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Introduction
Pancreas transplant is an established surgical treatment
for diabetes mellitus, with over 61,000 transplants per-
formed worldwide.1 Transplant can be used in patients
with type 1 or type 2 diabetes with the goal of euglycemia
without need for insulin treatment. Historically, trans-
plant was completed with simultaneous kidney transplant
in patients with secondary renal complications of diabe-
tes.2 However, more recently pancreas transplant alone is
being used for treatment of brittle diabetes.3 Patients
undergoing transplant require lifelong immunosuppres-
sion to prevent rejection. Improvements in immunosup-
pressive regimens and surrogate laboratory monitoring
for acute graft rejection have improved outcomes and
graft survival rates in patients undergoing pancreas alone
transplants, with 3-year graft survival of 84% for newer
sirolimus based regimens compared with 69% for tacroli-
mus based regimens.2,4 Pancreas transplant alone has
been associated with higher incidence of rejection, with a
1-year rate of 19.2%.4 Rejection episodes must be man-
aged with increase or change in immunosuppressive
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medication regimens. However, in patients undergoing
immune rejection unresponsive to medical therapy,
options remain limited and risk of graft failure is high.
Here we report a case of a patient successfully treated
with low dose graft irradiation for pancreas transplant
rejection unresponsive to medical management.
Case
A 47-year-old woman with long standing history of type
1 diabetes mellitus underwent pancreas-alone transplant 18
months before presentation. She was moderately sensitized
to the donor organ, and her initial immunosuppression
regimen included antilymphocyte globulin, desensitization
with a course of intravenous immune globulin (IVIG), and
oral maintenance therapy of mycophenolate, tacrolimus,
sirolimus, and prednisone. Her posttransplant course was
complicated by gastrointestinal difficulties secondary to
immunosuppressive medications. Her immunosuppression
regimen was transitioned to Azathioprine, Sirolimus, Bela-
tacept, and prednisone. She later developed tacrolimus
induced thrombotic microangiopathy of the kidney with
mild diffuse interstitial fibrosis and subsequent develop-
ment of stage 4 chronic kidney disease. Sirolimus was dis-
continued secondary to oral ulcers and cyclosporine was
initiated. Azathioprine was eventually discontinued because
of infectious complications. Her most recent immunosup-
pressive regimen before admission was cyclosporine, myco-
phenolate, and prednisone.
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Her pancreatic enzymes (amylase and lipase) rose dra-
matically over a 4-week course before admission
(June2022). Her amylase rose from 95 units per L (normal
range, 30-105) to 367 units per L, and her lipase rose from
78 units per L (normal range, 15-100) to 769 units per L.
She developed a corresponding rise in her donor specific
antibodies concerning for antibody mediated rejection.
Her exogenous insulin requirement continued to rise,
requiring use of an insulin pump. She was admitted to the
hospital for acute antibody-mediated graft rejection. She
initially was managed with high-dose dexamethasone,
and, given the rising donor specific antibodies, she under-
went IVIG infusion and plasmapheresis. Initially, she had
a decrease in amylase and lipase levels and improvement
in subjective symptoms following IVIG and plasmaphere-
sis. However, these levels began to rise again despite ongo-
ing therapy, and radiation oncology was consulted for
consideration of graft irradiation.

She underwent local graft irradiation to a dose of 8 Gy
delivered over 4 daily fractions using a 3-dimensional con-
formal arc plan (Figure 1). Computed tomography simula-
tion planning imaging and recent diagnostic computed
tomography imaging with oral contrast were used to gener-
ate a local graft internal target treatment volume. A 1-cm
uniform expansion was used to generate a planning target
Figure 1 Representative computed tomography images of A,
ment isodose lines. A, Contours represent pancreas graft on p
accounting for motion seen on corresponding diagnostic imagin
senting a 1-cm expansion from ITV. B, Isodose color wash rep
and blue representing 2 Gy.
volume. She tolerated treatment well with no acute side
effects. Her amylase and lipase started down-trending fol-
lowing the second fraction and were within normal limits
following her final fraction. She did continue IVIG and
plasmapheresis during radiation, receiving 5 treatments of
IVIG. She was discharged following her final radiation
treatment. Her amylase and lipase labs remain normal (75
and 65 units/L, respectively) 12 weeks following radiation.
She continues on cyclosporine and mycophenolate for
immunosuppression.
Discussion
Pancreas alone transplant is an increasingly used defini-
tive treatment for diabetes mellitus.4 However, complications
of the immediate surgery, long-term immunosuppressives,
and risk of graft rejection continue to cause long-term issues
for these patients. Here, we presented the case of a patient
receiving low-dose, local graft irradiation for acute antibody
mediated pancreas transplant rejection. The patient had nor-
malization of labs and resolution of medication refractory
pancreas graft rejection following radiation treatment.

Historically, radiation was investigated as a preparative
therapy before transplant. Various regimens and volumes
local graft radiation treatment volumes and B, total treat-
lanning image set (purple), internal target volume (ITV)
g (pink), and planning target volume (PTV, aqua), repre-
resenting total dose coverage, with red representing 8 Gy
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have been investigated, including total body irradiation,
total lymphoid irradiation, and local graft irradiation.5-11

However, these studies produced no benefit or inferior
results to newer immunosuppressive agents, and the role
of radiation in the peri-transplant period has been
replaced by medical management. Nevertheless, radiation
may still play a role in management of acute rejection
unresponsive to medical management. Indeed, radiation
remains the only possible salvage treatment option for
patients failing all chemical immunosuppression. Multiple
single institution retrospective studies in renal transplant
patients have shown response to radiation in medication
refractory transplant rejection. Response to radiation
varies in these studies from 35 to 60%. Overall, 1-year
graft survival ranges from 20 to 60% following radiation,
with a mean dose of 4.5 to 8 Gy.8,12-16 One study reported
an 80% response rate with long-term graft survival of 50%
following 4.5 Gy in 3 fractions.14 While these response
rates remain poor, the radiation is well tolerated, typically
without any acute or long-term side effects given the low
total dose, making it an attractive final salvage option for
patients with few other options.

As the use of radiation for acute graft rejection has
fallen out of favor with improved pharmaceutical based
immunosuppression, the exact mechanism for preventing
or salvaging acute rejection is not fully understood.
Successful salvage likely reflects a multifactorial response
in the local graft environment restoring an immunosup-
pressive state. Prior studies have identified both T and
B lymphocytes present in rejected tissue.17,18 These lym-
phocytes are exquisitely sensitive to radiation, and, thus,
radiation likely works, in part, by eliminating these lym-
phocytes responsible for immune mediated rejection.19

However, additional possible mechanisms may be extrap-
olated from the effects of radiation on the microenviron-
ment in cancer literature.20 Following low-dose total body
radiation, CD4+ CD25+ Foxp3 + T regulatory (Treg) cells
show increased survival compared with other lympho-
cytes, suggesting radiation resistance of Tregs.19,21 Addi-
tionally, low-dose radiation has been shown to recruit
Tregs to the local microenvironment.22 Tregs help medi-
ate immune homeostasis and down regulation of immune
response. Low-dose radiation can upregulate Treg CTLA-
4 expression, leading to T cell downregulation.23 More-
over, Treg expression and function have been correlated
with allograft survival.24-26 It is possible that radiation
helps restore an immunosuppressive microenvironment
by eliminating activated lymphocytes while promoting
immunosuppressive cellular states, though more research
outside of cancer immunology and within this specific
patient population are needed to further elucidate the
mechanism of action.

In the case presented, our patient had an excellent lab-
oratory response at time of her final fraction of radiation.
While the effect may be a delayed response to IVIG and
plasmapheresis, her initial response to these therapies
followed by worsening of rejection laboratory markers
indicates a potential response to the radiation therapy. To
our knowledge, this is the first report of salvage radiation
for acute rejection of a pancreas only graft. In similar pan-
creas transplant patients with medication refractory graft
rejection, low-dose local graft irradiation may serve as a
final salvage option.
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