Weight (Mn)

Polydispersity
Coefficient (D)

697,500 284,600 2.45
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Figure 4. Results of GPC of PAASM.

3.1.4. Thermogravimetric Analysis

The thermogravimetric analysis results of PAASM-CaCO3 are shown in Figure 5.
As can be seen from Figure 5, there is no decomposition of PAASM-CaCO3 from room
temperature to 300 ◦C, and the weight loss is mainly due to the re-removal of adsorbed
water. The side chain begins to decompose from 330 ◦C to 420 ◦C. When the tempera-
ture is higher than 420 ◦C, the molecular skeleton is completely destroyed and the final
residual mass is about 45%, which is mainly composed of NCC and the carbonized main
chain structure. The results of thermogravimetric analysis show that the total thermal
weight loss of PAASM-CaCO3 is about 55% in the range from room temperature to 500 ◦C.
The thermal decomposition temperature of PAASM-CaCO3 is much higher than those of
traditional agents.
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Figure 5. Thermogravimetric analysis results of PAASM-CaCO3.

3.1.5. Micro-Morphology Test

TEM images of NCC and PAASM-CaCO3 in an aquatic environment are shown in
Figure 6. It can be seen that the NCC before modification is cubic with an average particle
size of about 15 nm (Figure 6a). The modified particles are spherical and the particle size
changes to about 200 nm (Figure 6b). The reason for this change is that the modified
polymer is coated on the surface of NCC, and the polymer swells in water and partially
dissolves in water, resulting in adhesion, resulting in the increase in NCC particle size in
TEM, which also indicates that NCC has been successfully modified.
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The SEM image of PAASM-CaCO3 is shown in Figure 7. It can be seen that PAASM-
CaCO3 is mainly spherical with a large specific surface area, which can exert its surface
energy advantage. The particles are closely packed, adhere to each other, and are basically
connected by polymers. The particle size of the polymers is basically the same as that
measured by TEM.
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Figure 7. SEM photo of PAASM-CaCO3.

3.1.6. Particle Size Distribution Test

The results of the particle size distribution of 0.1% PAASM-CaCO3 in water are shown
in Figure 8. As can be seen from the test results, the PAASM-CaCO3 particle size distribution
is narrow, with a D50 of approximately 259 nm, D10 of 1.88 nm, and D90 of 877 nm. The
particle size test results are relatively close to the TEM results. Compared with the SEM
results, the reason for the increase in particle size is mainly due to the water absorption of
the polymer and the hydration in the solution.
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3.2. Performance Evaluation
3.2.1. Filtration Reduction Effect in 4% Bentonite Mud

The filtration volume under medium pressure and HTHP (200 ◦C/3.5 MPa) of PAASM-
CaCO3 and commonly used high-temperature-resistant polymer filter reducers (coded
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Driscal-D and D-4) after aging at 200 ◦C/16 h was compared to further evaluate the
filtration reduction capacity of PAASM-CaCO3. Table 1 shows the formulations of different
drilling fluids. The main components of drilling fluids are shown in Table 4.

Table 4. Preparation of drilling fluids.

Components
Amount (Concentration)

Base Fluid 1 2 3

Distilled water (mL) 400 400 400 400
sodium montmorillonite (g) 16 16 16 16

Na2CO3(g) 0.8 0.8 0.8 0.8
PAASM-CaCO3 0 4 0 0

Driscal-D 0 0 4 0
D-4 0 0 0 4

The filtration effects of 1% PAASM-CaCO3, 1% D-4, and Driscal-D in the base mud
are shown in Figure 9. It can be seen that the filtration of base fluid decreases to some
extent after adding different filtration reducers. After aging at 200 ◦C, D-4 has the best
filtration reduction performance. The medium pressure filtration loss is 4.8 mL, and the
HTHP filtration loss is 11 mL. The filtration reduction result of PAASM-CaCO3 is close to
that of D-4. After aging at 200 ◦C, the medium pressure filtration loss is 5.2 mL and the
high-temperature and high-pressure filtration is 14.4 mL. After aging at 200 ◦C/16 h, the
API filtration volume of Driscal-D is reduced by 19 mL. The test shows that PAASM-CaCO3
has a good filtration control effect in 4% bentonite drilling fluid.
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Figure 9. Filtration loss in based muds after aging at 200 ◦C.

3.2.2. Effect on Rheology of WBDF

In order to further study the influence of PAASM-CaCO3 on the rheological properties
of drilling fluids, the rheological properties and filtration properties of fluids were tested
with different PAASM-CaCO3 additions before and after aging at 200 ◦C/16 h. The base
fluid is 400 mL deionized water + 16 g sodium montmorillonite + 0.8 g Na2SO3. The
experimental results are shown in Figure 10.
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Figure 10. Effect of PAASM-CaCO3 on rheological and filtration properties of 4% bentonite mud.
(a) Apparent viscosity; (b) plastic viscosity; (c) filtration Volume; (d) mud cake thickness.

It can be seen from the results that with the increase in PAASM-CaCO3 content in 4%
bentonite mud, AV, PV, and YP gradually increase. When 1.5% PAASM-CaCO3 is added,
the apparent viscosity of the slurry before and after aging is 66 MPa·s and 37.5 MPa·s,
respectively, which indicates that PAASM-CaCO3 still has a good tackifying effect after
aging. In addition, the yield point of the pulp before and after aging is stable under different
PAASM-CaCO3 additions. It is also found that with the continuous addition of PAASM-
CaCO3, the filtration loss of aging fluids decreases continuously. After aging at 200 ◦C/16 h,
the filtration loss is 29 mL. Filtration loss is only 4 mL when 1.5% PAASM-CaCO3 is added.
At the same time, it is not difficult to see that with the increase in PAASM-CaCO3, the mud
cake thickness of fluid becomes thinner gradually after aging, which indicates that the mud
cake quality gradually improves and starts to become thinner and tougher, which indicates
that the addition of PAASM-CaCO3 can improve the colloidal high-temperature stability of
drilling fluids.

3.2.3. Comparison with Other Commonly Used Filtration Reducers

In order to further evaluate PAASM-CaCO3’s filtration reduction ability, the filtration
control effects of PAASM-CaCO3 and other commonly used high-temperature-resistant
filter agents before and after aging at 200 ◦C/16 h were compared. The results are shown
in Table 5. It can be seen from the test results that the API filtration loss volume of D-4
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and PAASM-CaCO3 are smallest after hot-rolling at 200 ◦C/16 h, which are 4.8 mL and
5.2 mL, respectively. The mud cake thickness of PAASM-CaCO3 drilling fluid after aging is
similar to that of D-4 drilling fluid, which is 2.9 mm and 2.4 mm, respectively, which shows
that PAASM-CaCO3 prevents mud cake from becoming too thick and improves the quality,
indicating that the newly developed PAASM-CaCO3 has good filtration control and good
heat resistance.

Table 5. Comparison of filtration control effects after aging (200 ◦C/16 h) of common filtration reducers.

No. Components
Filtration Volume (mL) MCT

(mm)Before Aging After Aging

Base Fluid 4% bentonite mud 16.8 29.0 5.8
1 1#+1%PAASM-CaCO3 3.6 5.2 2.9
2 1#+1%Driscal-D 8.8 19.0 4.7
3 1#+1%D-4 3.2 4.8 2.4
4 1#+1%80A51 7.2 20.0 5.0
5 1#+1%JT888 4.4 18.0 4.9
6 1#+4%PJA-2 6.2 17.0 5.0
7 1#+4%FT-A 6.6 19.0 4.9
8 1#+4%SMP-I 5.2 18.0 5.0

3.2.4. Evaluation of Temperature Resistance

The results of API filtration and HTHP filtration after aging at different temperatures
are shown in Figure 11. It can be seen that with the increase in aging temperature, the
API loss of drilling fluid gradually increases. As the temperature increases, the high-
temperature and -pressure loss of drilling fluid increases rapidly at first, and then slowly
and then rapidly. When the temperature is lower than 180 ◦C, the change in temperature
has little effect on drilling fluid filtration. When the temperature exceeds 180 ◦C, the
molecular structure of PAASM-CaCO3 starts to become damaged under high temperature,
the movement of water molecules becomes more serious, and the hydration group of
PAASM-CaCO3 cannot play its full role, which leads to the weakening of gel protection
and the increase in filtration loss.
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Figure 11. Filtration loss after aging at different temperatures.
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3.3. Study of Filtration Control Mechanism
3.3.1. Particle Size Distribution Test

Large and small particles often coexist in drilling fluids and maintain a certain pro-
portion. During filtration, large particles in drilling fluid can act as a bridge to support
the main frame of the mud cake. Small particles play a filling role. The cage structure
formed by large particles can be filled with a suitable proportion of small solid particles,
thus improving the density of the filter cake and keeping the filtration performance of
drilling fluids in a good state.

Figure 12 and Table 6 show the test results of the particle size distribution of drilling
fluids after aging in the presence of PAASM-CaCO3 at different concentrations. From
the test results, it can be seen that the particle size distribution of basic mud is wide and
multi-peaked. There are submicron, micron, and millimeter particles in the drilling fluid,
and the median particle size is 28.80 µm. With the addition of PAASM-CaCO3, the particle
size distribution of mud gradually changes from multi-peaked to single-peaked, and the
particle size distribution curve moves to the left. This shows that with the increase in the
PAASM-CaCO3, the number of small particles of micron and sub-micron size increases, and
their particle size distribution becomes narrower, which makes the particles in mud more
uniform. PAASM-CaCO3 has a strong adsorptive functional group and rigid nanostructure,
which has a high adsorptive energy and surface energy. It can appear on the surface of clay
particles after adding in. In addition, it improves the thickness and diffusion of hydration
film and the double layer on the surface of clay particles, enhancing the water and static
repulsion between particles, and at the same time, its hydrophobic structure can form a
film around clay particles. Therefore, the aggregation of clay particles is restrained and clay
particles are decomposed into fine particles, which is beneficial to reducing mud filtration.
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Table 6. Partial size value of muds.

Concentration of
PAASM-CaCO3/%

Particle Size/µm

D10 D50 D90

0 5.119 28.8 139
0.1 1.772 19.01 58.75
0.3 2.016 18.58 66.99
0.5 1.171 14.46 60.71
1 3.171 14.48 31.27
2 2.772 12.65 23.65
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The test results of the particle size distribution of drilling fluids before and after aging
at different temperatures are shown in Figure 13 and Table 7. It can be seen that the particle
size distribution of the drilling fluid is relatively wide before aging, which indicates that
under this condition, the particles are conducive to the bridging action of large particles and
filling action of small particles. After aging at different temperatures, the size distribution of
the muds becomes narrower and the size becomes larger. It can be seen from the test results
that within a certain temperature range (<210 ◦C), with the increase in aging temperature,
the grain size distribution curve of the mud gradually moves to the left, indicating that the
small particles in drilling fluid begin to increase and the large particles gradually decrease.
In conclusion, PAASM-CaCO3 gradually plays a role in this temperature range as the
temperature increases. The clay particles affected by high-temperature dehydration and
aggregation are dispersed to form a relatively stable colloidal suspension system. When
the temperature increases further (>220 ◦C), the median particle size of the mud increases,
the particle size distribution curve starts to show a bi-peak distribution, and the main
peak starts to move to the right, indicating that the sub-micron particles begin to increase
gradually and the clay particles in the muds begin to aggregate. The reason for this may be
that the ionization balance of water is promoted with increasing temperature. At this time,
the active H+ in water gradually increases and the attack probability of the PAASM-CaCO3
molecular main chain increases greatly, which leads to the oxidation, deformation, and even
decomposition of the PAASM-CaCO3 molecular main chain, releasing rigid nanoparticles
initially encapsulated in the polymer framework and combining them. Therefore, clay
particles without PAASM-CaCO3 protection also begin to dehydrate and aggregate at
high temperatures, forming small submicron particle clusters and thinning the hydration
film. The intermolecular hydration repulsion is weakened, resulting in an increase in
particle size.
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Table 7. Particle size value of muds after aging.

Aging Temperature/◦C
Particle Size/µm

D10 D50 D90

20 1.322 12.31 72.03
180 3.824 13.7 97.59
190 4.93 16.7 57.64
200 3.171 14.48 31.27
210 4.521 16.67 40.7
220 1.796 24.17 77.94
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3.3.2. Zeta Potential Test

The zeta potential values of PAASM-CaCO3 mud with different additions are shown
in Figure 14. It can be seen from the test results that the zeta potential of the muds is
negative throughout the experiment, which indicates that the charge properties of the
surface of bentonite particles have not changed with the addition of PAASM-CaCO3. Before
aging, with the increase in PAASM-CaCO3 concentration, the absolute zeta potential of the
drilling fluid begins to increase, which indicates that more and more bentonite particles are
adsorbed on the surface of PAASM-CaCO3. When the concentration of PAASM-CaCO3
increases to 1.5%, the absolute zeta potential of the mud does not increase significantly,
indicating that under this condition, PAASM-CaCO3 forms saturated adsorption, continues
to increase its dosage, and cannot adsorb more bentonite colloidal particles. The absolute
zeta potential of the mud increases significantly with the increase in PAASM-CaCO3
concentration after aging at 200 ◦C/16 h, which indicates that the hydrate groups in PAASM-
CaCO3 adsorb on the surface of bentonite particles at high temperature and improve the
double layer thickness of diffusion electricity. The protective effect of PAASM-CaCO3
on colloidal particles is more obvious with the increase in PAASM-CaCO3 dosage. High-
concentration PAASM-CaCO3 can be adsorbed excessively on the surface of clay particles,
inhibiting the adverse effects of high-temperature dehydration. In addition, according to
the zeta potential of before and after aging, it can be seen that the zeta potential of bentonite
after high-temperature treatment decreases slightly compared with the absolute value
before aging, but the decrease is not significant, indicating that the zeta potential source of
clay particles is less affected by temperature. In the presence of different concentrations
of PAASM-CaCO3, the absolute zeta potential of drilling fluids after aging also decreases,
which indicates that some hydration and adsorption groups of PAASM-CaCO3 decompose
at high temperature, resulting in a decrease in the amount of adsorption on the surface of
clay particles.
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Figure 14. Effects of different concentrations of PAASM-CaCO3 on zeta potential.

4. Conclusions

A high-temperature filtration reducer with a core–shell structure (PAASM-CaCO3) was
developed by mosaic copolymerization using AMPS, AM, St, and MA as monomers in com-
bination with NCC. The monomers were successfully polymerized, and the weight-average
relative molecular weight of the organic macromolecular backbone in the PAASM-CaCO3
structure was 6.98 × 105. The PAASM-CaCO3 initial thermal decomposition temperature
was high, which was about 300 ◦C. The newly developed PAASM-CaCO3 was in a spatially
globular structure. PAASM-CaCO3 had a better resistance to high temperature. The filtra-
tion loss of drilling fluid was basically stable before and after aging at 200 ◦C/16 h, whose
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effects were near or surpassed that of Driscal-d and was on top of commonly used filtration
reducers. The rigid nanoparticles were properly introduced into the PAASM-CaCO3, which
enhanced the steric hindrance and stability of the molecular structure, and was beneficial
in improving its high-temperature resistance.
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