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ABSTRACT

In the yeast, meiotic recombination is initiated by
double-strand DNA breaks (DSBs) which occur
at relatively high frequencies in some genomic
regions (hotspots) and relatively low frequencies in
others (coldspots). Although observations concern-
ing individual hot/cold spots have given clues as
to the mechanism of recombination initiation,
the prediction of hot/cold spots from DNA sequence
information is a challenging task. In this article, we
introduce a random forest (RF) prediction model to
detect recombination hot/cold spots from yeast
genome. The out-of-bag (OOB) estimation of the
model indicated that the RF classifier achieved high
prediction performance with 82.05% total accuracy
and 0.638 Mattew’s correlation coefficient (MCC)
value. Compared with an alternative machine-
learning algorithm, support vector machine (SVM),
the RF method outperforms it in both sensitivity and
specificity. The prediction model is implemented as
a web server (RF-DYMHC) and it is freely available
at http://www.bioinf.seu.edu.cn/Recombination/
rf_dymhc.htm. Given a yeast genome and prediction
parameters (RI-value and non-overlapping window
scan size), the program reports the predicted hot/
cold spots and marks them in color.

INTRODUCTION

In the yeast, meiotic recombination is initiated by double-
strand DNA breaks (DSBs). Meiotic DSBs occur at
relatively high frequencies in some genomic regions which
are called hotspots while the regions associated with low
frequencies of DSBs are called coldspots (1). Several
studies have been performed to determine whether the

hot/cold spots share common DNA sequences and/or
structural elements (2,3). It was found that the hotspots
were non-randomly associated with regions of high GþC
base composition and certain transcriptional profiles
while the coldspots were non-randomly associated with
centromeres and telomeres.
Although observations concerning individual hot/cold

spots have given clues as to the mechanism of recombina-
tion initiation, the prediction of hot/cold spots from
DNA sequence information is still a challenging task.
So far, nearly all recombination hot/cold spots
finding methods are based on population-genetic
data (4–6) and no software or web server has been
reported to predict the hot/cold spots from a single DNA
sequence.
In this study, we present a novel machine-learning

method, random forest (RF) model, to detect the yeast
meiotic recombination hotspots and coldspots from
genome sequences. Although several studies demonstrated
that there was a correlation between the synonymous
codon usage pattern and the recombination rate in
Caenorhabditis elegans, mouse, human and other spe-
cies (7–13), most hotspots are intergenic rather than
intragenic, and thus the gene codon usage pattern-based
attributes may fail to be applied in non-coding regions.
For that reason, an ORF (Open Reading Frame)-
independent feature (gapped dinucleotide composition)
was used in our study. Compared with an alternative
machine-learning algorithm, support vector machine
(SVM), the RF method outperformed it in both sensitivity
and specificity. The prediction model is implemented as
a web server (RF-DYMHC) and it is freely available at
http://www.bioinf.seu.edu.cn/Recombination/rf_dymhc
.htm. Given a yeast DNA sequence and prediction
parameters (RI-value and non-overlapping scan window
size), the program reports the predicted hot/cold spots
and marks them in color.
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MATERIALS AND METHODS

Data sets

Gerton et al. (14) have estimated the relative recombina-
tion rates for the yeast Saccharomyces cerevisiae loci using
DNA microarray at single-gene resolution. To estimate
the DSBs formation adjacent to each ORF, they measured
the ratio of hybridization to a DSB-enriched probe (P2) to
a total genomic probe (P1). The relative strength of the
recombination rate was estimated by the P2/P1 hybridiza-
tion ratio. The experiments were repeated seven times for
each of the 6200 genes. In this article, we take the median
value as the relative recombination rate of each sequence.
If any repeated array value was missing, the sequence was
excluded. Finally, a total of 5266 sequences were collected.
The sequences whose relative hybridization ratio �1.5
are defined as hotspots, while the ones whose relative
hybridization ratio50.82 are defined as coldspots. Thus,
we obtained 490 hotspots and 591 coldspots which
composed of the training data set.
The yeast S. cerevisiae mitochondrial DNA sequence,

served as negative control for ourmethod, was downloaded
from SaccharomycesGenomeDatabase (15) at the website:
http://www.yeastgenome.org/. All the data sets used
in this article can be downloaded from website: http://
www.bioinf.seu.edu.cn/Recombination/datasets.htm

Gapped dinucleotide composition features

The gapped dinucleotide composition is the fraction of
each two nucleotides with k intervening bases within a
sequence. It can be defined as:

Fi
ðkÞ ¼

oiðkÞ

nðkÞ
1

where, oiðkÞ is the observed total number of i-th two
nucleotides with k intervening bases and n(k) is the total
number of all possible two nucleotides with k intervening
bases. If k¼ 0, Fi

ðkÞis the dinucleotide composition (16).

Random forest

RF is a classifier consisting of an ensemble of tree-
structured classifiers (17). RF takes advantage of two
powerful machine-learning techniques: bagging (18) and
random feature selection. In bagging, each tree is trained
on a bootstrap sample of the training data, and predic-
tions are made by majority vote of trees. RF is a further
development of bagging. Instead of using all features,
RF randomly selects a subset of features to split at each
node when growing a tree. To assess the prediction
performance of the algorithm, RF performs a type of
cross-validation in parallel with the training step by using
the so-called out-of-bag (OOB) samples. Specifically, in
the process of training, each tree is grown using a
particular bootstrap sample. Since bootstrapping is
sampling with replacement from the training data, some
of the sequences will be ‘left out’ of the sample, while
others will be repeated in the sample. The ‘left out’
sequences constitute the OOB sample. On average, each
tree is grown using about 1� e�1

� 2/3 of the training

sequences, leaving e�1
� 1/3 as OOB. Because OOB

sequences have not been used in the tree construction,
one can use them to estimate the prediction performance
(19,20). The RF algorithm was implemented by the
randomForest R package (21).

Support vector machine

SVM is a supervised machine-learning technology based on
statistical theory for data classification (22). SVM seeks an
optimal hyperplane to separate two classes of samples. It
uses kernel functions to map original data to a feature
space of higher dimensions and locate an optimal separat-
ing hyperplane there. The SVM algorithm was implemen-
ted by the e1071 (version 1.5-12) R package (23). We used
different kernels (linear, RBF, 2, 3-order polynomial) and
the RBF kernel performed the best (data not shown). So we
used the SVM with RBF kernel, as a competent machine-
learning method, to compare with the RF algorithm. The
parameters C and � of the RBF kernel were optimized by
the standard grid search (24).

Prediction system assessment

For a prediction problem, a classifier can classify an
individual instance into the following four categories: false
positive (FP), true positive (TP), false negative (FN) and
true negative (TN). The total prediction accuracy (ACC),
Specificity (Sp), Sensitivity (Se) and Mattew’s correlation
coefficient (MCC) (25) for assessment of the prediction
system are given by

ACC ¼
TPþ TN

TPþ TNþ FPþ FN
� 100% 2

Sp ¼
TN

TNþ FP
� 100% 3

Se ¼
TP

TPþ FN
� 100% 4

MCC ¼

TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTNþ FNÞ � ðTPþ FNÞ � ðTNþ FPÞ

p

5

Reliability index

Here, the reliability index (RI) was used to determine the
effectiveness of recombination hotspots and coldspots
prediction. For RF algorithm, an intuitive RI can be
derived from the fractions of votes for the positive and
negative classes of each sample. We define RI as:

RI ¼ INTEGER fþ þ f�
�� ��� 10
� �

6

where fþ and f� are fractions of votes for the positive and
negative classes of each sample, respectively.
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RESULTS

Constructing the RF prediction model with gapped
dinucleotide composition features

The prediction results of the RF classifiers were shown in
Table 1. The performance was evaluated by the OOB
estimation on the training dataset. The gap {0} and the
gap {1} dinucleotide composition-based RF prediction
models achieved total accuracies of 80.94 and 81.12%,
respectively. The prediction performance can be improved
by combing the two composition features. The gap {0, 1}
based RF model achieved 82.05% total accuracy and
0.638 MCC value.

Reliability index of the RFmodel

The reliability of prediction is an important factor
that gives users more information about the quality

of the prediction. We adopted RI to indicate the level of
certainty of the prediction model. The results, as shown in
Figure 1, were obtained through the OOB estimation.
It indicated that the higher the RI was the higher
reliability the prediction gained. When RI46, the total
prediction accuracy is 490%. Approximately, 78.1% of
the predicted sequences were with RI42 which indicated
that the RF prediction model was reliable.

Comparison with the SVM prediction model

It has been proven that SVMs usually outperform other
machine-learning methods in many fields of pattern
recognition (24,26–31). So, we choose the SVM prediction
model as an alternative algorithm to compare with the RF
prediction model. To make comparisons impartial,
a double-fold cross-validation was implemented.
We randomly divided the training data set into two
independent data sets (data set 1 and data set 2) of
approximately equal size. Then, we used one data set for
parameters tuning (the parameters were optimized by
the standard grid search (24)) and training. The other data
set was used for evaluating the prediction performance.
As shown in Table 2, the RF classifier outperformed the
SVM classifier in both sensitivity and specificity.

Applying the RFmodel to full genome analysis

In order to evaluate the sensitivity and specificity of
the RF model in detecting hotspots and coldspots from
the full genome, we trained the RF model on the training
data set and tested the remaining 4185 sequences.

Table 1. The prediction performance of the RF modela using the

gapped dinucleotide composition feature

Featuresb Se (%) Sp (%) MCC ACC (%)

Gap{0} 79.57 83.02 0.615 80.94
Gap{1} 79.81 83.10 0.619 81.12
Gap{0,1} 80.59 84.26 0.638 82.05

aRF model with parameters mtry¼ 4 and ntree¼ 1000. The prediction
system was evaluated by the OOB estimation.
bThe gapped dinucleotide composition features were used. The integers
which were inside the brackets indicated the number of intervening
bases.

Figure 1. Expected prediction accuracy for sequences with different reliability indices. The accuracy and the fraction of sequences with particular RI
are given. The expected accuracy of sequences with higher RI is much better than those with lower RI.

Nucleic Acids Research, 2007, Vol. 35,Web Server issue W49



The distribution of recombination rates of the predicted
hot/cold spots with different RI values is shown in
Figure 2. There is a trend that an increase in the RI
value results in an increase in recombination rates of the
predicted hotspots and a decrease in recombination rates
of the predicted coldspots, respectively. The predicted
hotspots and coldspots have more possibility to be ‘true’
hotspots or coldspots with a higher RI value. Therefore,
RI as a regulating parameter controls the trade-off
between sensitivity and specificity. We set a cutoff
RI47. Out of the 4185 sequences, a total of 195 sequences
were predicted as hotspots and 591 sequences were
predicted as coldspots. Approximately, 81.0% of the
predicted hotspots had relative recombination ratios
41.09 and �80.0% of the predicted coldspots had relative
recombination ratios51.07.

Since it would be surprising to find meiotic recombina-
tion hot/cold spots in mtDNA data, the yeast S. cerevisiae
mitochondrial data can be served as a negative control for
our method. We used the RF model to scan the
S. cerevisiae mitochondrial DNA with a non-overlapping
window (sliding window size: 0.5 kb). The results showed
that all RI values were �5 and �98.8% RI values were
�3, which was consistent with the current knowledge.

Web server

The prediction model is implemented as a web server
named RF-DYMHC, and it is made available at http://
www.bioinf.seu.edu.cn/Recombination/rf_dymhc.htm.
Given a yeast genome and prediction parameters
(RI value and non-overlapping window scan size), the
program breaks the input sequence into subsequences.
Each of these subsequences constitutes a sample and each
sample will be mapped into a 32-dimension feature space
reflecting the gap {0} and gaped {1} base-pair composi-
tions. The output of the web server returns the predicted
hotspots and coldspots and marks them in color.
More details about the input and output formats are
available at http://www.bioinf.seu.edu.cn/Recombination/
Manual.htm

DISCUSSION

It is a challenging problem to detect meiotic recombina-
tion hotspots and coldspots in eukaryotic genomes based
on computational techniques. In this article, we have
introduced a RF-based method to detect recombination
hot/cold spots from yeast genome. The OOB estimation of
the prediction model indicated that the RF classifier

Table 2. Performance comparisons with the SVMs. The training data

set was randomly divided into two data sets (data set 1 and data set 2)

with approximatly equal size. The performance was evaluated by the

double-fold validation

Classifier Test 1a Test 2b

Se
(%)

Sp
(%)

MCC ACC
(%)

Se
(%)

Sp
(%)

MCC ACC
(%)

RF 77.02 84.31 0.615 81.15 70.20 89.82 0.616 80.56
SVM 74.04 84.31 0.588 79.90 69.41 89.47 0.605 80.00

aTest 1 was processed by using data set 1 for parameters tuning
and training, data set 2 for prediction performance evaluation.
bTest 2 was processed by using data set 2 for parameters tuning
and training, data set 1 for prediction performance evaluation.

Figure 2. Box plots of recombination rates of the predicted hot/cold spots with different RI values. The median value is represented by a line within
the rectangular box. The lower and upper edges of the rectangle represent the first and third quartiles, respectively. The circles and stars represent the
‘mild’ and ‘extreme’ outliers, respectively.
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achieved high prediction accuracy. It was also compared
with an alternative machine-learning algorithm, SVM
prediction model. The RF was found to outperform the
SVM in both sensitivity and specificity. We used the RF
model to test the remaining 4185 sequences. The results
indicated that the RI controlled the trade-off between
sensitivity and specificity.

Though the prediction model was constructed by a
two-class prediction model, we attempted to construct
another three-class RF prediction model. We ranked the
Gerton et al. data sets (5266 sequences) based on
the median array value of the seven microarrays. The
top one-third sequences were marked as hotspots,
the bottom one-third sequences as coldspots and the rest
as neutral sequences. The total accuracy of the OOB
estimation was 51.22%, which was only 17.89% higher
than the random classifier. Approximately 65.60% of the
failed predicted coldspots were falsely predicted as neutral
ones, while �67.23% of the failed predicted neutral
sequences were classified into coldspots. The results
indicated that the three-class RF model failed to separate
the coldspots from the neutral ones.

Since the experimental identification of recombination
hot/cold spots is time consuming and money costing, it is
infeasible for large numbers of genomic sequences. Hence,
efficiently and reliably detecting them by computational
approach is important. Further improvement of our
model will be focused on incorporating more attributes.
Our predicting system will also be optimized by the
rapidly increased experimental validated data sets in the
future.
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