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The genetic code is an abstraction of how mRNA codons and tRNA anticodons molecularly interact during protein
synthesis; the stability and regulation of this interaction remains largely unexplored. Here, we characterized the
expression of mRNA and tRNA genes quantitatively at multiple time points in two developing mouse tissues. We dis-
covered that mRNA codon pools are highly stable over development and simply reflect the genomic background; in
contrast, precise regulation of tRNA gene families is required to create the corresponding tRNA transcriptomes. The
dynamic regulation of tRNA genes during development is controlled in order to generate an anticodon pool that closely
corresponds to messenger RNAs. Thus, across development, the pools of mRNA codons and tRNA anticodons are
invariant and highly correlated, revealing a stable molecular interaction interlocking transcription and translation.

[Supplemental material is available for this article.]

Transcription of the mammalian genome is divided among mul-

tiple RNA polymerases (Pol), each transcribing a nonoverlapping

set of genes. Messenger RNAs (mRNAs) for protein-coding genes

are synthesized by Pol II, while the genes encoding transfer RNAs

(tRNAs) are transcribed by Pol III. The direct interaction of these

transcripts produced by Pol II and Pol III is a vital step in the flow of

genetic information, in which the triplet codons in mRNAs are

selectively identified by their counterpart tRNA anticodons to di-

rect protein synthesis. To explore the largely unknown regulatory

mechanisms active at this mRNA–tRNA interface, we exploited the

rapid and extensive changes in the transcriptome occurring

among different developmental stages of mammalian organo-

genesis (Kyrmizi et al. 2006; Li et al. 2009; Kang et al. 2011; Lee

et al. 2012; Liscovitch and Chechik 2013; Sunkin et al. 2013).

Conceptually, one possible mechanism to control protein

abundance in developing tissues could be the deliberate mismatch

of triplet codons in mRNAs and their corresponding tRNA anti-

codon isoacceptors (Brackley et al. 2011). In protozoa, this strategy

is used to modulate the rate of translation of specific subsets of

mRNAs containing a particular profile of codons (Horn 2008).

Alternatively, if the large-scale changes in protein-coding tran-

scriptomes result in a stable distribution of mRNA triplet codons,

then deliberate changes in the population of tRNA anticodons

could be used to fine-tune protein translation. Hypertranscription

of tRNAs by Pol III has beenobserved in cancers (Winter et al. 2000;

Pavon-Eternod et al. 2009, 2013), with recent work suggesting that

differences in expression of specific tRNA genes may contribute

to tumorigenesis by favoring translation of cancer-promoting

mRNAs driving proliferation (Pavon-Eternod et al. 2009). It is un-

known whether normal mammalian cells modulate tRNA gene

expression to regulate information flow from mRNAs to protein

synthesis.

We dissected the interdependencies of transcriptional and

translational components in matched liver and whole brain tissue

samples taken from C57BL/6J mice at eight developmental stages

(from E9.5 to P29) on a genome-wide level by using RNA-se-

quencing (RNA-seq) and Pol III chromatin immunoprecipitation

followed by sequencing (ChIP-seq) to quantify mRNA and tRNA

gene expression levels, respectively (Fig. 1). Our quantitative

analysis revealed that widely divergent protein-coding gene ex-

pression patterns contain a pool of codons that is stable and in-

variant. tRNA gene usage varies almost as extensively during

development, yet also specifies a complementary pool of antico-

dons that is stable and invariant. We found a high correlation

between these two pools, revealing that this key tRNA–mRNA in-

terface is actively stabilized across mammalian development.

Results

Mouse tissue development as a model system to study mRNA
and tRNA gene regulation

Organogenesis during mouse development is a well-understood

process (McLin and Zorn 2006; Bruneau 2008; Zorn and Wells
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2009; Si-Tayeb et al. 2010; Kang et al. 2011). For example, the

molecular landscape within the liver is known to undergo radical

changes during development in response to shifts in the liver’s

physiological functions during embryogenesis. During early de-

velopment, the embryonic liver is a haematopoetic organ; at birth,

the neonatal liver becomes the primary metabolic and de-

toxification organ (Si-Tayeb et al. 2010); at weaning, further met-

abolic pathways are up-regulated (Bohme et al. 1983; Girard et al.

1992). In the developing brain, coordinated gene expression

changes in a heterogeneous collection of diverse cell types shape

the functional specialization of specific regions in both embryonic

and postnatal brains (Liscovitch and Chechik 2013; Sunkin et al.

2013).

To characterize changes in the mRNA and tRNA tran-

scriptomes during development, we performed strand-specific,

total RNA-seq, as well as ChIP-seq against Pol III in C57BL/6J mice

in liver and brain at the following developmental stages: two em-

bryonic (E15.5 and E18.5), two post-birth (P0.5 and P4), and im-

mediately pre- and post-weaning (P22 and P29) stages (Fig. 1). For

each experiment at each tissue and developmental stage, we per-

formed two biological replicates that were highly correlated (Sup-

plemental Figs. 1–3; Methods). This approach allowed us to

quantify expression levels for protein-coding genes, as well as Pol III

occupancy at every tRNA locus, which quantitatively captures the

utilization of each tRNA gene (Barski et al. 2010; Moqtaderi et al.

2010; Oler et al. 2010; Kutter et al. 2011; Canella et al. 2012; Carriere

et al. 2012; Renaud et al. 2014).

Dynamic changes in protein-coding gene expression
during mouse development

As expected, between stages we saw large-scale changes in the ex-

pression of protein-coding genes known to have different func-

tions during liver and brain development (Li et al. 2009; Kang et al.

2011; Lee et al. 2012; Liscovitch and Chechik 2013). For instance,

Apob, which is the primary apolipopro-

tein carrying low-density lipoproteins, is

steadily up-regulated during develop-

ment; in contrast, alpha fetoprotein (Afp),

the fetal version of serum albumin, is

down-regulated through development

and replaced by its adult counterpart

(Fig. 2A; Supplemental Table 1; Chen

et al. 1997; Lee et al. 2012). By per-

forming matched RNA-seq experiments

during brain development, we observed

similar dynamics of gene expression

rewiring at the neural transcription fac-

tor Foxp2, where transcription decreases

steadily after birth, and at the neuro-

transmitter calmodulin (Calm1), where

transcription increases after birth (Fig. 2B;

Supplemental Table 2; Huang et al. 2011;

Tsui et al. 2013).

We then examined genome wide

how protein-coding gene expression

levels varied through development and

between tissues. Using the set of protein-

coding genes expressed in either liver or

brain at any developmental stage, we

calculated the pairwise correlationmatrix

and then performed principal compo-

nents analysis (PCA) (Fig. 2C; Supplemental Fig. 4A). The vast

majority (97%) of variation is explained by tissue identity (i.e.,

brain vs. liver), reflecting the dramatic differences in tissue-specific

transcription that have been previously reported (Brawand et al.

2011). The large majority of the remaining variance (71%) orders

the samples by developmental stage. Liver showed stronger dif-

ferences during development than did brain, including between

P4 and P22, consistent with the haematopoetic-to-metabolic

changes occurring during liver development (Zorn andWells 2009;

Si-Tayeb et al. 2010). Comparison of all pairs of developmental

stages revealed a steady increase in the number of differentially

expressed protein-coding genes from early to later timepoints (Fig.

2D; Supplemental Tables 3, 4). The transcripts preferentially

expressed during early development, either in brain or liver,

revealed that these tissues were undergoing rapid cellular replica-

tion and expansion. In contrast, the transcripts up-regulated in

adult reflected the mature biology of the tissues (Supplemental

Tables 5, 6).

In summary, our quantitative and high-resolution gene ex-

pression profiles of liver and brain developmental stages revealed

large-scale transcriptional rewiring in protein-coding genes, mir-

roring well-known aspects of developmental biology.

Dynamic changes of tRNA gene expression during mouse
development

We created a complementary data set by quantifying tRNA ex-

pression changes across development (Fig. 1; Supplemental Fig. 1B;

Supplemental Table 7; Methods). tRNAs represent one of the

largest gene families in mammalian genomes. Because several

tRNA gene copies are identical in sequence, RNA-based methods

(e.g., RNA-seq) alone are insufficient to determine the genomic

location and rate of transcription of these genes. Pol III-binding to

multicopy genes and importantly, to the unique sequence in the

flanking regions has been established as a robust measure of tRNA

Figure 1. Transcriptome-wide analysis of protein-coding and tRNA genes during mouse organ de-
velopment. Liver and brain tissues were isolated at eight mouse developmental stages. Tissue samples
were flash-frozen for RNA-sequencing (RNA-seq) and cross-linked using formaldehyde to preserve
protein–DNA interactions for ChIP-sequencing (ChIP-seq) of Pol III. Using the RNA-seq data, we
calculated from all expressed protein-coding genes the frequencies of each triplet codon for all 64
possible codons and 20 amino acids. Similarly, Pol III binding to tRNA genes in the mouse genome was
collapsed into 47 anticodon isoacceptor families and 20 amino acid isotypes (Methods). The bars linking
RNA- and ChIP-seq data represent the three nucleotide interactions between codon and anticodon.
Pol III occupancy was determined also in E9.5 (whole embryo) and E12.5 (head vs. remaining body).
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gene usage and transcript abundance (Methods) (Barski et al. 2010;

Moqtaderi et al. 2010; Oler et al. 2010; Kutter et al. 2011; Canella

et al. 2012; Carriere et al. 2012; Renaud et al. 2014). From E15.5 to

P29 in liver and brain, 311 of the 433 tRNA genes predicted by

tRNAscan-SE (Schattner et al. 2005) were utilized (Supplemental

Fig. 1B). Overall, the set of tRNA genes expressed during mouse

development was similar to the tRNA genes identified as expressed

in previous studies (Kutter et al. 2011; Canella et al. 2012; Carriere

et al. 2012; Renaud et al. 2014). The overwhelmingmajority (93%,

290 of 311) of active tRNA genes resided in genomic clusters

(Methods). The 311 tRNA genes identified in this study corre-

sponded to 47 anticodon isoacceptor families, which represented

all 20 amino acid isotope classes. Individual tRNA genes of a spe-

cific tRNA anticodon isoacceptor family tended to genomically

cluster with another tRNA gene of the same family (Methods).

A set of 272 tRNA genes was expressed in both tissues at all

stages (Fig. 3A, Supplemental Fig. 5A, Supplemental Table 7).

Within these 272 tRNA genes, we observed both a core set of tRNAs

(n = 110, 40%) that showed no changes in Pol III occupancy at any

stage of development, and a set of tRNA genes (n = 162, 60%)

whose expression quantitatively changes during development. A

smaller number of tRNA genes (n = 39) showed no Pol III occu-

pancy in at least one stage of tissue development (Fig. 3A,B; Sup-

plemental Fig. 5B).

We asked whether additional tRNA genes not identified post

E15.5may be expressed during very early developmental stages; we

Figure 2. Protein-coding genes are differentially expressed in developing mouse liver and brain. Representative examples of protein-coding gene
expression during development are (A) total RNA-seq reads mapping to Apob and Afp genes in liver and (B) Foxp2 and Calm1 genes in brain. The y-axis of
each track specifies normalized read density. The scale bar shows length of genomic regions in kilobases (kb). (C ) Factorial map of the principal component
(PC) analysis of global protein-coding gene expression levels in liver (red) and brain (yellow) tissues. The proportion of variance explained by each principal
component is indicated in parentheses. Color gradient indicates developmental stage (light: young; dark: old). (D) The intersection of the row/column for
each developmental stage combination shows the number of differentially expressed protein-coding genes between the respective stages in liver (top right
triangle) and brain (bottom left triangle) (0.1% FDR).
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therefore profiled Pol III occupancy in E9.5 (whole embryo) and

E12.5 (head vs. remaining body). In addition to the 311 tRNA

genes, only 14 tRNA genes were newly identified as actively tran-

scribed, all at low levels, at these earlier stages (Supplemental Fig. 6).

We identified the tRNA genes with altered expression levels

during liver and brain development by using DESeq2 to compare

pairs of timepoints (Fig. 3C; Methods). The largest number of

changes was found between the embryonic and adult stages, with

liver showing a higher number of differences than brain (up to

30% of liver and up to 20% of brain tRNA genes; Supplemental

Tables 8, 9). PCA further revealed that tissue identity accounts

for most (81%) of the total variance. The second component,

explaining 46% of the remaining variance, clearly ordered samples

by developmental stage (Fig. 3D). The liver samples showed amore

pronounced variance between stages and stronger separation of

pre- and post-birth samples than did brain. Thus, paralleling

mRNA results, our data revealed that the changes in tRNA gene

expression also reflect the pronounced functional shift in de-

veloping liver (Si-Tayeb et al. 2010).

In summary, we have discovered that developmental changes

in tRNA transcription largely occur by altering the quantitative

expression of a core set of just over 300 tRNA genes.

Every mouse mRNA transcriptome encodes the same
distribution of triplet codons and amino acids

Given the differences in mRNA expression levels observed during

development, we investigated whether these changes create dif-

ferent distributions of triplet codons and amino acids. During

translation, the coding sequence of each mRNA is read as a suc-

cession of 64 possible triplet codons, of which 61 correspond to 20

amino acids.We used our RNA-seq data to examine the abundance

of each triplet codon and amino acid in the mRNA transcriptome,

while accounting for transcript abundance in each developmental

stage (Methods). Across the different developmental stages in both

tissues, the frequencies of triplet codons (Fig. 4A, left; Supple-

mental Fig. 7) and encoded amino acids (Supplemental Fig. 8A,

left) within mRNAs were highly stable (Spearman’s r $ 0.97 and

Spearman’s r > 0.99, respectively) (Supplemental Figs. 4C,E, 9A,B).

This pattern was also apparent when considering only genes that

were highly or lowly expressed in individual stages (Supplemental

Fig. 10A,B).

Overall amino acid usage is also stable among diverse mouse

tissues, and even among homologous tissues from highly di-

vergent mammals (Kutter et al. 2011). In mouse, adult liver, mus-

Figure 3. tRNA genes are differentially expressed during mouse development. (A) Stacked bar graph representing total number of expressed tRNA
genes in developing mouse liver and brain tissue. Black (no differential expression) and gray (differential expression) represent number of tRNA genes
expressed in all stages and tissues. In blue are tRNA genes that are shared between one and 11 stages. (B) Pol III binding to tRNA genes for the same
genomic region during mouse liver development. Different colors of tRNA gene identifiers correspond to those used in A. The y-axis of each track specifies
normalized read density. Scale bar shows length of genomic regions in kilobases (kb). (C ) The intersection of the row/column for each developmental
stage combination shows the number of differentially expressed tRNA genes in liver (top right triangle) and brain (bottom left triangle) (0.1% FDR). (D)
Factorial map of the principal component (PC) analysis of tRNA gene expression levels in liver (red) and brain (yellow). The proportion of variance
explained by each principal component is indicated in parentheses. Color gradient indicates developmental stage (light: young; dark: old).
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cle, and testes have very different mRNA transcriptomes, which

nevertheless contain a largely identical distribution of codon

triplets and encoded amino acids, as do the different develop-

mental stages of liver and brain that we reported above.We further

found that the pattern of amino acid usage in all developmental

stages is highly similar to the background distribution of triplet

codons in the exonic sequences of about 21,000 protein-coding

genes in the mouse genome (Supplemental Fig. 8A, left, gray

contour; Methods).

We therefore asked whether the triplet codons present in any

possiblemouse transcriptomewould follow the same triplet codon

and amino acid distributions. We computationally created 100

artificial transcriptomes by shuffling the expression levels in each

stage of development, first across all expressed genes (Fig. 4A,

middle; Supplemental Fig. 8A, middle; Methods) and then over all

annotated protein-coding genes (Fig. 4A, right; Supplemental Fig.

8A, right). The triplet codons and amino acids found in the sim-

ulated transcriptomes matched the background frequency.

Our data indicate that the stability of the triplet codon and

amino acid distributions that we observed across development is,

in fact, intrinsic to any possible transcriptome arising from the

mouse genome.

Stable isoacceptor anticodon abundance through development
indicates tight regulation of tRNA gene expression

Since no differences in triplet codon and amino acid usage were

observed in mRNA transcriptomes during development, we tested

whether this was reflected in the availability of tRNA anticodon

isoacceptors and amino acid isotypes. Relative utilization was

calculated by summing the use of their component tRNA genes

(Fig. 4B, left; Supplemental Figs. 9C,D, 11). The utilization of tRNA

isoacceptors and isotypes was highly correlated between all de-

velopmental stages (Spearman’s r $ 0.96 and r $ 0.95 in liver and

brain, respectively; Supplemental Fig. 4D,F).

We then asked whether the distribution of tRNA amino acid

isotypes is similar to that found in the genomic background, as was

seen for mRNAs above. In contrast to the tens of thousands of

protein-coding genes, however, the total number of tRNA genes

that can be used as a background in the mouse genome is 433

(Schattner et al. 2005). As for mRNAs, we created 100 artificial

tRNA transcriptomes by shuffling the expression levels of each

tRNA gene in each stage of development, first across the 311

expressed tRNA genes (Fig. 4B, middle) and then over all 433 an-

notated tRNA genes (Fig. 4B, right). We observed that the tRNA

transcriptomes were substantially shifted from both sets of simu-

lated tRNA transcriptomes, suggesting that they must be tightly

regulated in order to create the stable pools of tRNAs observed

across mouse development.

mRNA triplet codon usage is highly correlated with tRNA
anticodon isoacceptor abundance during development

tRNAs are the adapter molecules in the translational machinery

that decode the triplet codons embedded in mRNA sequences. We

explored this interface between transcription and translation by

Figure 4. Codon and anticodon usage in transcriptomes across mouse development. Each panel (A–C) consists of three columns: experimentally
observed data (left), simulated patterns of transcription randomized among either the expressed genes (middle), or all genomically encoded genes (right).
Transcriptomes of each developmental stage were simulated 100 times (Methods). Proportional frequencies weighted by transcript expression are shown
for arginine triplet codons as a bar plot (A), where gray shading is by triplet codon. Proportional frequencies weighted by Pol III binding are shown for
arginine isoacceptors as a bar plot (B). (C ) Plots show Spearman’s rank correlation coefficients (r) and P-values (P) of Pol III binding to tRNA isoacceptors
(x-axis) and transcriptomic codon frequencies weighted by expression obtained frommRNA-seq data in E15.5 liver (experimentally observed data) and all
six developmental stages (simulated data). Anticodon isoacceptors that are not encoded in the mouse genome (gray dots in C) were excluded from
calculating the correlation coefficients. Observed correlations across all stages are indicated by black diamonds in plot C, middle and left panels.
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calculating the correlation between relative mRNA triplet codon

usage and relative tRNA anticodon isoacceptor abundance. This

analysis established whether the demand for triplet codons during

mRNA translation is matched by the availability of corresponding

tRNA anticodon isoacceptors. Omittingwobble pairings, we found

a highly significant correlation between mRNA codon demand

and corresponding tRNA anticodon availability in both tissues and

at all developmental stages (Spearman-rank test [r] from 0.64 to

0.76, all P < 0.001), (Fig. 4C, left; Supplemental Fig. 12). We at-

tempted to at least partially account for any effect that omitting

thewobble positionmight have upon themeasured proportions of

tRNA isoacceptors (dos Reis et al. 2004) and obtained broadly com-

parable and highly statistically significant correlations (Spearman-

rank test [r] from 0.49 to 0.64, all P < 0.001, Supplemental Fig. 13;

Methods). The highly significant correlation persisted when con-

sidering mRNA amino acid usage and tRNA amino acid isotype

abundance (all P < 0.001 [Spearman-rank test]; Supplemental Fig. 8,

left; Supplemental Fig. 14).

Translational selection based upon differential usage of

mRNA triplet codons is ubiquitous in prokaryotes, particularly in

highly expressed and translated genes (Supek and Smuc 2010). To

investigate whether a similar translational selection mechanism

exists during mouse development, we correlated mRNA triplet

codon usage of highly and lowly expressed genes to tRNA antico-

don isoacceptor abundance for each stage. The distributions of

correlation values over all developmental stages are similar be-

tween (1) highly and lowly expressed gene sets and (2) in com-

paring these with all expressed genes (Supplemental Fig. 10C–E).

In the simulated transcriptomes, the correlation of mRNA

triplet codon usage and tRNA anticodon isoacceptor abundance

was appreciably lower than in the empirical data (all Spearman’s

r < 0.45) (Fig. 4C, middle and right) providing further evidence

that regulation is required to create the appropriate tRNA tran-

scriptome. At the amino acid level, correlations in the mRNA and

tRNA transcriptomes remained lower than the empirically deter-

mined correlations when considering all genes; no difference was

observed for simulations using only expressed genes (Spearman’s

r < 0.90; Supplemental Fig. 8C, middle and right).

Thus, the supply of tRNA gene transcripts is controlled, cre-

ating pools of anticodon isoacceptors that track the demand of the

triplet codons found in mRNA transcriptomes.

tRNA anticodon isoacceptor families are transcriptionally
compensated across development

The expression levels of individual tRNA genes can vary sub-

stantially during development and this variation can distinguish

specific developmental stages. We considered the possibility that

the expression differences of individual tRNA genes are driven by

local features, such as the upstream sequence composition or the

expression of nearby mRNA genes.

First, we chose to analyze the cis regulatory sequences within

500 bases of the transcription start site of tRNA genes. We did this

since prior studies have shown that sequence variation in internal

regulatory sequences of tRNA genes have no clear relationship

with their expression levels (Oler et al. 2010; Canella et al. 2012).

We searched for regulatory sequence elements acting in cis that

could direct the Pol III recruitment to tRNA genes as described

previously (Giuliodori et al. 2003; Bloom-Ackermann et al. 2014).

To investigate the differences in Pol III binding for every pair of

timepoints, we usedMEME (Bailey and Elkan 1994) and TOMTOM

(Gupta et al. 2007) to search for enrichment of specific motifs in

the 500-bp upstream regions of differentially expressed tRNAs,

using stably expressed tRNA genes as the background (Supple-

mental Table 10; Methods). No strong enrichment of specific

motifs was observed in the upstream regions of differentially

expressed tRNA genes, suggesting that regulatory sequences in

the flanking regions do not explain differences in tRNA gene

expression.

Second, we considered whether transcription of proximal

protein-coding genes could influence nearby tRNA transcription

(White 2011). We asked whether significant changes of individual

tRNA genes’ utilization between stages were accompanied by

changes in expression of neighboring protein-coding genes. No

consistent colocalization effects were observed (Supplemental Fig.

15; Methods).

Third, we investigated whether the activity of tRNA tran-

scription is mediated via chromatin or other cis-regulatory se-

quences. Previous studies reported that active chromatin coincides

with active transcription of Pol III genes (Barski et al. 2010; Oler

et al. 2010). We therefore used previously published data (Shen

et al. 2012) to compare the occurrence of three histone marks as-

sociated with transcriptionally active chromatin modifications,

histone H3 lysine 27 acetylation (H3K27ac), H3 lysine 4 tri-

(H3K4me3) and monomethylation (H3K4me1), Pol II, and the

insulator-binding protein CCCTC-binding factor (CTCF) at geno-

mic localizations 0.1, 0.5, and 1.0 kb near differentially expressed

tRNA genes (Shen et al. 2012; Methods). In mouse liver, we found

a significant association between H3K27ac levels 0.5 and 1.0 kb

around tRNA genes that are differentially expressed between E15.5

and P29 (Fisher’s exact test, P-value < 10�4) (Supplemental Table

11). H3K4me3 and Pol II showed a less significant association,

while H3K4me1 and CTCF were not associated with differentially

expressed tRNA genes between these two developmental stages

(Supplemental Table 11). These results suggest that differential

expression of tRNA genes during mouse development can be fa-

cilitated in part by accessibility to active chromatin.

Although there aremultiple tRNA geneswith varying levels of

expression for most isoacceptors, the collective relative expression

of the tRNA genes within each family is stable throughout de-

velopment (Fig. 4B, left). This raised the possibility that the ex-

pression of individual tRNA genes within each isoacceptor family

might vary randomly during development. If this were the case, no

systematic correlation in expression levels between genes within

the same tRNA anticodon isoacceptor family during development

would be expected.

We therefore searched for evidence of gene–gene correlations

within each family containing more than five tRNA genes

(Methods) that deviated systematically from a background distri-

bution, generated by permuting the order of the stages for each

gene. This background yielded correlation coefficients that fol-

lowed a unimodal distribution centered around zero. Of the 27

isoacceptor families containing six ormore tRNA genes, 16 showed

a bimodal distribution of correlation coefficients (59%; P < 0.0199,

FDR corrected) (Fig. 5; Supplemental Table 12; Methods), pointing

to the existence of two distinct expression clusters of genes with

high correlation within each expression cluster and negative

correlation between expression clusters (Fig. 5A,B). There is no

significant difference between these two groups of isoacceptor

families with regard to the degree of genomic clustering of their

respective tRNA gene members. Thus, the expression levels of

tRNA genes for the majority of isoacceptor families are coupled,

such that a decrease in the expression of one gene can be com-

pensated for by an increase in the expression of another.

Schmitt et al.
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Our data suggest that the local genomic environment can-

not explain the specific regulatory mechanism underlying

changes in tRNA gene utilization during development. Never-

theless, within many isoacceptor families, we observe striking

compensation in expression levels between tRNA genes. Our

current understanding of mammalian tRNA gene regulation has

no mechanism that could account for such coordinated and

selective crosstalk (White 2011).

Discussion
The process of organ development requires precise stage-specific

coordination of gene expression, leading to highly variable pools

of mRNAs. The widespread changes in protein-coding gene ex-

pression occurring during mammalian development have been

previously explored using gene-specific (Wutz et al. 1997; Kyrmizi

et al. 2006; Mallo and Alonso 2013) and transcriptome-wide ap-

proaches (Bruneau 2008; Kang et al. 2011; Nord et al. 2013). Here,

we confirmed that liver and brain development are accompanied

by thousands of protein-coding transcript changes, which accu-

rately reflect the tissue and stage identity of all samples. Our gene

expression data sets complement recent studiesmapping enhancer

deployment duringmouse development (Cotney et al. 2013; Nord

et al. 2013). The observed number of differentially expressed genes

with respect to E15.5 gradually increased over developmental time,

and corresponded to tissue and de-

velopmental stage-specific functions. Just

over a third of genes in both tissues are

differentially expressed between any two

stages, consistent with previous results

from microarray-based analyses (Li et al.

2009).

In prokaryotes, large-scale gene ex-

pression changes can cause shifts of

mRNA triplet codon usages that impact

translation rates (Tuller et al. 2010); such

a mechanism has been suggested for

highly expressed mouse and human

transcripts (Plotkin et al. 2004; Lavner

and Kotlar 2005; Dittmar et al. 2006). In

our transcriptome-wide approach, we did

not find differential codon usage between

highly and lowly expressed protein-cod-

ing genes in each developmental stage;

however, we cannot fully exclude subtle

fine-tuning of triplet codon usage of

selected protein-coding genes that are

tissue- and developmental stage specifi-

cally expressed (Plotkin et al. 2004). Our

results indicated that the triplet codons

within mRNA transcripts and thus the

collective amino acid demand placed on

translational machineries remain largely

invariant across mouse development. Re-

markably, this stable distribution of triplet

codon usage is found in every develop-

mental stage and tissue we examined, as

well as randomly generated transcriptomes

created from the mouse genome. The sta-

bility of the triplet codon usage is also

apparent among analogous adult tissues

in divergent species across 180 MY of

evolution (Kutter et al. 2011), suggesting a conserved transcriptomic

feature inmammals. In sum, the same distribution of triplet codons

that must be translated by tRNA anticodons is consistently and

robustly found within transcriptomes throughout development

and across evolution.

These triplet codons in mRNA transcripts form transient,

noncovalent hydrogen bonds with decoding tRNAs, creating the

molecular interface that connects transcription and translation

(Fig. 1). In principle, protein synthesis could be influenced by

tRNA abundance if anticodon isoacceptors and amino acid iso-

types deviate from the levels of their mRNA counterparts (Horn

2008; Brackley et al. 2011). However, mammalian development

does not appear to exploit this regulatory strategy as we have dis-

covered that acrossmouse organogenesis,mRNA codons and tRNA

anticodons are highly correlated at each developmental stage. In-

stead, there is a molecular equilibrium between the populations of

codons found in expressed mRNAs and anticodons found in

expressed tRNAs. In fact, this correlation may be higher if

considering post-transcriptional modifications such as tRNA-

dependent adenosine deaminases (Novoa et al. 2012). This mo-

lecular equilibrium canprevent a potential bottleneckwhen tRNAs

facilitate translation of mRNAs into proteins and hence ensures

optimal translational efficiencies.

Such stability in anticodons in the pool of expressed tRNAs

might suggest a model where the tRNA genes transcribed by Pol III

Figure 5. tRNA gene expression is compensated on the isoacceptor level during mouse de-
velopment. Anticodon isoacceptor Leu(CAG) (A) and Gly(GCC) (C ) illustrate a strong and weak cor-
relation of tRNA gene expression level, respectively. Each row of the heatmap represents relative
expression levels of tRNA genes across different developing mouse liver stages (white, low = 0; purple,
high = 1). Density plots (B,D) represent the distribution of pairwise correlation coefficients between each
tRNA gene’s expression levels during mouse liver development for anticodon isoacceptor (B) Leu(CAG)
and (D) Gly(GCC) (blue). Background distributions (gray) are derived by permuting the order of stages
when computing the pairwise correlation between tRNA genes. P-values (P, x2-test) are reported in top
right of each panel.
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do not vary across mouse development. This model would predict

stable Pol III occupancy, which would allow the cell to maintain

high efficiency in translation without having to adjust compo-

nents of the translational machinery. Surprisingly, we found that,

similar to the changes in the protein-coding transcriptome, up to

30%of tRNA genes in liver and up to 20% in brain are differentially

expressed between developmental stages. However, the vast ma-

jority of differences in tRNA expression are adjustments to the level

of expression of individual tRNA genes, and are not de novo acti-

vation or inactivation events.

Molecular characteristics that appear to have little or no in-

fluence in distinguishing the differentially utilized tRNA genes in-

clude (1) spatial clustering in the genome, (2) tRNA gene copy

number, (3) isoacceptor and isotype frequency, (4) cis-regulatory

elements proximal to tRNA genes, and (5) the expression of nearby

protein-coding genes. In contrast, we discovered that tRNA ex-

pression may be facilitated in part by specific chromatin states as-

sociated with active transcription, including the active enhancer

mark of H3K27ac and, to a lesser extent, H3K4me3. Further, the

expression of the anticodon isoacceptor families, relative to each

other, was stable across mammalian development. In yeast, tRNA

genes can compensate for changing levels of expression of another

member of their isoacceptor family, an effect demonstrated by sys-

tematic deletion of tRNAgenes (Yona et al. 2013; Bloom-Ackermann

et al. 2014). Our data are a first direct indication that a compensa-

tory mechanism must also operate dynamically in mammals to

stabilize the collective expression of a given isoacceptor family. Be-

cause tRNA gene usage changes throughout development, but

nevertheless produces stable isoacceptor anticodon expression,

feedback mechanisms must exist to maintain the isoacceptor anti-

codon’s steady state. Supporting thismodel, a substantial fraction of

anticodon isoacceptor families demonstrate a dramatic and co-

ordinated regulation among family members (Fig. 5A).

Across mammalian development, protein-coding and tRNA

gene expression vary widely, require different transcriptional ma-

chineries, and are controlled by distinct mechanisms. Our data

indicate that new models of tRNA gene regulation are required to

explain how both converge to generate a highly stable molecular

interface, functionally interlocking transcription and translation.

Methods

Tissue preparation
C57BL/6J mice were bred and housed in the Biological Resources
Unit under UK Home Office licensing. Liver and whole brain tis-
sues were dissected from mice at different developmental stages.
Whole embryos were collected at E9.5 and tissues from heads
versus remaining body at E12.5. Tissues from embryonic litters
were pooled. At least two independent biological samples were
obtained for each tissue and stage. Tissueswere either post-mortem
cross-linked or fresh-frozen in liquid nitrogen.

Chromatin immunoprecipitation followed by high-throughput
sequencing (ChIP-seq) library preparation

ChIP-seq assays were performed as previously described (Kutter
et al. 2011). Protein-bound DNAwas immunoprecipitated with an
antibody against Pol III subunit RPC1/155, a component that is
involved in active tRNA gene transcription. Immunoprecipitated
DNA was end-repaired, A-tailed, and single-end Illumina se-
quencing adapters ligated before 18 cycles of PCR amplification.
A total of 200- to 300-bp DNA fragments were selected and 36-bp

single-end reads sequencedon an IlluminaGenomeAnalyzer IIx or
HiSeq 2000 according to the manufacturer’s instructions.

Total RNA-sequencing (RNA-seq) library preparation

Total RNA was extracted from livers and brains of all stages and
prepared for sequencing (in biological duplicates). RNA samples
were ribosomal RNA depleted (RiboZero, Epicenter). Strand-spe-
cific libraries were prepared using dUTPs (Kutter et al. 2012) and
multiplexed (Illumina TruSeq kit), prior to 75-bp paired-end se-
quencing on an Illumina HiSeq 2000, according to the manufac-
turer’s instructions.

ChIP-seq analysis

Pol IIIChIP-seq librariesweremapped to themouse reference genome
(NCBIM37) using BWA version 0.5.9-r16 (Li and Durbin 2009) with
default parameters. The genomic locations of tRNA genes were
identified by tRNAscan-SE version 1.21 (Lowe and Eddy 1997). Mi-
tochondrial tRNA was excluded from the analysis. Because tRNA
genes are frequently duplicated in the genome (Lowe andEddy1997),
reads mapping equally well to multiple genomic locations were
reallocated probabilistically to a single location, as described pre-
viously (Kutter et al. 2011). Reads with more than 20 matches were
discarded. Expression of tRNA genes was determined by counting
reads at each tRNA gene locus and6100-bp flanking region. A tRNA
gene was defined as expressed if at least 10 reads weremapped to it in
both biological replicates for at least one tissue–timepoint combina-
tion. All subsequent analysis was performed using only this set of
genes, excluding selenocysteine, except where noted otherwise.

RNA-seq analysis

RNA-seq libraries were analyzed with iRAP (Fonseca et al. 2014),
using TopHat2 (Kim et al. 2013) to map reads to the reference
genome (NCBIM37) and HTSeq-count (Anders et al. 2014) to as-
sign reads to the Ensembl release 67 gene annotation (Flicek et al.
2014) using default parameters, and by excluding mitochondrial
and sex chromsome encoded genes.

Differential expression (DE)

For both themRNAand tRNAdata sets, we usedDESeq2 (Love et al.
2014) to identify genes differentially expressed between pairs
of developmental stages with a Benjamini-Hochberg corrected
P-value < 0.001.

Principal components analysis (PCA)

For both the mRNA and tRNA data sets, PCA was applied to the
matrix of pairwise Spearman rank correlations.

Codon usage

First, for every gene, thenumber of occurrences of each codon in the
longest annotated transcript was determined and this value was
multiplied by the gene’s expression (normalized for transcript
length). Next, the overall usage of each codon for each library was
obtained by summing these values across all genes. A similar anal-
ysis was performed for amino acids. Subsequently, relative codon
and amino acid usage (excluding selenocysteine) were calculated as

x�ij = xij

 
+
n

k=1

xkj

!�1

;
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where xij is the triplet codon (or amino acid) usage for triplet codon
(or amino acid) i in stage j, and x�ij is the relative usage. Spearman’s
rank correlation was used to establish the correlation between
relative (1) codon and (2) amino acid usage on the protein-coding
gene level with the abundance of tRNAs coding for matching (1)
anticodon isoacceptors and (2) amino acid isotypes.

Codon and anticodon background sampling

We used our library-size normalized RNA-seq and Pol III ChIP-seq
data to simulate background distributions in liver and brain for
each specific developmental stage. We randomly rearranged the
expression values across genes for (1) the expressed and (2) all
genomically annotated protein-coding and tRNA genes. For each
developmental stage, we created 100 such random background
distributions. We then calculated triplet codon and amino acid
usage, as well as isoacceptor and isotype abundance, for the rear-
ranged protein-coding RNA and tRNA expression distributions.We
determined the mean for each of the 100 shuffled triplet codon
and amino acid distributions and calculated their Spearman cor-
relation coefficient with each of the 100 shuffled isoacceptor and
isotype distributions.

Wobble interaction correction

To estimate the influence of wobble base pairing on the codon–
anticodon correlations, we first identified the 15 ‘‘orphan’’ mRNA
triplet codons without a matching tRNA anticodon. These triplet
codons are usually decoded by a closely related tRNA isoacceptor of
the same isotype class (dos Reis et al. 2004). We matched these
closely related tRNA isoacceptors to the orphan mRNA triplet co-
don. This resulted in some anticodon isoacceptors that can rec-
ognize more than one codon. In such cases we weighted the tRNA
abundance by using the complementary mRNA-seq data: We es-
timated what fraction of the wobbling tRNA anticodon is most
likely redirected to decode eachmatchingmRNA triplet codon and
accordingly divided its cumulative anticodon isoacceptor abun-
dance between its matched mRNA triplet codons. We then calcu-
lated Spearman’s rank correlation between the weighted tRNA
anticodon isoacceptor abundances andmRNA triplet codon usage.

Motif analysis

The sequences of the 500-bp upstream regions of differentially
expressed tRNA genes between all pairwise stages in each tissue
from the forward and reverse strand were cleaned of low-com-
plexity regions using the ‘‘dust’’ application. A first-order Markov
model built from the upstream regions of all nondifferentially
expressed tRNAs in the appropriate stage–stage contrast was used
as background. Motif enrichment analysis in the sequences was
conducted with MEME (Bailey and Elkan 1994), configured to
search for zero or one occurrences of a motif per sequence, up to a
maximum of three distinct motifs, with a minimum motif size of
6 bp. Subsequently, TOMTOM (Gupta et al. 2007) was used to inter-
rogate the MEME output using ‘‘JASPAR_CORE_2009_vertebrates’’
and ‘‘uniprobe_mouse’’ as input databases. A minimum overlap of
5 bp with an E-value threshold of 10 was required.

Colocalization

A test for colocalization of the largest set of differentially expressed
tRNA genes and differentially expressed mRNA genes was per-
formed between developmental stages (E15.5/P22 in liver and P4/
P29 in brain). For each up-regulated tRNA gene i, we counted
the number of up-regulated protein-coding genes, ni, and total

number of protein-coding genes, bi, in the same genomic region of
varying window sizes (10 kb, 50 kb, and 100 kb), which allowed us
to compute the ratio ri =

ni
bi
. We repeated this analysis for non-

differentially expressed tRNA genes. A Kolmogorov-Smirnov test
was performed to assess whether the distribution of ratios of up-
regulated protein-coding genes was significantly different in the
vicinity of up-regulated tRNA genes from that in the vicinity of
nondifferentially expressed tRNA genes with varying significance
thresholds (0.1, 0.05, and 0.01).

Chromatin association

Publicly available ChIP-seq data of histone marks (Gene Expression
Omnibus [GEO] accession GSE29184) associated with genomic re-
gions at promoters and enhancers (H3K4me3,H3K4me1,H3K27ac),
Pol II, and an insulator (CTCF) (Shen et al. 2012) were used to assess
whether any of thesemarks were associated (Fisher’s exact test) with
(1) active versus inactive tRNA genes in embryonic (E15.5) and adult
(P29); and (2) differentially expressed tRNA genes between E15.5
and P29 in mouse liver and brain tissues. Occurrence of these
chromatin marks was measured 0.1, 0.5, and 1 kb upstream of and
downstream from tRNA genes. Our embryonic (E15.5) and adult
(P29) Pol III data were complemented with embryonic (E14.5) and
adult (P56) ChIP-seq data as different developmental time points
were selected in our and in the Shen et al. (2012) study. Likewise, our
brain P29 data were compared with P56 data by merging ‘‘cortex’’
and ‘‘cerebellum’’ ChIP-seq data from Shen et al. (2012).

Compensation

For each isoacceptor that is encoded bymore than two tRNA genes,
we calculated Spearman’s rank correlation (across developmental
stages) between the expression values of each pair of its corre-
sponding tRNAgenes. For the same set of genes,we calculated a null
set of correlations as follows: all possible pairwise Spearman corre-
lations obtainable by permuting the order of the developmental
stages for each pair of genes. Next, we used the x2-test to inves-
tigate whether there was a significant difference between the
background and the observed correlation distributions.We reported
the Bonferroni-corrected P-value for the 27 isoacceptor families
with six ormore genes, since isoacceptor families with less than six
genes did not have enough points for meaningful interpretation.

Genomic clusters

Wedefined 69 clusters of all genomically annotated tRNAgenes that
lie within 7.5 kb of each other. We counted how many active tRNA
genes of an isoacceptor family colocalized in a genomic cluster with
tRNA genes of the same isoacceptor family. We calculated the frac-
tion of tRNA genes for each isoacceptor family belonging to a ge-
nomic cluster. In order to test whether genes in isoacceptor families
tend to genomically colocalize more than expected by chance, we
randomly assigned tRNA genes to isoacceptor families (preserving
the actual isoacceptor family gene numbers) 1000 times. We then
tested whether the mean percentage of clustering tRNA genes per
isoacceptor family differed from the mean percentage expected by
random by using a binomial test. Finally, we tested whether there
was a difference in these percentages between isoacceptor families
that show evidence for compensation, and isoacceptor families that
show no such evidence by applying a x2-test.

Code availability

The code for the analysis is available in the Supplemental Material
under SourceCode.zip and SourceCode_dataprocessing.zip and
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online at http://github.com/klmr/trna and http://github.com/
klmr/trna-chip-pipeline, with the exception of the ChIP-seq read
reallocation tool, which was kindly provided by Gordon Brown.

Data access
Pol III ChIP-seq and RNA-seq data from this study have been
submitted to the ArrayExpress database (http://www.ebi.ac.uk/
arrayexpress/) under accession numbers E-MTAB-2326 and
E-MTAB-2328, respectively. Additional data are available in the
Supplemental Material under SupplementalData.zip and at http://
dx.doi.org/10.6084/m9.figshare.942513.
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