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Background & Summary

With emerging technologies it is becoming evident that the vast majority of the genome is transcribed
(the so-called ‘dark matter of the genome’) and produces a diverse population of non-protein-coding
RNAs (ncRNAs), including long non-coding RNAs (IncRNAs). LncRNAs are transcripts of more than
200 base pairs in length that are often expressed with higher cell-specificity compared to protein-coding
genes' despite having lower expression levels. LncRNAs fold in functional domains that allow them to
interact with other RNA molecules, DNA and proteins exerting a plethora of different functions in the
cells, as chromatin remodeling (XIST, HOTAIR), transcriptional activation or repression (DBE-T, NeSR,
lincRNA-Cox2), competition with microRNAs (linc-MD1, PTEN ceRNAs), splicing (sno-IncRNAs),
RNA trafficking (NRON), mRNA stability (TINCR), imprinting (KCNQ1OT1) and translation
(IncRNA-21p), among others®. LncRNAs are also frequently expressed only in specific developmental
stages, hinting to their involvement in cell fate determination. Moreover, IncRNAs have been implicated
in the maintenance of stem cell pluripotency and differentiation’, in the establishment of the
cardiovascular lineage and in the control of somatic tissue differentiation®. Altogether these findings
clearly point out the fundamental role of IncRNAs in the control of cell differentiation and in the
maintenance of cell identity. Indeed in the mouse immune system IncRNAs expression changes during
naive to memory CD8" T cell differentiation® and during naive CD4" T cells differentiation into distinct
helper T cell lineages®®. Our results on human CD4" T lymphocytes specific long intergenic non-coding
RNAs (lincRNAs)” are in agreement with the findings in mice. In this work 63 RNA samples from 13
subsets of T (CD4' naive, CD4" Tyl, CD4" T2, CD4" Tyl7, CD4" T,ep, CD4" Ty, CD4™ Tpp,
CD8" Ty, CD8' Tryy, CD8' naive) and B (B naive, B memory, B CD5") lymphocytes were collected.
The hierarchy of T and B cells during differentiation of the analyzed subsets is depicted in Fig. 1a as well
as the number of biological replicates for each cell population. After RNA-seq sequencing we exploited
different de novo transcriptome reconstruction approaches that led to the identification of over 500
previously unknown lincRNAs’. The general experimental design is shown in Fig. 1b. As recent findings
suggest that IncRNAs might contribute to the definition of lymphocytes identity and to the modulation of
their functional plasticity, our data set could be used as a resource to guide the validation and functional
characterization of lincRNAs and to identify genes and regulatory networks associated with specific cells
subsets of the human immune system.

Methods

Purification of primary immunological cell subsets

These methods are expanded from our previous article’. Blood buffy coat cells of healthy donors were
obtained from Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’Granda Ospedale
Maggiore Policlinico in Milan, and peripheral blood mononuclear cells were isolated by ficoll-hypaque
density-gradient centrifugation. The ethical committee of Fondazione Istituto di Ricovero e Cura a
Carattere Scientifico Ca’Granda Ospedale Maggiore Policlinico approved the use of peripheral blood
mononuclear cells from healthy donors for research purposes, and informed consent was obtained from
subjects. Human blood primary lymphocyte subsets were purified to a purity of >95% by cell sorting
through the use of various combinations of surface markers (see Table 1).

RNA isolation and RNA sequencing

Total RNA was isolated with a mirVana Isolation Kit (Ambion). Libraries for Illumina sequencing were
constructed from 100 ng of total RNA with the Illumina TruSeq RNA Sample Preparation Kit v2 (Set A).
The libraries generated were loaded on to the cBot automated clonal amplification system (Illumina) for
clustering on a HiSeq Flow Cell v3. The libraries clustered on a HiSeq Flow Cell v3 were then sequenced
with a HiScanSQ optical imaging system (Illumina). A paired-end run (with a read length of 100 bases)
was performed with an SBS Kit v3 DNA sequencing kit (Illumina). Real-time analysis and base calling
was performed with HiSeq Control Software (version 1.5, Illumina). CASAVA (version 1.8.2, Illumina)
software was used to demultiplex reads into specific sample and groups, the software was configured
to operate with ‘--mismatches="'1" allowing one mismatch during the identification of the indexes
(Data Citation 1).

RNA-seq trimming and mapping

To improve sequence quality, samples data were cleaned by Trimmomatic'® (version 0.30) using the
following parameters (LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36) giving as input
the forward and reverse FASTQ sequences for each sample. Only the reads that passed the quality or
length threshold on both strands were considered for mapping. The whole data set was aligned to human
genome assembly GRCh37 (Genome Reference Consortium Human Build 37) using both TopHat''!
(version 1.4.1) and STAR!? (version 2.2.0). The reference genome was indexed using Bowtie'® (version
0.12.9) for TopHat alignment. Both TopHat and STAR were used with default parameters; only for
TopHat we specified the mate-inner-dist parameter for each sample of our data set (see the associated
Metadata Record). Overall read depth and coverage information of the dataset is reported in Table 2.
RNA-seq data from the Illumina Human BodyMap 2.0 project (Data Citation 2) consisting of 16 human
tissues were downloaded, processed and mapped using the same criteria.
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Figure 1. Description of the study: cellular subsets hierarchy and bioinformatics pipeline. (a) Hierarchical
representation of the different cell subset originating from hematopoietic stem cells. In this study 13 human
primary lymphocyte subsets were profiled: CD4" naive; CD4" T,1; CD4" T,2; CD4" T,17; CD4" Treg;

CD4" Ty CD4™ Teys CD8™ Tep CD8' Try; CD8™ naive; B naive; B memory; B CD5". The number of
biological replicates and the expressed genes (FPKM>0.21) for each population is indicated. The total number
of samples profiled in this study is 63. (b) General overview of the bioinformatic steps and approaches used for
the identification of novel lincRNAs.

Public reference annotation

Ensembl database (version 67 from May 2012, see Data Citation 3) annotation was integrated with a
previously published catalogue of lincRNAs' (see Data Citation 4) using Cuffcompare which is provided
by the Cufflinks'* (version 2.1.1) suite. BioMart was used to categorize Ensembl annotation in different
classes by their biotype: lincRNA’ (5,804 genes), protein-coding genes (21,976 genes), receptor-encoding
using GO term GO:000487 (2,043 genes encoding molecules with receptor activity function) and the class
of genes encoding molecules involved in metabolic processes corresponding to GO term GO:0008152
(7,756 genes). The final public reference annotation consisted of 195,392 transcripts that referred to
62,641 genes, 11,170 of which were non-redundant lincRNA-encoding genes.

De novo genome-based transcripts reconstruction

To identify putative novel genes, not yet annotated and specifically expressed in our datasets, we
combined multiple tools and their outputs following a de novo genome-based transcripts reconstruction
procedure. Samples were aggregated in meta datasets corresponding to the 13 lymphocyte populations.
These meta datasets were aligned to the reference genome using two mappers: TopHat and STAR. The
resulting 26 alignments were used as independent inputs for Cufflinks configured to use the RABT"
assembler for the identification of novel transcripts. The following parameters were used in combination
with Cufflinks: ‘-g’ to guide the assembly by the public reference annotation. With these approaches we
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Subset Purity (%) Sorting phenotype Donors
CD4" naive 99,8 +0,1 CD4" CCR7" CD45RA* CD45RO™ 5
CD4" Tyl 99,9 +0,05 CD4" CXCR3* 5
CD4" Ty2 99,7+0,3 CD4" CRTH2" CXCR3~ 5
CD4" Tyl7 99,1+1 CD4" CCR6" CD161" CXCR3™ 5
CD4" Treg 99,0+0,8 CD4* CD127" CD25" 5
CD4" Tey 98,4+28 CD4" CCR7" CD45RA™ CD45RO" 5
CD4" Tpy 954+5,5 CD4" CCR7” CD45RA™ CD45RO* 5
CD8" Tem 98,3+0,8 CD8" CCR7* CD45RA™ CD45RO* 4
CD8" Tgm 96,8 +0,9 CD8" CCR7~ CD45RA™ CD45RO" 5
CD8" naive 99,3+0,2 CD8" CCR7" CD45RA" CD45RO™ 5
B naive 99,9+0,1 CD19" CD5™ CD27° 5
B memory 99,1+0,8 CD19" CD5™ CD27* 5
B CD5* 99,1+0,8 CD19" CD5* 4

Table 1. Purification and RNA-Seq of human primary lymphocyte subsets. Purity achieved (middle left) by the
sorting of 13 human lymphocyte subsets (isolated from peripheral blood lymphocytes of four to five different
donors per subset) by various surface marker combinations (Sorting phenotype). Ty.gregulatory T cells; Tcy,
central memory T cells; Tgyy, effector memory T cells; B, B cells. Data are representative of at least four
experiments (mean +s.d. for purity).

Subset Raw Trimmed TopHat STAR
CD4" naive 237 232 185 210
CD4" Tyl 129 123 104 104
CD4" Ty2 126 120 107 106
CD4" Tyl7 121 112 87 86
CD4" Treg 148 140 125 124
CD4" Tem 185 145 125 127
CD4" Tpy 148 145 151 127
CD8" Teum 147 120 103 105
CD8" Tewm 187 154 136 138
CD8" naive 185 150 129 130
B naive 172 137 121 123
B memory 261 249 220 223
B CD5' 146 118 106 108

Table 2. Overall read depth and coverage information. Data aggregated by population,the number of raw
reads, the number of trimmed reads and the number of mapped reads for both TopHat and STAR on the
Ensembl human sequence, version 67 from May 2012. Number of raw reads, trimmed reads and mapped reads
for both TopHat and Star are reported for all 13 lymphocytes populations.

identified about 3 x 10* to 5 x 10* previously unknown transcripts for each lymphocyte population. The
third approach was based on the Genome-guided Trinity'® pipeline (see Supplementary File 1: example of
command lines and Code Availability 9) (release 2012-10-05, http://trinityrnaseq.github.io/#genome_-
guided) that generates de novo transcripts by local assembly on previously mapped reads from specific
locations. We used STAR instead of the Trinity’s default aligner GSNAP'’, as it performed better in terms
of both accuracy and computing time. For the first alignment phase STAR was used with the default
parameters. The ‘Genome-guided Trinity’ suite was used with the parameters suggested in the main
documentation (default). Each candidate transcript was then processed via the Program to Assemble
Spliced Alignments'® (PASA, http://pasapipeline.github.io/). PASA is a genome annotation tool that
reconstructs the complete transcript and gene structures, resolves incongruences derived from transcript
misalignments and alternatively splices events, refines the public reference annotation and proposes new
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transcripts and genes in case no previous annotation can explain the new data. PASA was configured to
use STAR as aligner. We recompiled STAR to enable it for handling long reads (putative transcripts); the
file ‘IncludeDefine.h’, from the source code, was modified setting the variable ‘MAX READ_LENGTH’ to
a value of ‘100000’. Recompiling the source tree using the GNU ‘make’ utility with the command ‘make
STARlong’ generated the desired modified binary version of STAR.

Identification of previously unknown lincRNA-encoding genes
Data generated by the three different approaches, TopHat/Cufflinks; STAR/Cufflinks; STAR/Trinity,
were separately processed to identify unknown lincRNA-encoding genes.

The three de novo methods applied to each lymphocyte population, generated transcripts and genes
without prior knowledge on their ability to encode for proteins or not. In order to identify only the
putative novel lincRNAs, known transcripts and previously unknown isoforms of already annotated
genes were filtered out. To perform this filtering we compared the public available reference annotations
(see Data Citation 3 and Data Citation 4) with the datasets produced by each approach using a custom
script (see Code Availability 10). This comparison can be performed using more consolidated tools as the
UCSC bedtools'® or Cuffcompare. Transcriptional noise and low polymerase fidelity can create artifactual
transcripts therefore only multi-exonic transcripts longer than 200 bases were retained in our analysis.
Protein family domains available from Pfam 0 database (see Data Citation 5) were searched in all
transcripts using the HMMERS (ref. 21) algorithm and those transcripts that matched at least one of all
six possible frames were discarded. Another criteria commonly accepted to define lincRNA is the
evaluation of their coding potential; absence of coding potential is distinctive of putative lincRNA.
PhyloCSF** (cloned from https://github.com/mlin/PhyloCSF on Oct. 2013) is a comparative genomics
method (phylogenetic codon substitution frequency) built upon a multiple sequence alignment of 29
mammalian genomes in multi-alignment file format (MAF) (see http://genome.ucsc.edu/FAQ/
FAQformat.html#format5 and Data Citation 6). The entire set of novel transcripts that passed the
previous filters was used as input for PhyloCSF. Transcripts scoring more than 100 decibans (PhyloCSF
scores were obtained using option --frames = 6) were excluded from the final catalog. This threshold
was calculated by Cabili et al.', as it corresponds to a false-negative rate of 6% for coding genes (i.e., 6% of
coding genes are classified as noncoding) and a false-positive rate of ~10% (i.e., 9.5% of noncoding
transcripts are classified as coding). They optimized PhyloCSF specificity and sensitivity threshold for the
classification of coding and noncoding transcripts on the RefSeq reference sequence database of the
National Center for Biotechnology Information (RefSeq coding and RefSeq lincRNAs).

De novo transcriptome data integration

In order to create a comprehensive and unique annotation of novel lincRNAs identified in lymphocytes,
duplicates generated by the three approaches adopted must be resolved. To accomplish this task
Cuffcompare was used. For each de novo reconstruction approach Cuffcompare merged the transcripts
generated by all the populations. The result is a set of three distinct annotations corresponding to
TopHat/Cufflinks, STAR/Cufflinks, STAR/Trinity/PASA. These three lincRNA sets were further merged
to generate a non redundant atlas of lincRNAs in human lymphocytes and only those genes identified by
at least two out of the three software programs were considered. After data integration through
Cuffcompare, a custom script (see Supplementary File 2 and Code Availability 11) was used to remove
and substitute the internal gene id (XLOCs) and internal transcript id (TCONs) assigned by the software
with their original and public names.

New lincRNAs were then uniquely identified with a name that contains the prefix ‘linc-’; the Ensembl
gene name of the nearest protein-coding gene (irrespective of the strand); the location of the lincRNA
relative to the sense of transcription of the nearest protein-coding gene: ‘up’ or ‘down’; the description of
the concordance of the transcription between the lincRNA and its nearest coding gene: ‘sense’ or
‘antisense’; a counter to distinguish between lincRNA that share the same nearest protein-coding gene.
An example of template name is ‘linc-geneX-(upldown)-(senselantisense)_#n’. The de novo annotation
has been integrated concatenating it to public reference annotation and the resulting one was used for
downstream analyses’.

The de novo annotation comprises 563 novel lincRNAs genes and 1,797 novel transcripts, published in
our previous work’ is available in Data Citation 1.

Code availability

1. CASAVA (version 1.8.2, Illumina, https://support.illumina.com/sequencing/sequencing_software/casava.html), using the
mismatch option --mismatches ="1'

2. Trimmomatic'® (version 0.30, http://www.usadellab.org/cms/index.php?page = trimmomatic), PE, -phred33, LEAD-
ING:3, TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:36

3. TopHat'' (version 1.4.1, https://ccb.jhu.edu/software/tophat/index.shtml), mate-inner-dist was set for each dataset to the
InnerSize filed available from Supplementary Table 1

4. STAR'? (version 2.20, https:/github.com/alexdobin/STAR/releases), default

5. Bowtie'® (version 0.12.9, http://bowtie-bio.sourceforge.net/index.shtml), default

6. Cufflinks'* (version 2.1.1, http:/cole-trapnell-lab.github.io/cufflinks/), option: -g Tells Cufflinks to use the supplied
reference annotation a GTF file to guide RABT assembly.
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7. HMMERS3 (ref. 21) (version 3.0, http://hmmer.janelia.org/), default
8. PhyloCSF** (release Oct. 2013, https://github.com/mlin/PhyloCSF), --frames = 6
9. Custom template for Trinity/Pasa, Supplementary File 1, https:/gist.github.com/helios/7cb7a6afbe625749e824 under
GPL v3.0
10. Custom Biogem package, freely available at https://github.com/ingm-oss/bioruby-genomic-intervals under GPL v3.0
11. Custom rename_gtf.rb, Supplementary File 2, a ruby script freely available at https://github.com/ingm-oss/rename_gtf
under GPL v3.0

Data Records

In this study we deposited 1 dataset, which contains the RNA-Seq raw reads in FASTQ format (see Data
Citation 1 and Supplementary Table 1),which is a simplified version of the ISA-TAB (see the associated
Metadata Record). This dataset contains 63 samples in total, grouped by 13 lymphocyte subsets with 4 or
5 biological replicates each. Supplementary Table 1 is an XLSX with the following header: Source, the
original source name used by the lab; Name, assigned by the provider; SubSet, the lymphocyte subset;
Antibody, the antibodies used for sorting; InnerSize, the estimated inner size; R1 URI, the forward reads
uri for download; R1 MD5SUM, checksum for the forward reads; R2 URI, the reverse reads uri for
download; R2 MD5SUM, checksum for the reverse reads. The annotation of the 563 newly described
lincRNA (see Data Citation 1: the new 563 annotated lincRNAs’) is a General Transfer Format (GTF).

Technical Validation

RNA-seq raw data quality

Assessing the quality of the data performing the Quality Control (QC) is crucial to the whole study. RNA-
seq data generated were initially analyzed with FastQC and a summary plot with the data from all
samples is depicted in Fig. 2a. The quality of the reads during the sequencing tends to decrease but it can
be further improved using specific software that removes low quality bases reducing the length of the read
or directly discard the whole read when its quality is too low. To perform the trimming and filtering
Trimmomatic was run on each sample and the data were later on reanalysed with FastQC to confirm the
quality improvements. The summary of the resulting data is shown in Fig. 2b Another criteria to measure
the QC for NGS reads is the % of GC content, which is improved by the filtering (Fig. 2c). Moreover the
trimming step did not dramatically decrease the final number of reads (Fig. 2d).

During the study two mapping software were used, TopHat and STAR. To exclude the possibility of
discordance between the two aligners, the mapping results were compared to assess their mapping
performance. The alignments with the two software showed a good concordance (96%) with a slight
advantage of STAR in terms of mapped reads (Fig. 2e).

RNA-seq biological replicates

Biological replicates are fundamental to guarantee data consistency, in this study the lymphocyte
populations profiled have 4 biological replicates for B CD5" and CD8" Ty and 5 biological replicates for
all the other populations. In order to establish the congruency among biological replicates Principal
Component Analysis (PCA) (Fig. 3a) and hierarchical clustering (Fig. 3b) were performed. A good
separation between B and T cells samples is achieved by PCA on normalized read counts using
DESeq2 (ref. 23). Comparable results are obtained using hierarchical clustering on the same data.
Moreover, similarity between biological replicates of the same population showed a good consistency and
correlation among them.

De novo transcripts identification

Multiple combinations of software and filters were used for the identification of lincRNAs in the 13
lymphocytes populations. Moreover, we considered only newly described lincRNAs detected in at least 2
out of 3 de novo approaches to improve the reliability of the data.

LincRNAs discrimination between coding and non-coding RNA depends on the algorithm used to
asses the coding potential, in this study was used PhyloCSF. The final dataset of putative lincRNAs was
further processed using iSeeRNA>* (webserver version 1.2.2) in order to verify our results using a
different approach based on Support Vector Machines (SVM). The classification we obtained is highly
concordant, in fact ~99% of the putative lincRNAs contained in the final catalogue (see Data Citation 1)
are classified as 'noncoding' also by iSeeRNA.

Expression threshold definition

As reported in literature, many lincRNAs are expressed at lower levels than protein coding genes>, so
definition of a FPKM threshold would contribute to discriminate low abundant functional transcripts
from technical or biological noise. In a recent study” an approach based on the integration of RNA-seq
and CHIP-seq data was used for the definition of a sensible FPKM threshold. 17 human cell lines from
ENCODE project were analyzed to establish a relationship between gene expression levels and promoters
activities. The expression cutoff was set where the fraction of genes associated to active promoters is equal
to the fraction of them associated to repressed promoters. We considered a threshold of 0.21 FPKM that
is the mean of the data reported for different cell types in the paper. In Fig. 3c is shown that newly
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Figure 2. Quality control assessments. (a) Phred quality score of the average distribution over all reads
across all samples in each base before and (b) after trimming. (c) %GC content before and after trimming.
(d) Detailed overview of the human lymphocyte subsets profiled: raw reads (black), the reads trimmed
and filtered by quality (blue), and (e) the comparison of the mapped reads using TopHat (light green) and
STAR (light orange).

identified lincRNAs (selected with FPKM expression values >0.21), have higher expression levels
compared to previously annotated ones with expression values above the threshold and with no threshold
(light green and light blue). We then considered for the downstream analysis only genes whose
expression values were at least 0.21 FPKM in one population.

Usage Notes
This study was performed on the version 67 from May 2012 of Ensembl GRCh37. In order to
access and use the catalogue of newly described lincRNAs generated in this study (see Data Citation 1),
researchers must update it to the most updated genome version using the liftover software from
UCSC  (https://genome.ucsc.edu/cgi-bin/hgLiftOver) or the assembly converter from Ensembl
(http://www.ensembl.org/Homo_sapiens/Tools/AssemblyConverter).

Software used during this study went through minor and major code base updates. The more notable
software suite that has been updated during the time is Trinity and is strongly suggested to use the latest
release downloadable from https://github.com/trinityrnaseq/trinityrnaseq.
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Figure 3. Analysis of intra-population consistency: Principal Component Analysis and hierarchical clustering.
(a) Principal Component Analysis (PCA) performed using DESeq2 rlog-normalized RNA-seq data. Loadings
for principal components 1 (PC1) and PC2 are reported in graph (on x and y-axes). (b) Hierarchical clustering
analyses performed using DESeq2 rlog-normalized RNA-seq data. Color code (from white to dark blue) refers
to the distance metric used for clustering (dark blue corresponds to the maximum of correlation values).
(c) Violin plot of the normalized FPKM values for the newly identified lincRNAs, previously annotated

lincRNAs and transcription factors genes. The black line represents the normalized FPKM threshold
(0.21 FPKM).

For the evaluation of the coding potential of de novo transcripts we suggest to use other recently
developed software that perform the classification more efficiently than PhyloCSF, such as iSeeRNA,
CNCI*”” and CPAT?®. It has been demonstrated that these algorithms have a higher level of accuracy, and
execution times are considerably faster.

Our transcriptome analysis includes thirteen human primary T and B cells whereas most of the
available immune system datasets are limited to mice samples, cell lines or in vitro expanded cells.
Therefore this study represents a valuable resource for those researches who need to access and analyze
the expression patterns of both coding and non-coding transcripts in human lymphocytes. Moreover the
thorough analysis we performed to assess the expression of both novel and previously annotated
lincRNAs in these cells sets the grounds for further studies on the still largely uncharacterized function of
long non-coding RNA in human lymphocytes subsets.
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