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Abstract: The terrestrial environment is an important contributor of microplastics (MPs) to the
oceans. Urban streams, strictly interwoven in the city network and to the MPs’ terrestrial source,
have a relevant impact on the MP budget of large rivers and, in turn, marine areas. We investigated
the fluxes (items/day) of MPs and natural fibers of Mugnone Creek, a small stream crossing the
highly urbanized landscape of Florence (Italy) and ending in the Arno River (and eventually to the
Tyrrhenian Sea). Measurements were done in dry and wet seasons for two years (2019–2020); stream
sediments were also collected in 2019. The highest loads of anthropogenic particles were observed in
the 2019 wet season (109 items/day) at the creek outlet. The number of items in sediments increased
from upstream (500 items/kg) to urban sites (1540 items/kg). Fibers were the dominant shape class;
they were mostly cellulosic in composition. Among synthetic items, fragments of butadiene-styrene
(SBR), indicative of tire wear, were observed. Domestic wastewater discharge and vehicular traffic
are important sources of pollution for Mugnone Creek, especially during rain events. The study of
small creeks is of pivotal importance to limit the availability of MPs in the environment.

Keywords: microplastic; fibers; urban rivers; FTIR; Florence

1. Introduction

Urbanization produces the most dramatic physicochemical alterations to the fluvial
ecosystems of the cities [1], resulting in what is known as the “urban stream syndrome” [2],
which includes an increase in impervious surfaces, channel modifications and rectification,
riparian vegetation removal, a decrease of biotic richness, and the degradation of water
and sediment quality due to the input of contaminants [3,4]. In addition, the alteration of
hydrology results in “flashier” flow regimes, which increase the risk and accentuate the
side effects of flooding and drought, especially under future climate change scenarios [5].

In recent years, urban river rehabilitation, i.e., the return of degraded river ecosystems
to a former pre-degradation ecological state [6], has been the focus of policies aimed at
developing sustainable and resilient cities. Indeed, restoring rivers and creeks as wildlife
corridors for multifaceted activities (urban parks, vegetable gardens, recreation facilities)
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favors social connectivity, increases the sustainability of water provision, provides mental
and physical benefits to human health, and mitigates climate change effects [7,8].

Microplastics (MPs)—synthetic polymers of <5 mm in diameter [9–11], eventually
bonding with additives, produced in micrometer size (primary sources) or derived from the
weathering and degradation of larger plastic debris (secondary sources)—are abundantly
present as contaminants in urban fluvial environments [12–14]. Microplastics pose a major
threat to global aquatic ecosystems (e.g., [15–18]) as they cause severe impacts on the
organisms after ingestion [19,20]. Moreover, MPs may act as both carriers and releasers of
chemical pollutants adsorbed on MP fragments, posing a serious threat to river ecological
functioning [15]. Despite the importance of deepening the knowledge on this topic, studies
on the MP abundance in river catchments remain limited ([21] and reference therein),
especially when compared to the marine environment. However, urban rivers, especially
those crossing megacities, are considered the main source of land-based plastics to the
seas [22], contributing 15–20% of the total global input to the oceans [15,23,24]. In the
Mediterranean Sea, for example, a significant amount of MPs has been well documented at
river mouths or in coastal lagoons [25–28].

Urban rivers receive MPs via atmospheric deposition, surface runoff (especially during
storm events; [29]), industrial processes, and sewage treatment plants [30]. The occurrence
of polymers, especially synthetic fibers, in sediments and stream waters is closely linked
to anthropic activities, their abundance being directly related to population density and
proximity to urban centers [31,32]. Microplastics can accumulate in the sediment column,
the latter acting as a temporary sink [22]. Then, water flushing, and especially floods,
inevitably transport the MPs into large rivers and, eventually, the open seas [33]. In general,
MPs differ in appearance (fragments, fibers, and films), color, and composition (synthetic
polymers, such as polyethylene PE, polyvinyl chloride PVC, and natural polymers).

Microfibers are fine strands used to make clothing, carpeting, and household items.
Although overlooked in most studies or counted along with synthetic polymers [34], natural
(e.g., cotton, yuta) or semi-natural (“regenerated”, nylon or rayon) fibers should also be
distinguished or considered in environmental studies [35]. Although commonly perceived
as eco-friendly due to their relatively quick degradation rate, natural microfibers are a
global threat, comparable to synthetic polymers [35,36]. They account for the majority of
anthropogenic litter found in ocean surface waters [34,37] and in marine animals, becoming
vectors of organic and inorganic contaminants [35].

In this work, we characterize the distribution of synthetic and natural polymers
in the sediments and waters of Mugnone Creek, which flows through the populated
urban area of Florence (Italy), and quantify the fluxes of these contaminants in the stream
waters. Mugnone Creek, a tributary of the Arno River, is a typical example of an urban
stream suffering from extreme denaturation and poor ecological status [38,39], and its
environmental requalification is one of the objectives of the city’s environmental policies.
After discharging into the Arno River, the final fate of the found MP pollution is the
Tyrrhenian Sea, a portion of the Mediterranean Sea. The latter, being a closed and densely
populated basin, exhibits some of the highest concentrations of MPs and fibers in the
world [27,34,40]. To the best of our knowledge, this work represents one of the first
studies concerning synthetic and natural polymer pollution in Italian urban rivers, and it
is an unprecedented eco-toxicological study on pollution in the urban area of Florence, a
UNESCO world heritage site.

2. Materials and Methods
2.1. Study Area and Sampling

The urban area of Florence is one the most populated cities in central Italy (998,431 in-
habitants on 1 January 2021). The city center is crossed by the Arno River. Among its
tributaries, the 17 km long Mugnone Creek (hereafter MC) springs northeast of Florence
and discharges at the western limit of the city in the Cascine park, i.e., the largest green
area (ca. 130 ha) in Florence, after crossing a highly urbanized landscape. The MC drainage
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basin (60 km2) supports the urban pressure of 368,419 people (Florence district), with a
high population density of 3601 inh/km2. During its path, it receives the waters from the
Terzolle Creek (Figure 1), draining close to the University Hospital of Careggi. Since Roman
times, the creek has been repeatedly diverted (in pre-Roman times, it discharged into the
Arno River next to the famous Ponte Vecchio in the historic city center) in response to the
needs of urbanization. Today, it is a water channel completely wedged in the urban fabric,
with no possibility of natural evolution and with a high hydraulic risk due to the torren-
tial regime [41]. Heavy autumn rains have recurrently caused flooding in the past, with
extensive damage to surrounding neighborhoods. In addition, MC is the receiving water
body of several sewer flood control tunnels dedicated to sewer overflow and stormwater
management, directly discharging wastewater into the creek during intense rain events.
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Figure 1. The urban area of Florence (Italy) and the location of sampling sites along the MC.

Sediments from MC were collected in June 2019 at 10 locations, moving from upstream
of the Florence urban center (AM1–AM2) to the outlet into the Arno River (Figure 1). One
sample (AM8) was collected just after the confluence with the Terzolle Creek to assess the
impact of the hospital on the polymer pollution. Sediments were collected as grab samples
with a metal scoop and stored in 1 L glass jars. In the laboratory, sediments were dried for
two weeks at room temperature, covered with aluminum foil, and then sieved (metal sieve)
at <2 mm to separate the finer fraction, which was investigated for MPs and natural fibers.
Water sampling was repeated seasonally (June–September) for two years (2019–2020) at 3 of
the 10 sediment collection sites (AM1, AM2, AM3). Upon considerations of the preliminary
results from the 2019 sampling (see later), an additional site (AM0), further upstream of
the Florence urban center (i.e., next to the MC spring), was sampled and characterized for
micropolymers. River water (1–3 L) was collected 0–30 cm below the surface in triplicate
using glass bottles pre-cleaned with acid, washed three times with stream water before
sampling. Samples were stored in a dark place, at ~4 ◦C, until analysis. During water
sampling, flow discharge was measured simultaneously at AM1, AM3, and AM9 by tracer
dilution methods [42]. Daily fluxes (items/day) of synthetic and natural micropolymers at
each site were calculated by knowing the number of items per cubic meter (items/m3) and
the flow rate (m3/s) considered constant for 24 h at each site.
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2.2. Microplastic Extraction from Sediment and Water

Extraction for the enumeration and identification of microplastic was performed by
the density separation method ([43] and references therein) on a 50 g dry weight (hereafter
d.w.) sediment subsample (<2 mm) from all sediment samples (AM1 through AM10). The
sediment was then placed in a 500 mL glass beaker, shaken vigorously for 3 min with
300 mL of saturated NaCl solution, and then allowed to settle, covered with aluminum foil.
After 24 h, the supernatant containing the plastic (or textile) items was filtered through a
Büchner glass funnel using glass fiber filters (1.6 µm of pore size, Labchem), previously
heated at 400 ◦C for 2 h.

Because MP can commonly be found in table salt (e.g., [44]), the NaCl used for the
density separation in this study comes from the Volterra salt deposit (southern Tuscany),
dating back to the Messinian age (e.g., [45]), and is, thus, virtually MP-free. In addition,
the saturated NaCl solution was filtered (0.45 µm) before its use to avoid any possible
contamination, removing any impurities and MP fragments. For each sample, the extraction
procedure was repeated three times using different glass filters to maximize the recovery of
plastic items and to avoid filter-clogging or particle packaging from preventing numbering
and identification. To overcome the problems associated with organic matter, which can
mask the presence of polymers, all the three filters for each sample were digested with 10 mL
of H2O2 (15 % v/v) for 48 h, stored on a glass Petri disk, dried in a desiccator, and stored
until analysis. The H2O2 solution used for each filter digestion and a subsequent rinse with
MilliQ® water was then filtered, using the same equipment as for NaCl extraction, while
the digested (residual) filters were stored and dried. A total of six filters (three digested
with H2O2 and three not digested) were then retrieved for each sample and studied for
both synthetic and natural polymeric particles, here referred to by the general term of
microplastics (MP*). The abundance of MP* is reported as the number of MP* for one
kilogram of dry sediment (MP*/kg d.w.). The use of a NaCl-saturated solution for MP
extraction showed for artificial sand samples spiked with MP (PE, PP, PS, and PU) a mean
MP recovery rate of 85 ± 3%, while for PVC and PET, the recovery was 67 ± 3%. These
data are in good agreement with that reported by [43].

Concerning water samples, they were filtered within 1 week of collection with the
same equipment used for sediments. Due to the high amount of particulate matter (likely
of vegetal origin), the volume of filtered water varied between 250 and 2400 mL until
the clogging of the filter occurred. After filtration, the filters were stored on a glass Petri
disk, dried under a desiccator, and stored until analysis. The abundance of MP* (synthetic
and/or natural polymers) is reported as the total number of items in the stream water
volume (items/m3).

Binocular observations of the filters allowed for the count of particles in both sediments
(Figure 2) and waters (Figures 3a and 4a) and classification according to [46]. For sediments,
only a quarter of each filter was observed (Figure 2) due to the extreme abundance of MP*,
and the distribution of anthropogenic items was assumed to be homogenous.

2.3. QA/QC Protocol

Microplastics are ubiquitous; thus, contamination can stem from air deposition on
samples or equipment, the water used for cleaning equipment and sample processing,
reagents, and the synthetic clothing worn by field staff. Thus, it is fundamental to check
the potential contamination introduced to samples with background checks and field
and procedural blanks. In this study, field blanks simulating every step of the collection
procedure were performed. MilliQ® water and a bottle blank were used to assess the
cleanliness of the sample container. Laboratory blanks were performed to evaluate potential
self- and cross-contamination in the laboratory and were included each time samples were
processed and analyzed. The use of plastic sampling and laboratory equipment was
eliminated wherever possible, and glass or metal was used in its place. Glassware was
soaked with a concentrated detergent (Contrad 70 and Alconox) and rinsed three times
with MilliQ® water. The equipment was covered to reduce aerial deposition, and all
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analytical operations were conducted under a laminar flow cabinet located in a clean room.
To minimize the sources of secondary contamination, personnel wore only cotton clothes
and cotton lab coats and gloves in the laboratory space, even when not processing MP
samples, and clothes were cleaned with a lint roller to capture any loose fibers. Baked
glass fiber filters were put under the fume cupboard to check MP air deposition during
filtering operations. Air blanks did not generally report MPs on them; however, in air
blanks exposed during the processing of the water sampled in summer 2020, two blue fibers
were observed. Therefore, these fibers were subtracted from the analyzed water samples.
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Figure 2. Example of MP* (red and black fibers) identified during binocular observations in the
sediment sample and its position in the quarter of filter investigated (yellow area).

2.4. 2D Imaging–Fourier Transform Infrared

The 2D imaging–Fourier transform infrared (FTIR) analysis of the plastic and non-
plastic polymers in water samples (July 2019 and July–December 2020) was carried out on
the dry glass fiber filters using a Cary 620–670 FTIR microscope, equipped with an FPA (Fo-
cal Plane Array) 128 × 128 detector (Agilent Technologies) and a Cassegrain 15× objective.
This experimental setup was selected as it has proven to be highly effective in the identi-
fication of MP* fragments down to the micron size, even on complex matrixes rich with
sediment [47]. Measurements were carried out in reflectance mode. Background spectra
were collected on a gold plate surface. The glass fiber filters were analyzed directly, with
no preparation steps required, and each analysis yielded a 2D “tile” map of 700 × 700 µm2

(128 × 128 pixels), where each pixel had a size of 5.5 × 5.5 µm2 and produced an inde-
pendent spectrum (Figures 3b and 4b). A background tile was acquired on the gold plate
surface before each analysis. All the spectra (background and samples) were acquired in
the 3900–900 cm−1 range, using 128 scans, an open aperture, and a spectral resolution of
8 cm−1. The detection limit of the detector to synthetic polymers (e.g., polyvinyl alcohol)
was recently found to be as low as ca. 0.6 pg/pixel [48].

The pixel size of the FPA detector allows the collecting of a large number of indepen-
dent spectra on the polymer microsamples; for instance, >150 independent spectra are
typically acquired on a 1 mm long and 10 µm thick fiber in a single sample’s “tile” image
(700 × 700 µm2). All the spectra were analyzed using Agilent Resolution Pro software (Ag-
ilent technologies). For each polymer, diagnostic bands were identified (Figures 3c and 4c)
and matched with those of references found in the literature [49,50]. In addition, the full
spectral profile of each polymer was compared to the literature references to confirm the
assignment. A selection of 2–5 diagnostic bands was imaged for each polymer: in the 2D
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FTIR maps, the intensity of characteristic bands of the investigated polymers was imaged
with a chromatic scale of increasing absorbance, as follows: blue < green < yellow < red
(Figures 3b and 4b). Items were classified as synthetic (Figure 3) and natural (Figure 4)
(cellulosic). In terms of dimensions, particles > 20 µm were characterized.
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Figure 3. (a) Visible light map of the filter substrate with an SBR microfiber lying on it; (b) 2D FTIR
imaging maps where the intensity of the following bands was mapped: 3000–2900 (aromatic and
aliphatic CH stretch), 1605 (aromatic ring stretch), and 1450 cm−1 (CH2 bend). The chromatic scale of
each map qualitatively shows the absorbance intensity as follows: blue, green, yellow, red; (c) FTIR
reflectance spectra of the SBR microfiber and diagnostic bands (* symbol), assigned according to
reference standards reported in [49].
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Figure 4. (a) Visible light map of the filter substrate with a cellulosic microfiber lying on it; (b) 2D
FTIR imaging maps where the intensity of the following bands was mapped: 3500–3100 (O–H stretch,
hydroxyl groups of the anhydroglucose unit), 3000–2900 (stretch of methyl and methylene C–H
bonds). The chromatic scale of each map qualitatively shows the absorbance intensity, as follows:
blue, green, yellow, red. Maps have dimensions of 700 × 700 µm2; (c) FTIR reflectance spectra of
the cellulosic microfiber and diagnostic bands (* symbol), assigned according to reference standards
reported in [50].

3. Results
3.1. Sediments

A total of 340 items were counted in the MC sediments through binocular observations,
yielding MP* contents ranging from 500 to 1540 items/kg d.w. (Figure 5), with an average
value of 860 ± 360 MP*/kg d.w. (1 SD). Fibers were the dominant shape class observed
at all sampling sites (52–75%, mean 59 ± 7%), except at site AM10 (40%), corresponding
to the outlet of MC into the Arno River (Figure 1), where fragments were most abundant
(Figure 6). Films were poorly represented (<5%), while pellets were never observed. The
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lowest number of items (500–520 items/kg d.w.) was detected in AM1 and AM2, both
located upstream of busy urban roads. Concordantly, a general increase in MP* was
observed approaching urbanized areas and heavy-traffic roads, denoted by site AM3
(Ponte Rosso, Figure 5). The highest concentrations were reported for AM8 (1540 items/kg)
and AM10 (1110 items/kg d.w.), corresponding to sediments collected after the confluence
with the Terzolle Creek and at the MC outlet, respectively (Figure 1).
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3.2. Waters and Fluxes

Particle concentrations in MC waters ranged from 833 to 16,000 items/m3 (Figure 7).
The lowest values were observed in June 2020 (833–4494 items/m3) and the highest in
December 2019 (14,000–16,000 items/m3). Differences between sampling sites were quite
modest, especially during the summer months. In terms of shape, fibers were the most
abundant (57–100%) and the most representative for all seasons (winter and summer) at all
sampling sites (Figure 8). At site AM3, fibers represented 100% of the particles during 2020
(Figure 8), and a peak of 12,000 fibers/m3 was found in the water during the 2019 winter
sampling. Fragments accounted for 13–28% of the recovered items, while films and pellets
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were rarely observed (<15%). Particles were widely colored at all sites, especially during
the winter months at AM9 (Figure 7b). Black and blue color were generally dominant. At
AM3, up to 8000 black particles/m3 were observed during winter sampling in 2019.
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fibers and colors (b). In December 2019, no distinction between MPs and natural fibers was made.
White dotted color refers to transparent particles.
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The FTIR investigation (n = 101) revealed the nature of the particles counted. Natural
(cellulosic) fibers were 50–100% of the total at different sites (Figure 8), being equally dis-
tributed regardless of site location (i.e., upstream or downstream of the urban center). At
site AM0, for example, the farthest upstream from the urban area of Florence, the highest
number (10,000 items/m3) of cellulose-made particles was observed in December 2020.
Polyamide (PA) was the most abundant polymer, observed in all seasons, especially dur-
ing the winter sampling in December 2020 (Figure 9). It reached up to 3000 items/m3

at AM9 during this season, while the lowest values occurred in the summer months
(500–1000 items/m3). Other polymers identified in MC were polyethylene terephtha-
late (PET), acrylonitrile, polypropylene (PP), a blend of PP and polyethylene (PE) (blend
PP + PE), polytetrafluoroethylene (PTFE), butadiene-styrene rubber (SBR), and polyurethane
(PU) (Figure 9). As a matter of example, the 2D FTIR maps of an SBR and cellulosic fibers
are shown in Figures 3 and 4, respectively. For the other class of polymers, representative
visible and 2D FTIR maps are reported in the Supporting Information (Figures S1–S7).
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Figure 9. Classification of synthetic polymers in water samples. Natural polymers (cellulose) are
also reported.

Water discharge measurements during sampling allowed us to calculate the fluxes
of MP* (or natural) polymers at AM1, AM2, and AM3. Fluxes of total polymers (MP*)
were in the order of 106–107 items/day during the dry months, while they increased up
to 108–109 items/day during the wet seasons (Figure 10). In general, the fluxes of MP* at
all sites were 1–2 orders of magnitude higher in 2019 than during the same season in 2020
(106 against 108 items/day). We observed that fluxes of cellulose material were of the same
order of magnitude or even higher than those of MPs when polymer distinction was made.
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4. Discussion
4.1. Spatial and Temporal Variations in Waters and Sediments

MC, which drains the highly urbanized area of the Florence district, is pervasively
affected by MP* (synthetic and natural polymers) pollution in both water and sediment.
Anthropogenic particle concentrations in water reached up to 16,000 items/m3 during
the two-year sampling period of this study, significantly higher than those reported for
other urban basins [12,51–53]. Surprisingly, the concentrations exceeded those observed
for the Seine River (3–108 items/m3; [51]) and the Yangtze and Hanjiang rivers or some
Chinese lakes (1660–8925 items/m3; [54]) by one to two orders of magnitude despite that
these rivers flow through highly urbanized megacities (>10 million people). Different
sampling methods could partly explain these large differences in MP* concentrations.
Indeed, sample treatments may lack harmonized protocols for sampling and analysis,
resulting in a misleading comparison of results, especially since the number of MPs in the
water column is inversely related to the mesh size of the net used to collect them [13]. Most
researchers applied a moderate mesh size (80–330 µm) for sampling to avoid net clogging
(cf. [31,55]), thus missing the most conspicuous portion of MP* [56,57]. For example, [51]
found that the abundance of small plastic fibers in an 80 µm net is one to two orders of
magnitude higher than in a 330 µm net in the Seine River. Similarly, ~84% of plastic debris
is in the 2–40 µm range for the Douro River in Portugal [57], and 90% of the total was
less than 20 µm in the Elbe River [56]. The need to use a small mesh size during water
sampling is genuine, particularly for microfibers, whose small widths allow them to easily
pass through nets with mesh size > 63 µm [58].

To date, the few studies applying a <50 µm meshes for fluvial water sampling have
reported a range of MP* similar or higher than that observed in MC. Hu et al. [59] esti-
mated ~10,000 items/m3 in small rivers draining the residential areas of Shanghai (China),
while 3097 to 9806 items/m3 were detected in urban sites in the Chinese Three Gorges
Region [60]; in contrast, one to two orders of magnitude higher MP* were counted in the
Saigon River draining the Ho Chi Minh megacity [61] and in the canals of Amsterdam
(48–187 × 103 items/m3; [62]).

The variability of MPs in sediments also relies on the methodology used. It has been
shown that anthropogenic items with densities >1.2 g/cm3, such as PVC (ρ = 1.10–1.44 g/m3),
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may not be fully extracted from sediment fractions [43] using saturated NaCl solution
(density of 1.2 g/cm3).

However, the separation of MPs with the 1.2 g/cm3 solution dominates in the scientific
literature (e.g., [22]), providing more studies for comparison. Among the highest MPs in
fluvial sediments, Hurley et al. [33] reported the case of the Mersey-Irwell catchments near
Manchester (2.5 million people), with up to ~55,000 MP/kg (concentrations for <1.2 g/cm3

extracts). Besides this, the range of 500–1540 items/m3 for MC is generally higher than
those observed for other Italian river systems ([28] and references therein) or abroad [60].
The spatial pattern well indicated an increase of contaminants as the creek enters the urban
area (from site AM3 downstream), suggesting greater availability of anthropogenic debris
in the basin. A peak of MP* (1540 items/kg) was associated with site AM8 (Figure 5), sam-
pled a few meters downstream of the confluence with Terzolle Creek. This effluent drains
the Careggi University Hospital, one of the largest in central Italy (about 1,000,000 hos-
pitalizations each year), where plastic use in medical facilities is widespread, probably
representing an additional source of trash for surface river networks.

4.2. Fluxes of Microplastics

Daily fluxes of MP* in MC were calculated for the four different sampling seasons at
the three sites. They spanned over three orders of magnitude (106–109 items/day, with
average values of 2.1 × 108, 5.0 × 108, and 4.9 × 108 items/day at AM1, AM3, and AM9,
respectively). The spatial pattern differed between the two years of monitoring, showing
a moderate increase in MP* fluxes from upstream to downstream sites in 2019, especially
in winter (from 6.5 × 108 to 1.5 × 109 MP* items/day from AM1 to AM3), while nearly
constant values were observed in 2020 (Figure 10). This non-increasing pattern is not
straightforward to explain, considering that potential MP* inputs are abundant between
AM1 and AM9 sites, including the populated city of Florence and the Careggi University
Hospital. This unexpected trend was also observed in the Seine River [53] and attributed
to the non-conservative behavior of plastic polymers, which could sediment towards the
riverbanks or streambed, as highlighted by the distribution in sediments between AM8 and
AM9 (Figure 5), and/or migrate towards the aquifer that is locally fed by MC in the section
between AM4 and AM5 and/or MC (e.g., [63,64]). In this sense, sediment monitoring has
allowed us to depict more clearly the urbanization inputs in the Florence city area, although
it cannot be excluded that contamination hotspots may also change rapidly in this matrix
in response to fluvial dynamics [33].

Averaged anthropogenic particles fluxes per site were 1.2 × 109 (2019) and 3.5 × 108

(2020) items/day in December, and 7.9 × 107 (2019) and 5.2 × 106 (2020) items/day
in June, being markedly higher during wet seasons. This effect is well-known in the
literature [65,66] due to increased washing of impervious surfaces such as roofs and roads
and to the scouring of sediments and re-suspension of particles due to the higher energy
and more turbulent river flow that occurs during rain events. The MC has a torrential
regime, and a short time frame (a few hours, depending on the kind of rain event and its
intensity, e.g., [67]) is required to transport particles from the spring to the confluence with
the Arno River. In December 2019 and 2020, samplings occurred after a couple of days of
almost no precipitation (0.3–4 mm of cumulative precipitation in the 48 h before sampling),
then these loads could be considered normal runoff conditions for MC during the winter
months. The sampling of plastic debris at the crest of a flood stage is expected to greatly
increase these fluxes [68] and could be of interest in establishing a realistic annual estimate
of plastic debris entering the Arno River.

As a final observation, our data consistently showed higher fluxes in 2019 than in 2020
(Figure 10). The latter year coincides with the spread of the coronavirus (SARS-CoV-2) and
the explosive growth in the use of face masks (essentially made of synthetic polymers),
which have been abundantly recovered as waste in rivers, beaches, and shorelines [69].
Although abandoned facemasks were also observed in the MC during the 2020 sampling
campaigns, the creek waters did not show an increase in contamination. This could be due
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to multiple reasons, including: (i) the degradation rate of face masks in fluvial systems
is currently unknown, so perhaps more aging is needed for degradation; (ii) national
restrictions due to the SARS-CoV-2 pandemic, such as the lockdown (from 9 March to
4 May 2020 for all of Italy) of activities and public services, regulations prohibiting all
movement by individuals except for justified reasons such as work, health, or other urgent
needs, the halt of mass tourism, and the consequent decrease in road mobility reduced the
availability of pollutants in the environment [70], comprising MP*, balancing the expected
increase due to face-mask littering.

4.3. Polymer Shape and Type

Microfiber production has nearly doubled over the past 20 years, peaking at 111 mil-
lion metric tons in 2019 [71]; the fibers are then the most representative anthropogenic
particles found by environmental surveys in both oceans and fluvial settings [34,51–54].
MC was not an exception to this trend, and fibers dominated in both sediments and waters,
sometimes representing the only item type recovered per sampling season (Figure 8). Fibers
mostly originate from clothes washing, with fabrics releasing up to 107 fibers/kg [72], which
escape from wastewater treatment plants (WWTPs) and then enter the urban environment
via wastewater effluents [73]. Atmospheric fallout [53] and/or road surface runoff can
add a significant contribution to the system (see later). Among fibers, cellulosic fibers
predominated (>50%) in MC (Figure 8), as generally testified for freshwaters [36] and for
oceanic waters [34], seafloor sediments [74], ice cores [75], marine organisms [76], and,
finally, human lungs [77]. As synthetic fibers occupy 2/3 of the global fiber production
market [78], this mismatch between world production and current water column compo-
sition is an intriguing task of environmental research [34]. One plausible explanation is
that cotton, rayon, and wool release more fibers than polyester (~52% of global synthetic
fiber production; [78]) during laundering [79] or/and that the time required for natural
fiber degradation is longer than expected due to end processing, such as the use of soften-
ers, flame retardants and resins [34]. Despite the cause behind this longevity remaining
unknown, the present study indicates that up to 108 cellulosic fibers can be discharged
daily into the Arno River in wet seasons (considering data from the AM9 site), suggesting
that even small creeks, running through highly industrialized and populated areas, could
greatly influence the balance of microfibers reaching large fluvial systems [80] as the Arno
River and, hence, the Mediterranean Sea.

The most commonly detected synthetic polymers in Florence water samples were PA
(25–65%), and PET (9–38%), followed by SBR (18–20%) and PP (13–20%). Polypropylene
and PET are among the main polymer types found in freshwaters ecosystems [55]. They are
mainly used for plastic and garbage bags and beverage containers. Therefore, they could be
derived from the primary degradation of these improperly disposed materials in the urban
environment. Polyamide could come from various forms of textiles, including clothes
and carpets [29]. On the other hand, a specific traffic-related source can be speculated
for SBR. This polymer was detected in the waters of site AM3, a crucial urban traffic
junction in the city of Florence (Figure 1), suggesting that it could be related to tire abrasion
occurring during car driving [81]. Indeed, butadiene–styrene rubber constitutes 60% of tires
in combination with natural rubbers and various additives [82]. Tire wear is a potential
conspicuous source of MPs in urban environments [22], and Panko et al. [83] documented
that nearly all (>99%) of the particles generated remain on the ground, accumulate in road
dust [84], and are subsequently washed away by rainfall. Kole et al. [85] estimated that
5–10% of oceanic plastic in the oceans comes from tire degradation.

5. Final Remarks

Physical and chemical degradation of small urban streams can negatively impact urban
inhabitant life. Restoring these green corridors improves social connectivity, promotes
citizen well-being, and is one of the main objectives of recent European urban policies. In
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this sense, characterizing MP pollution in urban areas is a necessary preliminary step to
promote the full restoration of these ecosystems.

Mugnone Creek, which runs through the densely populated city of Florence in central
Italy and flows into the Arno River, is severely affected by “microplastics” (referring
here to the sum of anthropogenic particles of both natural and synthetic origin) pollution.
Anthropogenic polymers are mainly fibers in shape and cellulosic in composition in both
sediment and water. Loads calculations and absolute concentration in sediment indicated
that the urban area had a major impact on the budget of the fluvial system as a consequence
of wastewater discharge from the domestic laundry, drainage from a major and important
hospital of the city, and road dust runoff from congested city areas. A seasonal study of
waters and fluxes calculations suggested that the availability of “microplastics” in Mugnone
Creek increases during wet seasons, reaching 109 items/day at the creek outlet due to the
washing of the impervious surfaces of the city during rain events. In 2020, the spread of
the SARS-CoV-2 pandemic reduced the “microplastics” loads in the basin, possibly due to
the lockdown restrictions and the decrease of tourism and road mobility in the city. Items
characterization by FTIR indicated that styrene–butadiene rubber, a major component of
tires, is among the most prevalent polymers in surficial stream waters near congested
urban sites.

The study of small streams, which are common in the urban environment and strongly
associated with terrestrial MP source areas, is of pivotal importance since they can show
concentrations of MPs similar or higher than in large rivers and help depict the sources and
sinks of these contaminants. The results provide the first baseline data of “microplastics”
pollution in stream water in the urban area of Florence, and the fluxes will contribute to
estimating the MP pollution budget into the Tyrrhenian Sea. Moreover, future studies
of synthetic polymers in MC may indicate the outcome of recent urban mobility policies
in Florence, which have resulted in the construction of a new tramway system to reduce
private car use.
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www.mdpi.com/article/10.3390/toxics10040159/s1, Figure S1: Acrylonitrile; Figure S2: Polyamide
(PA); Figure S3: Polyethylene terephthalate (PET); Figure S4: Polyethylene-Polypropylene (PE-
PP) blend; Figure S5: Polypropylene (PP); Figure S6: Polytetrafluoroethylene (PTFE); Figure S7:
Polyurethane (PU).
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