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Abstract

Next-generation sequencing of pathogen quasispecies within a host yields data sets of tens to hundreds of unique
sequences. However, the full data set often contains thousands of sequences, because many of those unique sequences
have multiple identical copies. Data sets of this size represent a computational challenge for currently available Bayesian
phylogenetic and phylodynamic methods. Through simulations, we explore how large data sets with duplicate sequences
affect the speed and accuracy of phylogenetic and phylodynamic analysis within BEAST 2. We show that using unique
sequences only leads to biases, and using a random subset of sequences yields imprecise parameter estimates. To
overcome these shortcomings, we introduce PIQMEE, a BEAST 2 add-on that produces reliable parameter estimates
from full data sets with increased computational efficiency as compared with the currently available methods within
BEAST 2. The principle behind PIQMEE is to resolve the tree structure of the unique sequences only, while simultaneously
estimating the branching times of the duplicate sequences. Distinguishing between unique and duplicate sequences
allows our method to perform well even for very large data sets. Although the classic method converges poorly for data
sets of 6,000 sequences when allowed to run for 7 days, our method converges in slightly more than 1 day. In fact,
PIQMEE can handle data sets of around 21,000 sequences with 20 unique sequences in 14 days. Finally, we apply the
method to a real, within-host HIV sequencing data set with several thousand sequences per patient.
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Introduction
Phylogenetic and phylodynamic studies of pathogen spread
at both between- and within-host scales rely on genetic se-
quence data as input. For estimating the between-host dy-
namics, a single (usually consensus) pathogen sequence per
patient is often sufficient for conducting successful analyses
(Drummond et al. 2005; Stadler et al. 2013, 2014; Volz and
Pond 2014; Faria et al. 2016). The usual data set size in such
studies is in the order of tens to hundreds of sequences.

Many pathogens, such as RNA viruses, replicate and mu-
tate very quickly within a host (Hu�e et al. 2005; Pybus and
Rambaut 2009; Alizon and Fraser 2013). By consequence,
within a very short time such pathogens create an entire
population of a virus called quasispecies (Eigen and
Schuster 1977; Wilke 2005; Domingo et al. 2012), character-
ized by high sequence duplicity and diversity within a single
host (Boeras et al. 2011; Domingo et al. 2012; Töpfer et al.
2014; Wu et al. 2014). In the context of viral quasispecies, each
unique sequence is referred to as a haplotype (Töpfer et al.
2013).

The sequences from the quasispecies population are usu-
ally obtained using either labor-intensive cloning combined
with Sanger sequencing or faster and more efficient
next-generation sequencing (Schuster 2008; Goodwin et al.
2016). Next-generation sequencing, however, produces short
reads that require further processing, whereby the reads are
stitched together in order to reconstruct the original se-
quence (Goodwin et al. 2016). Assuming we can overcome,
or at least correct for, the known errors of the RNA amplifi-
cation procedure (McKinley et al. 2011), sample preprocess-
ing (Vrancken et al. 2016), and data postprocessing errors
(Beerenwinkel et al. 2012), we can reconstruct the within-
host pathogen diversity from next-generation sequencing
data sets in great detail (Zagordi et al. 2011; Schirmer et al.
2014; Prosperi et al. 2013; Töpfer et al. 2013, 2014; Pandit and
de Boer 2014; Malhotra et al. 2016). Depending on the depth
of the sequencing and performance of the assembly method,
next-generation sequencing followed by haplotype
reconstruction yields data sets of tens to hundreds of hap-
lotypes each in multiple copies, annotated as a haplotype
frequency.
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The reconstructed haplotypes are then aligned to create a
multiple sequence alignment. Before it can be used as input
for current phylogenetic and phylodynamic inference meth-
ods, this alignment needs to be re-expanded, each unique
haplotype being duplicated many times, proportional to its
frequency. The phylogenetic inference methods then produce
a phylogenetic tree, on which all sequences in the alignment
are represented as tips. However, when re-expanded, the se-
quence alignment contains thousands of sequences.
Reconstructing the phylogeny and the population dynamics
from such big data sets represents a substantial computa-
tional hurdle.

Maximum-likelihood (ML) approaches have been espe-
cially useful to treat such large data sets (Stamatakis 2014;
Montoya et al. 2016; Minh et al. 2020). However, the disad-
vantage of these methods is that they first maximize the
likelihood over different phylogenetic trees, heuristically
searching tree space to find the best-fitting tree. Then, given
this ML tree, the pathogen dynamics are inferred. During tree
inference, identical sequences will be grouped together, and
because the most likely divergence between two identical
sequences is always 0, the branch lengths of these subtrees
will be (very close to) 0 or set to some default minimum (e.g.,
10�6 when using RAxML [Stamatakis 2014]). This means that
in the ML framework, the tree will represent an extreme
phylogeny that does not correspond to the real history of
the sampled sequences. As the ML procedure is based on
inferring a single ML tree first, the bias introduced by this
extreme topology will propagate to all subsequent phylody-
namic analyses.

In contrast, Bayesian phylodynamic methods provide a
natural way of integrating over phylogenetic trees, s, when
inferring population dynamic parameters, g, and sequence
evolution parameters, h. These methods infer the joint pos-
terior distribution of s, g, and h given the data, f ½s; h; gjD�,
where D is a sequence alignment. When a parameter is
not one wants to integrate over the uncertainty of a
given parameter, it is possible to marginalize the
posterior distribution over this so-called nuisance
parameter.

The posterior distribution is calculated as the product of
the phylogenetic likelihood, f ½Djs; h�, the tree prior (also
called the phylodynamic likelihood), f ½sjg�, and the parame-
ter prior distributions, f ½g� and f ½h�, and is normalized by the
marginal distribution of the data, f ½D�:

f ½s; h; gjD� ¼ f ½Djs; h�f ½sjg�f ½g�f ½h�
f ½D� : (1)

As the denominator at the right-hand side of the equation
is difficult to evaluate, classic phylodynamic methods rely on
numerically approximating the posterior distribution by sam-
pling from it. Sampling from the posterior distribution is
performed using the Metropolis–Hastings Markov chain
Monte Carlo (MCMC) procedure (Metropolis et al. 1953;
Hastings 1970). However, this procedure is computationally
expensive and is not well suited for data sets larger than a few
hundred sequences (Poon et al. 2012).

Options to speed up the calculation of the posterior den-
sity have been proposed and implemented. One approach is
to parallelize the phylogenetic likelihood f ½Djs; h� calculation
using multicore architecture of graphic processing units, as in
the BEAGLE software (Suchard and Rambaut 2009; Ayres
et al. 2019). Another alternative is using sequential Monte
Carlo methods for sampling phylogenetic trees
(Bouchard-Côt�e et al. 2012). Despite these advances, the
MCMC methods are slow and often incapable of processing
the full data set when the input sequence count is larger than
a few hundred.

To address the issue of computational expense when ap-
plying Bayesian methods to large data sets with duplicate
sequences, one of the following two approaches is usually
employed. The first approach is to randomly subsample the
full data set to keep the diversity but to decrease the com-
putational burden (Poon et al. 2011, 2012). This approach
should yield unbiased estimates of population dynamic
model parameters, but may lead to inference of a most recent
common ancestor (MRCA) that is younger than, and thus
not representative of, the MRCA of the full data set. This
happens if the random sample chosen does not contain
the two most divergent sequences that define the MRCA
of the full data set. Furthermore, as a lot of information is
left out, precision of the parameter estimates is compromised
if a subsample instead of the whole data set is used. The
second way of reducing the computational burden in the
Bayesian methods is to perform inference on only the unique
sequences, completely ignoring their respective frequencies
(Bull et al. 2011; Recarey and Cristina 2014). However, this
amounts to inference on a biased data set and thus param-
eter estimates may be biased as well. To our knowledge, these
biases have not been explored previously.

In this study, we show that analyses with only unique
sequences or only randomly subsampled data sets result in
less accurate and/or less precise parameter estimates than
when all data are being used. More importantly, we present
a new method that improves convergence of the MCMC by
keeping track of the duplicate sequence branching times but
not of the full topology formed by these duplicate sequences.
The rationale for this is that the duplicate sequences provide
information regarding the evolutionary rate and thus the
branching times, and can further help refine the topology
on the unique sequences (DeWitt et al. 2018). However, these
same sequences provide no information to narrow down the
plausible tree topology space of the duplicate sequence sub-
trees (Dudas and Bedford 2019), making the tracking of the
duplicate sequence subtree topology unnecessary. We imple-
ment this method as a BEAST 2 (Bouckaert et al. 2014) pack-
age called PIQMEE, which stands for “phylogenetic inference
of quasispecies molecular evolution and epidemiology.” The
method works with any sequence evolution model currently
available in BEAST 2. As the population dynamics model, we
adapted the birth–death skyline (BDsky) model (Stadler et al.
2013). We show on simulations that the PIQMEE method is
accurate and precise, and faster than the classic method when
the alignment analyzed contains duplicate sequences. Finally,
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we apply our method to an empirical HIV data set containing
thousands of sequences.

New Approaches
The main idea of the new approach is based on the observa-
tion that a set of identical sequences contains no information
regarding the underlying tree topology. Sampling various to-
pological configurations of the subtree of identical sequences
in MCMC is therefore a waste of computational time. Thus,
especially for large data sets with many duplicate sequences,
when including all sequences and representing each sequence
as a tip in the tree, the MCMC chains mix very slowly. This
then needs to be compensated for by simulating long chains.
A lot of computational effort could be saved if, during
MCMC, the topology of identical sequences was not sampled,
meaning that the duplicate sequences were not treated as
separate tips in the phylogenetic tree. However, the dupli-
cates cannot be completely ignored, because such an ap-
proach would lead to biases.

We therefore propose calculating the posterior probability
of the tree and the parameters for a reduced tree structure
(see the Materials and Methods section for details). The re-
duced phylogenetic tree is built only from unique sequences
but is complemented by an array of branching and sampling
times of all the duplicate sequences.

The main assumption of the method is that the duplicate
sequences of the haplotype always arise from an already
existing sequence through branching (duplication) and not
through mutation. In other words, we allow each haplotype
to arise only once during the population history. If we were to
represent this assumption on a full, nonreduced tree, it would
lead to a tree which is “recursively monophyletic” with re-
spect to the identical sequences. In such a recursively mono-
phyletic tree, there is always at least one monophyletic group
of identical sequences. If we were to remove it from the tree,
there would be another monophyletic group of identical
sequences formed. One could continue with the cycle of
identification and removal of monophyletic groups of iden-
tical sequences until no tips would be left in the tree.

We adapted the calculation of the phylogenetic likelihood
f ½Djs; h� and the tree prior f ½sjg� for this reduced tree rep-
resentation (see the Materials and Methods section for
details) and implemented the tree structure as well as the
new likelihood functions in a BEAST 2 package PIQMEE. The
source code and the executable jar file can be obtained from
https://github.com/boskovav/piqmee (last accessed May 28,
2020).

Results

Impact of Input Number of Sequences on Method
Performance
We simulated 100 trees for each of the following tip counts:
300, 1,200, 2,100, 3,000, and 6,000 tips. All tips were sampled at
the same time point. The tree model used was a birth–death
model with a constant birth and death rate. We simulated
sequences on these trees according to a Jukes–Cantor model
with a strict clock (for details, see the Materials and Methods

section). We analyzed the resulting sequences using four in-
ference methods. First, we analyzed the full data set with our
new method, which we will refer to in the results as
PIQMEE_all. Second, we analyzed the full data set with the
classic BEAST 2 method, referred to as CLASSIC_all. Third, we
analyzed only the unique sequences using the classic method
(CLASSIC_unique). Fourth, we randomly subsampled the full
data set to the size equal to the number of unique sequences
and analyzed this subset with the classic method
(CLASSIC_random). The BDsky model was assumed for the
tree prior in all four analyses.

The results of the analyses are shown in figure 1 and table 1.
Analyses of all data sets ran well with the exception of 68 data
sets with 6,000 sequences in the CLASSIC_all method. These
runs never started due to the BEAST 2 Java application having
insufficient memory to handle the amount of data loaded.
The remaining 32 runs ran for 7 days but only 20 reached an
effective sample size (ESS) of 200 for all the metrics and model
parameters. This shows that data sets of this size are at the
limit of what can be handled by the software, if each duplicate
sequence corresponds to a separate tip in the tree.

Table 1 and figure 1 clearly show that the analyses of
subsets of the full data, that is, unique or random subsets
of sequences, are much faster than the analyses of the full
data set under either the CLASSIC or PIQMEE methods. Note
that as the number of sequences in the unique and random
data sets stays more-or-less constant (median of 19–20
sequences), these analyses always take approximately the
same amount of time no matter how many sequences there
are in the full data set.

In what follows, we use the root mean squared error
(RMSE) of the median parameter estimates as a measure of
accuracy. Systematic deviation from the true value calculated
as “MoM—true value”, where MoM stands for the median of
medians estimates, is used as a measure of bias. Precision
refers to the width of the 95% highest posterior density
(HPD) interval.

First, we will discuss the results obtained from the
CLASSIC_unique method. Analyses of the unique sequences
lead to biased parameter estimates as indicated by the sys-
tematic deviation of the MoM from the true values of the
parameters. The posterior estimates of the tree height param-
eter are above the true parameter value. This overestimation
likely happens because in the unique sequence tree only the
branches with mutation are seen. By consequence, at the
considered substitution rate the plausible trees have longer
branches than the true tree in order to accommodate all this
“quickly appearing” diversity. The population dynamic pa-
rameter Re (effective reproductive number), which is the birth
rate divided by the death rate, is biased upwards and the
death rate is biased downwards. The bias in the population
dynamic parameters could be purely a consequence of the
overestimation of the tree height. However, it could also be
explained by the lack of short terminal branches in the tree,
which constitute a significant proportion of all branches lead-
ing to tips in our simulations. These two hypotheses can be
probed by fixing the tree and reestimating the parameters
(see supplementary fig. S1, Supplementary Material online).
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Results of these analyses show that the estimated death rate is
still low, but higher, and closer to the true value, than when
the tree is unfixed (fig. 1). However, not all of the bias can be
explained by the missing short terminal branches. Thus, the
bias in the death rate and Re, comes partly from the over-
estimation of the tree height and partly from the missing
short terminal branches. Using the CLASSIC_unique method,
the Re, and for most settings also the tree height, are esti-
mated with the lowest accuracy, that is, the RMSE is the
highest. Similarly, for each single parameter across all five
data set sizes the coverage percentage for the mixed runs
(defined as the percentage of analyses, out of those for which
an ESS of 200 was reached for all parameters, whose HPD
interval includes the true parameter value) is the lowest when
the unique sequences only are analyzed (table 1). The

coverage ranges between 82% and 99% for Re and is close
to 0% for the death rate. The higher coverage for the Re can be
partially explained by very low precision, that is, very wide
95% HPD intervals, for that parameter.

In contrast to the CLASSIC_unique results, the analyses
of random subsets of the data do not lead to bias in the
estimates of the population dynamic parameters. For
both the Re and the death rate, the accuracy and the
precision are nevertheless lower than for the CLASSIC
or PIQMEE analyses of full data sets. Due to the reduced
sample size, larger HPD intervals without biases are
expected when analyzing random samples as opposed
to the full data set. High coverage is therefore expected
as a direct consequence of the increased HPD intervals.
However, the tree height inferred is generally smaller than
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FIG. 1. Performance comparison of the PIQMEE method and the CLASSIC method on full, unique and randomly subsampled data sets of various
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parameter. The total number of such runs out of 100 is shown in smaller, colored numbers on the x-axis below each figure. (A) The number of
sequences analyzed by each method. For PIQMEE_all and CLASSIC_all, the method was considering all the sequences. For CLASSIC_unique and
CLASSIC_random, the size of the data set was smaller. (B) The distribution of the CPU seconds elapsed until the runs reached ESS of 200 for all the
parameters. (C) The clock rate used for inference, in units of substitutions/site/time unit. As all our data sets have the sequences sampled at one
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true ). The ideal case of error being 0 is
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the true tree height of the full data set. As mentioned in
the introduction, this is due to the fact that the random
subset of sequences may not contain the two most diver-
gent sequences from the full set, leading to a tree with a
younger MRCA. In such a case, the estimate of tree height
from the subsample will have seemingly increased bias
when compared with the MRCA of the full data set, an
observation reproduced in our results (table 1).

The PIQMEE_all and CLASSIC_all analyses lead to very
similar parameter estimates, confirming that our PIQMEE
implementation works correctly. Both the table 1 and the
figure 1 show that the accuracy, precision, and coverage for
all parameters inferred with PIQMEE are almost identical to
those obtained using the CLASSIC method applied to the full
data set. However, the PIQMEE_all analyses are much faster.
With increasing number of sequences, the speed difference
gets bigger. The reason for this is that the sequences were
simulated on each tree such that the median number of
unique sequences was around 19–20. This also means that
the amount of duplicates for each unique sequence increases
with increasing number of total sequences. This in turn
results in the speed advantage of the PIQMEE method in-
creasing as the data set grows in size. The analyses with the
CLASSIC_all method start to mix very slowly at 2,100 sequen-
ces. At 6,000 sequences, many of the CLASSIC_all analyses fail
early on due to too large memory requirements. Of those that
run many converge slowly, resulting in only 20 out of 100
well-mixed runs. By contrast, when the number of input
sequences reaches 6,000, 79 out of 100 PIQMEE runs mix well.

To find out the maximum size of the data set that PIQMEE is
able to analyze within a 2-week runtime, we simulated 100
trees for each of following sizes: 12,000, 15,000, 18,000, 21,000,
24,000, 27,000, and 30,000 tips. All tips in the trees were sam-
pled at one point in time. We then simulated sequences on
these trees under two different substitution rates, such that
there were �20 and 200 unique sequences. The resulting

sequence data sets were analyzed by PIQMEE. Figure 2 and
supplementary table S1, Supplementary Material online, show
for which data sets we obtained well-mixed MCMC chains.

As expected, with increasing number of sequences in the
data set the sampling from the posterior distribution gets
slower, as indicated by the decreased number of steps the
MCMC chain achieved within the given run time of 14 days.
The mixing also gets slower, as indicated by the increasing
number of burn-in steps.

The data sets with �20 unique sequences ran and also
converged faster than those with�200 unique sequences. For
the data sets with 20 unique sequences, the majority of the
analyses of data sets with 21,000 or less sequences mixed well
(ESS�200). In contrast, none of the data set with �200
unique sequences mixed well. Irrespective of the number of
unique sequences, the majority of the analyses reached ESS of
100 for data sets with 24,000 and less sequences.

Method Performance under Various Scenarios
Sequence Evolution Models
We have shown above that the parameter inference under
PIQMEE works very well when the sequences are simulated
and analyzed with the JC69 model under the strict molecular
clock model. The phylogenetic likelihood calculation under
PIQMEE also works for more complex models of sequence
evolution. The parameter inference is equally good under
PIQMEE as under CLASSIC method with the full data set
when the sequences are simulated with HKY (Hasegawa–
Kishino–Yano) or GTR (general time reversible) model (see
supplementary fig. S2, Supplementary Material online, for an
example of data sets with 300 simulated sequences).

Heterochronous Sampling
In addition to the homochronous sequences (sampling at
one point in time) shown above, our PIQMEE method can

C
ha

in
 le

ng
th

 (M
C

M
C

 s
te

ps
)

2e
+0

8
4e

+0
8

6e
+0

8
8e

+0
8

1e
+0

9

●

●

●
●

●

●

●●
●
●●●

●●

12k 15k 18k 21k 24k 27k 30k

Number of simulated sequences

A

Bu
rn

−i
n

0.
2

0.
4

0.
6

0.
8

1.
0

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

12k 15k 18k 21k 24k 27k 30k

Number of simulated sequences

B

ES
S

5
10

20
50

20
0

50
0

●
● ● ●●● ●

●

●
●●

●

12k 15k 18k 21k 24k 27k 30k

Number of simulated sequences

C

20 unique sequences 200 unique sequences

FIG. 2. Performance of the PIQMEE method on very large data sets. We analyzed data sets consisting of 12,000, 15,000, 18,000, 21,000, 24,000, 27,000,
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also handle data sets with heterochronous sequences, that is,
sampled through several points in time. Again, as expected
given a correct PIQMEE implementation, the parameter esti-
mates under PIQMEE_all and CLASSIC_all are the same (sup-
plementary fig. S3 and table S2, Supplementary Material
online), despite an additional parameter, that is, clock rate,
being estimated. Similarly to the analysis of homochronous
sequences, the analysis of heterochronous sequences by the
PIQMEE method is faster than by the CLASSIC method. In
fact, the speed advantage of PIQMEE is more pronounced on
the heterochronous data set as compared with the homo-
chronous data set. With just 300 sequences being analyzed,
PIQMEE is, based on the median runtime, five times faster on
the heterochronous data set (3,203 vs. 16,208 CPU seconds),
whereas it is 1.7 times faster on the homochronous data set
(511 vs. 868 CPU seconds).

Furthermore, we obtain the same patterns with respect to
speed, bias, accuracy, and precision for the analyses of the
unique subsets of the data as we did in the homochronous
case. The only exception is that in the homochronous sce-
nario the Re was overestimated, whereas in the heterochro-
nous data sets it is underestimated.

For the random subsets, the results are generally less ac-
curate than in the homochronous scenario. The
CLASSIC_random method overestimates the clock rate and
the death rate and underestimates the Re. This is most likely
due to a lack of information content in the subsampled data
set, insufficient for the inference of all parameters of the
model. When we reanalyze the same data set with a stronger
prior around the true value of the death rate parameter (sup-
plementary fig. S4, Supplementary Material online), estimates
of the death rate and clock rate improve.

Clock Models
Analyses of subsets of the (heterochronous) data using the
relaxed clock model lead to similar results to those observed
when the strict clock model is used. Both the
CLASSIC_random and CLASSIC_unique methods are still
faster than full data set analyses; however, they also lead to
biased parameter estimates. We further observe that there is a
slight deviation of the PIQMEE method results from those of
the CLASSIC method when applied to full data sets (supple-
mentary fig. S5, Supplementary Material online). The main
difference is that the confidence intervals for the Re and the
average clock rate parameter are larger for the PIQMEE
method as compared with the CLASSIC method. The cover-
age of the PIQMEE method is very good, and similar to that of
the CLASSIC_all method, for all parameters displayed in sup-
plementary figure S5, Supplementary Material online, with
exception of the death rate (see supplementary tables S3
and S4, Supplementary Material online). In addition, the
PIQMEE method tends to slightly underestimate the death
rate and the clock rate, while overestimating the tree height.
This pattern is seen even if the tree is fixed (supplementary fig.
S6, Supplementary Material online) to the true tree. The dis-
tribution of substitution rates associated with different types
of branches (internal vs. external) in our tree (supplementary

figs. S7 and S8, Supplementary Material online) makes it clear
that the bias in the parameter estimates is a result of the
PIQMEE method’s assumption that each haplotype only
evolves once within the tree. This assumption translates
into the PIQMEE method requiring that for each haplotype
subtree the sequence at the MRCA of the subtree is exactly
the same as the sequence at the tips. This has two conse-
quences that are reflected in our results. Firstly, it can be seen
from the transition probability formula (see the Materials and
Methods section, phylogenetic likelihood) that the lower the
substitution rate for a fixed, large haplotype subtree is, the
higher the phylogenetic likelihood value will be. This associ-
ation between low rates and large subtrees can be seen in our
results (supplementary figs. S7 and S8, Supplementary
Material online). In an unfixed tree, this can then translate
in forcing the root of the tree to be older, and by consequence
the death rate (as well as the birth rate) to be lower.

Secondly, the PIQMEE method forces the sequence within
haplotype subtrees to remain unchanged until further in the
past than the CLASSIC method does. The (internal) branches
in the tree that are above the haplotype subtrees need to take
relatively higher substitution rates (see supplementary figs. S7
and S8, Supplementary Material online), such that the
sequences change fast enough between the MRCA of the
haplotype subtrees and the next internal node, where they
join with another tip or MRCA of another haplotype’s
subtree.

Skyline Model
Finally, the tree prior in the PIQMEE method has been imple-
mented as an extension of a BDsky model. PIQMEE preserves
the skyline functionality of BDsky and is thus able to capture
the changes in the population dynamics parameters (Re and
death rate) over time (see supplementary fig. S9,
Supplementary Material online). As in the previous analyses,
where the sequences were sampled at multiple time points,
both the CLASSIC_random and the CLASSIC_unique
method perform poorly. In contrast to the nonskyline meth-
ods, the clock rate is severely underestimated by both
CLASSIC_random and CLASSIC_unique skyline methods.
This leads to overestimation of the tree height. Also the pop-
ulation dynamics parameter estimates have large biases, with
both methods overestimating the Re and underestimating
the death rate. These biased parameter estimates are very
likely due to the lack of sufficient information in the data
for inference of all parameters of the model, confirmed by the
results of the analyses with more defined priors (see supple-
mentary fig. S10, Supplementary Material online).

Analysis of the Real Within-Host HIV Data Sets
We applied the PIQMEE method to the publicly available HIV
sequence data from 8 out of 11 patients published in Zanini
et al. (2015). Two patients, patient 4 and patient 7, were
omitted because they have been superinfected. One addi-
tional patient, patient 10, was removed from the analyses,
because for the genomic region we analyzed, sequences
were successfully obtained for one time point only,
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insufficient to perform inference without fixing the clock rate.
Table 2 shows summary statistics of the analyzed data sets.

We used a skyline model with 1, 3, or 5 intervals for Re.
We ran the analyses once with and once without sequen-
ces (option “Sample from prior” in BEAST 2) to check how
the priors interfere with each other and whether the dis-
tributions obtained from the two runs are different, that is,
whether the sequence data contain enough information to
allow for inference of the parameters of interest. Running
the analyses when excluding sequences in BEAST 2 is not
equivalent to running the analyses under the prior in the
Bayesian sense, as the birth–death model still uses the
sampling dates of the sequences as source of information
(Boskova et al. 2018).

None of the runs using the CLASSIC_all method mixed
within the 7-day runtime. We obtained well-mixed chains for
both when using the sequence data and when excluding the
sequence data from the PIQMEE analyses for the following
patients and settings: patients 2, 8, and 9 when using one
interval for Re, patient 8 when using three intervals for Re, and
patient 5 when using five intervals for Re (see supplementary
table S5, Supplementary Material online). However, in the
analyses of patients 2 and 9, when using a single interval for
Re in the PIQMEE method, the distribution of the Re param-
eter was essentially invariant to the inclusion or exclusion of
the sequence data. This indicates that the sequence data
bring very little information to the model on this parameter
(see supplementary figs. S11 and S12, Supplementary Material
online, for patients 2 and 9, respectively).

In addition to the analyses of full data sets with the
CLASSIC and PIQMEE methods, we also analyzed the data
set consisting of only the unique sequences (see table 2 for
unique sequence counts) and a random subset of 600
sequences. For patients 2 and 8 when using one interval for
Re (supplementary figs. S11 and S13, Supplementary Material
online) and for patient 8 when using three intervals for Re

(supplementary fig. S14, Supplementary Material online), only
the analyses with PIQMEE_all and CLASSIC_unique methods
mixed well. There was only a single case for which all three
analyses (PIQMEE_all, CLASSIC_random, and
CLASSIC_unique) mixed well both with and without the se-
quence data: when using one interval for Re with patient 9
data (supplementary fig. S12, Supplementary Material online).
However, same as for PIQMEE_all, inclusion or exclusion of
the sequence data in the CLASSIC_random analyses did not

make a difference for the distribution of Re. Finally, only the
analyses with PIQMEE_all and CLASSIC_random mixed well
when using five intervals for Re for patient 5 data (fig. 3).

Across the successfully converged analyses (fig. 3 and sup-
plementary figs. S11–S14, Supplementary Material online),
the clock rate is estimated to be higher by the
CLASSIC_random and CLASSIC_unique methods than the
PIQMEE_all method. Additionally, the tree height and the
Re estimates provided by the CLASSIC methods often differ
from those obtained with PIQMEE_all method. When using
one interval for Re, the Re estimates by the CLASSIC methods
are always below the PIQMEE_all estimates. In addition, for
patient number 5 and five intervals for Re (fig. 3), the PIQMEE
method estimates that the HIV population was relatively
stable (Re is around or slightly above 1) since the time of
infection. The virus population was growing the fastest be-
tween 1 and 2.3 years before the last sample, and this growth
continued, though at a slower pace in the year immediately
preceding the last sample. However, the random data set
does not capture this trend well. The CLASSIC_random
method estimates that the virus population was increasing
(Re > 1) between 1 and 2.3 years before the last sample and
decreased (Re < 1) in the year immediately preceding the
last sample.

In summary, the analyses of the random and unique sub-
sets of real HIV data sets provide very different parameter
estimates as compared with the analyses of full data sets using
the PIQMEE method, which is consistent with the analyses of
the simulated data sets.

Discussion
Understanding the dynamics of pathogen dissemination is
crucial for introducing appropriate measures to either stop
or slow down its spread. There are two different scales at
which information about pathogen dynamics can be gained:
between- and within-host. For most infectious diseases, the
between-host level is of importance. This is especially the case
for infections that spread quickly among individuals, for ex-
ample, the recent Ebola epidemic (Althaus 2014), the Zika
virus epidemic (Ferguson et al. 2016), or the ongoing Covid-19
pandemic (Ferguson et al. 2020). If the infection is long-lasting
with damaging effects to the host, such as HIV or HCV,
insights into within-host disease progression and pathogen
evolution are necessary for effectively personalizing treatment

Table 2. Summary of the HIV Data Set.

Patient Number Estimated Time since Infection (years) Total Number of Sequences Number of Unique Sequences

p1 8.21 10,394 52
p2 5.53 6,998 13
p3 8.44 3,625 41
p5 5.89 7,408 35
p6 7.00 10,798 15
p8 4.96 4,689 31
p9 8.10 5,253 17
p11 5.60 4,693 35

NOTE.—The second column shows clinically established estimated time since infection for each patient. The third column shows the total sequence count covering the C2-V5
region of HIV genome. The fourth column shows the number of unique sequences in each patient data set.
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of individual patients (Wei et al. 1995; Perelson et al. 1996;
Gray et al. 2011; Ribeiro et al. 2012).

The within-host populations are often sequenced using
next-generation sequencing methods. Advances in sequenc-
ing technology provide us with an in-depth view into path-
ogen population diversity (Schuster 2008; Zagordi et al. 2011;
Töpfer et al. 2013; Pandit and de Boer 2014). Many studies
report that these within-host data sets contain many biolog-
ical duplicates (Boeras et al. 2011; Töpfer et al. 2014; Wu et al.
2014). The development of sophisticated phylodynamic
methods to fully exploit such data is now apt.

We have shown through simulations that analyses using
only the unique sequences lead to biased parameter estimates.
Additionally, when compared with analyses of full data set,
analyses using a random subset of the data show decreased
precision. Analyses of random subsets of data can lead to pa-
rameter estimates, for example, of the tree height, that do not
correctly reflect the properties of the full data set. Furthermore,
the analyses of full data sets with the classic method slowed
down significantly with increasing number of sequences. In
fact, only 20% of the analyses with 6,000 sequences reached
ESS of 200 for all parameters, despite the fact that the com-
plexity of the data set, as measured by the number of unique
sequences, remained the same across all data sets.

In current Bayesian phylodynamic methods, each se-
quence corresponds to a separate tip in a tree. The inclusion
of duplicate sequences means that tree space increases sig-
nificantly but not in an informative way. Identical sequences

can be freely exchanged on the tree without the phylogenetic
likelihood and the tree prior changing. Such inefficient tree
space exploration causes poor mixing of MCMC chains. Long
chains are therefore needed to achieve satisfactory ESSs for all
estimated parameters. This is especially problematic for, and
may thus completely preclude, analysis of large data sets with
many duplicate sequences.

We have therefore proposed a new method, PIQMEE, that
takes advantage of the fact that duplicate sequences can be
treated differently than separate tips in the tree, and thus only
unique sequences are represented as tips in the tree. It is
founded on the observation that the topology of duplicate
sequences cannot be resolved, but the timing of their branch-
ing can, because this is informed by a combination of the
phylogenetic likelihood f ½Djs; h� and the tree prior f ½sjg�.
PIQMEE considers trees on unique sequences only, keeping
track of the branching times of duplicates. This tree space can
be efficiently explored with current (adapted) and additional
new BEAST 2 mechanisms that propose new tree states
(operators). The main assumption of the method is that
each haplotype arises only once through mutation.

We have shown that the PIQMEE method is as accurate
and as precise as the classic implementation of the likelihood
and tree prior for the full data set. The PIQMEE method is
capable of analyzing both homochronous and heterochro-
nous samples. The estimates of parameters are the same as
in analyses using the classic method for data sets evolving
under the strict clock model.
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FIG. 3. Skyline plot of chronically infected HIV patient number 5 from Zanini et al. (2015), analyzed using the skyline model with five intervals for Re.
We plot the distribution of the clock rate (A and C), and the tree height, the effective reproductive number Re (orange) as well as the sampling
proportion (blue) (B and D). (A) and (B) correspond to analyses performed with the PIQMEE_all method. (C) and (D) The results of analyses with
the CLASSIC_random method. The results of the CLASSIC_unique method are not displayed here because the analyses when the sequence data
were excluded did not mix well. For all analyses, the death rate was fixed to 124 per year. The distributions obtained when excluding the sequence
data are shown in lighter color, whereas the distributions obtained when the sequence data are included are plotted in darker shades. The gray
interval shows the distribution of the tree height. Note that when excluding the sequence data, the distribution of tree height for the random
subsample ranged from 5.6 to 14.6 years (the plot is truncated at 8 years). The clock rate in plots (A) and (C) is in units of substitutions/site/year.
The time on the x-axes of plots (B) and (D) goes from the time of the last sample (0) backwards and is displayed in units of calendar years.
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It is also possible to use the PIQMEE method with relaxed
clock models of sequence evolution. However, slight biases in
the clock rate, the tree height, and the death rate may arise
due to the PIQMEE assumption of each unique sequence
arising only once within the tree. The inference will thus
show slight deviations from the classic method results.

We have shown that the PIQMEE method tied with the
strict clock model can process data sets of up to 21,000
sequences, of which 20 were unique and the rest were dupli-
cates. This means that larger amounts of data can now be
processed using Bayesian phylodynamic methods than was
possible before. By being able to use all available sequences
and not only the unique subset of them, the MRCA (proxy for
the start of the infection) and the within-host pathogen pop-
ulation dynamics can be studied in more detail.

The composition of quasispecies populations, in terms of
their unique sequence spectrum and frequency, is temporally
dynamic (Bull et al. 2011; Pandit and de Boer 2014). This can
be attributed to factors such as sequence adaptation to host
immune system and population bottlenecks due to the
patient’s drug regimen (Pybus and Rambaut 2009). Detailed
information on the pathogen population composition and
dynamics will yield insight into the dependency (of speed) of
drug resistance development on population composition and
history. The bottlenecks could be identified and correlated
with events such as a change of the drug regimen. Similarly, if
a sudden expansion in diversity of quasispecies was seen, this
could be correlated with events such as a failure of the patient
to stick to the treatment. The PIQMEE method is ideal for the
study of large data sets with many duplicate sequences, for
example, those obtained from chronic infections of a host
with pathogen such as HIV or HCV. We have shown the
usefulness of our method for such data sets by successfully
applying it to large sequence data sets from patients chron-
ically infected with HIV.

Within-host population dynamics is an important factor
to include in the model if one wants to correctly reconstruct
the between-host transmission network (Didelot et al. 2014;
Romero-Severson et al. 2016; Didelot et al. 2017). Although
for some studies using a single sequence from a rich within-
host quasispecies seemed to be sufficient to approximate the
date of infection (Poon et al. 2011), others claim that one
sequence per patient may not be enough to allow for correct
reconstruction of the transmission chain (Ypma et al. 2013;
Worby et al. 2014; Volz et al. 2017). Corrections in the form of
modeling the within-host population dynamics are necessary
(Ypma et al. 2013; Didelot et al. 2014, 2017; Klinkenberg et al.
2017; Volz et al. 2017) even if several unique sequences are
used (Vrancken et al. 2014). Only the correct transmission
network can lead to reliable parameter estimates of the trans-
mission dynamics (Ypma et al. 2013; Volz et al. 2017). Using a
model that can accommodate many sequences from a single
host while reconstructing the between-host transmission net-
work should lead to more reliable estimates of the transmis-
sion network structure and dynamics. Our method can serve
as a starting point for designing such models.

Several of the nested within- and between-host models
treat each patient as a separate compartment. Often, the

within-host dynamics are modeled using a coalescent ap-
proach, with coalescent events among sequences being
allowed to happen only within, but not between these com-
partments (Hall et al. 2015; De Maio et al. 2016). For the
PIQMEE method to be compatible with these approaches,
the tree prior would need to be adapted to the coalescent
framework. For a coalescent event between two identical
sequences, the coalescent rate would depend not only on
the number of identical sequences present in that host at
that time point (see calculation of the factor c for the tree
prior in the Materials and Methods section) but also on the
population size of the pathogen within that host.

Although the PIQMEE method has originally been con-
ceived for quantifying within-host quasispecies evolution
and dynamics, there is no reason why the method could
not be applied to other data sets, such as between-host
data sets, where many sequences are identical. The only dif-
ference to the within-host model would be the meaning of
the parameters, for example, the Re in the within-host context
would represent the ability of the pathogen to spread within
the host, whereas for the between-host dynamics the Re

would refer to the between-host spread.
A drawback of our PIQMEE method is that it requires

nonrecombining sequences as input. Although recombina-
tion occurs in many pathogens (Simon-Loriere and Holmes
2011), only a few phylodynamic methods can currently han-
dle such data sets (Bloomquist and Suchard 2010; Vaughan
et al. 2017). Using portions of the genes or genomes that are
known or assumed to not be recombining (Gonz�alez-
Candelas et al. 2011; Smyth et al. 2014) is the usual work-
around to this problem, and we would recommend this ap-
proach if using PIQMEE with such data sets.

In summary, the PIQMEE method is a significant step to-
ward faster analysis and accurate estimation of population
dynamics based on deeply sequenced quasispecies data sets,
or any other large data set with a high proportion of duplicate
sequences. The method could further be improved by imple-
menting the phylogenetic likelihood calculation to work with
BEAGLE (Suchard and Rambaut 2009; Ayres et al. 2019), by
making corrections such that the relaxed clock models would
be fully compatible with the PIQMEE model assumptions,
and by allowing for recombination of sequences. Also, tree
priors other than the birth–death-based BDsky model could
be implemented to work with our tree structure allowing for
analyses under various population dynamic models.

Materials and Methods

PIQMEE Method Description
New Tree Structure
As mentioned in the introduction, PIQMEE uses a reduced
tree structure (fig. 4). It is composed of the tree of unique
sequences, su, an array of branching times (colored dashes on
the branches of su in fig. 4), and sampling times of all the
duplicate sequences, denoted f. Note that each unique se-
quence (haplotype) corresponds to exactly one tip in the tree,
and that tip represents the most recently sampled duplicate
of the haplotype.
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Let the number of unique sequences be nu. The letters
Xi; i 2 f1; . . . ; nu � 1g, denote the internal nodes in the
tree su and the capital letters A, B, . . . denote the tips. For
the example tree in figure 4, su is a tree with internal (bifur-
cation) nodes X1 and X2 and three tips labeled A, B, C, which
represent the haplotypes A, B, and C, respectively.

The total count of copies of a given haplotype H is denoted
as NH. Each subtree for NH copies of the haplotype H sequen-
ces thus has NH � 1 times where the duplicate sequences
branch off. The duplicate sequences branch off at degree-2
nodes, that is, at the nodes connecting two edges, or branches
in su. We denote these degree-2 nodes XHi

, where Hi refers to
the ith duplicate of H. Note that the index 1 points to the
time of the top-most (first) branching event of the duplicate
of a given haplotype. For example, XA1

is the branching point
of the first duplicate of haplotype A, depicted as the top-most
dash of haplotype A in figure 4. XA1

coincides with XA, the

“start” of the haplotype A and is marked as a dot on the tree
in figure 4. XA2

is the branching point of the second duplicate,
arising just below the first one (second dash from the top),
etc.

Phylogenetic Model
We denote the time at which the bifurcation node Xi occurs
in the tree as zXi

. The branching time of the ith duplicate of
haplotype H is denoted as zXHi

, and the sampling time of that
duplicate sequence is denoted as zHi

. Note that the sampling
time of the haplotype representative sequence (the sequence
in su) is zH0

and corresponds to the latest sampling time of H.
Let the time flow forward, that is, starting at time 0, some
time in the past, with a single individual, then we have the
sorted times arrays such that zX1

� zX2
. . . � zXnu�1

,
zH1
� zH2

� . . . � zHNH
, and zXH1

� zXH2
� . . . �

zXHNH�1
. The edge length between two nodes, for example,

between Xi and Xj is the absolute value of the distance in time
of the two nodes and is denoted as jzXi

� zXj
j.

The lower case letters xi or a; b; . . . denote the corre-
sponding sequences at the nodes Xi or A, B; . . . ; respectively.
We assume that the sequences at the tips are known and are
exactly the sequences of the corresponding haplotype H,
which is denoted as h. For the example shown in figure 4,
the tips A, B, and C represent sequences a, b, and c, respec-
tively. We denote by xi the sequence at the bifurcation node
Xi, where, for example, x1 ¼ G means that the sequence at
node X1 is one single nucleotide, namely G.

The substitution model parameters are composed of
h ¼ fQ;Pg, where Q is the substitution rate matrix defining
the transition probabilities P and P is the vector of stationary
distribution for each state in the state space S. When dealing
with nucleotide sequences, S ¼ fA; C;G; Tg.

As our tree su only represents the topology of the unique
sequences, we needed to rewrite the phylogenetic likelihood
formulated using the Felsenstein’s peeling algorithm
(Felsenstein 1981) to fit such a structure. Instead of the full
tree, s, the adapted Felsenstein likelihood takes su and f as
input.

The new phylogenetic likelihood formula accommodates
our main assumption of each haplotype arising only once
during the history of the process (i.e., in the tree) by imposing
that the duplicates of a haplotype do not mutate at all. Thus,
the probability of no mutation event on a branch with length
t is ~PnðiÞ!nðiÞðtÞ ¼ eqiit with qii ¼ �

PjSj
j¼1 qij (i; j ¼ f1; . . . ;

jSjg; nðiÞ 2 S).
There are two direct consequences of our method’s as-

sumption reflected in the formula. First, the haplotype se-
quence stays the same for the duration of the sum of the
branch lengths defined by the distances from each of the
duplicate sequence branching points XHi

(dashes in fig. 4)
to the corresponding sampling time zHi

. For a single site,

and N copies of a haplotype, we can write,
QN

j¼1
~PnðiÞ!nðiÞ

ðjzXHj
� zHj

jÞ ¼ ~PnðiÞ!nðiÞð
PN

j¼1 jzXHj
� zHj

jÞ. Second, the

sequence at each degree-2 node XHi
is known, such as

xH1
¼ xH2

¼ � � � ¼ h. Thus, the sequence at each degree-2
node belonging to haplotype H is h, the same as the sequence

FIG. 4. Reduced representation of a tree of three unique haplotypes
(A–C) and their duplicates. The origin of the process (the tree) is
denoted as X0. We call the internal nodes that join the unique hap-
lotypes (X1, X2) the bifurcation nodes of the tree. The total count for
each haplotype is noted below the corresponding tip in the tree. Note
that the branching times of the duplicates are depicted as colored
dashes on the tree. The notation of these times in the tree prior and
the phylogenetic likelihood is shown to the right. We only show the
times of the bifurcation nodes (solid lines leading to the time axis),
and first few branching times of duplicates (dark dash-dotted lines).
Due to space constraints, the rest of the branching times of duplicates
are only shown as gray dash-dotted lines. The last sampling time of
each haplotype is shown (zA0

; zB0
; zC0

). In our example, these times
are the same for all three haplotypes. The colored dots on the tree (XA,
XB, XC) represent the start of a haplotype and coincide with the first
branching event of haplotype (A, B, C, respectively). From this point,
all the way to the tip we assume the sequence is not mutating (see the
Materials and Methods section on Phylogenetic model). Note that
the haplotypes can start above any bifurcation node on a path be-
tween the tip corresponding to that haplotype and the origin of the
tree. If a bifurcation node is on the path between the haplotype’s first
branching point and the tip, we say that the haplotype passes through
that node, for example, the haplotype B is passing through bifurcation
node X2. This in particular means that we assume that the sequence at
node X2 is identical to the sequence at tip B. We use birth–death
skyline model for the analyses. Here, the process is split into three
intervals, delimited by times t0; t1; t2; t3 (black dashed lines).
Population dynamic parameters (k; d;w) are estimated for each in-
terval separately.
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at the tip H. Again, for our example shown in figure 4,
xB1
¼ xB2

¼ xB3
¼ xB4

¼ b. In addition, if a haplotype passes
a bifurcation node, that node can only have a sequence iden-
tical to the sequence corresponding to the passing haplotype.
In figure 4, haplotype B passes through the bifurcation node
X2; therefore, the node X2 can only have a sequence identical
to the sequence B, that is, x2 ¼ b. However, for the bifurca-
tion nodes through which no haplotype passes, the exact

sequence is unknown and we thus need to integrate over all
possible states it can assume, meaning that in the example in
figure 4, for node X1, we sum over all states in S at every
position of the sequence.

Based on this, and for simplicity assuming the sequence
alignment only contains a single site, the phylogenetic likeli-
hood can be written as:

f ½Djsu; f; h� ¼
P

x12S Px1

�
Px1!a

�����zX1
� zXA

����
�

P~
a!a

�����zXA
� zA0

����
�

P~
a!a

�XNA�1

j¼1

����zXAj
� zAj

����
��

�
Px1!b

�����zX1
� zXB

����
�

P~
b!b

�����zXB
� zX2

����
��

P~
b!b

�����zX2
� zB0

����
�

P~
b!b

�XNB�1

k¼1

����zXBk
� zBk

����
��

�
Pb!c

�����zX2
� zXC

����
�

P~
c!c

�����zXC
� zC0

����
�

P~
c!c

�XNC�1

l¼1

����zXCl
� zCl

����
���

:

The derivation of this formula is equivalent to the deriva-
tion of the Felsenstein pruning likelihood. The parts
highlighted in blue show where our formula is identical to
the classic phylogenetic likelihood. Further, setting
zXH
¼ zXH0

, and using the fact that entries of ~Pare exponential
functions, we get:
f ½Djsu; f; h� ¼

P
x12S Px1

Px1!aðjzX1
� zXA

jÞ~Pa!að
XNA�1

j¼0

jzXAj
� zAj
jÞ

Px1!bðjzX1
� zXB

jÞ~Pb!bð
XNB�1

k¼0

jzXBk
� zBk

jÞ

Pb!cðjzX2
� zXC

jÞ~Pc!cð
XNC�1

l¼0

jzXCl
� zCl
jÞ:

For the Jukes–Cantor substitution model (Jukes and Cantor
1969), where all the rates in the substitution rate matrix are
the same, say l, we can rewrite the above equation as follows:
f ½Djsu; f; h ¼ fl;Pg� ¼

P
x12S Px1

Px1!aðjzX1
� zXA

jÞ expð� 3

4
l
XNA�1

j¼0

jzXAj
� zAj
jÞ

Px1!bðjzX1
� zXB

jÞ expð� 3

4
l
XNB�1

k¼0

jzXBk
� zBk

jÞ

Pb!cðjzX2
� zXC

jÞ expð� 3

4
l
XNC�1

l¼0

jzXCl
� zCl
jÞ:

Tree Prior Model
The tree prior within PIQMEE is an extension of the BDsky
model (Stadler et al. 2013). Let k be the birth rate, d the death
rate (referred to as “total rate of becoming noninfectious” in
Stadler et al. [2013]), w the sampling rate through time, q the
sampling probability at the time of special sampling effort, T

¼ ðt1; . . . ; tmÞ the vector of m times where the rates shift,
and S the probability that there is at least one sampled indi-
vidual at the last sampling time point. Some sequences are
sampled during special sampling efforts and the times asso-
ciated with such efforts are referred to as q-times. Sequences
sampled outside of these q-times are referred to as sequen-
tially sampled and are sampled with rate w. We consider trees
with Ni sequences sampled at each ti time, such thatPm

i¼1 Ni ¼ N, and n sequences sampled sequentially. Let us
denote by ni the number of lineages present at the time ti.
These lineage counts ni can be calculated from su and f. We
assume that the process starts at time t0 ¼ 0, also called
origin, with a single individual. We define the union of
zXi

and zXHi
(both introduced in the Phylogenetic Model sec-

tion above) as fu1; u2; . . . ; uNþn�1g, such that
u1 � u2 � . . . � uNþn�1. In addition, let
fv1; v2; . . . ; vng, such that v1 � v2 � . . . � vn be the
times of the sequences that were sampled sequentially.

As the reduced tree structure su and f keep track of the
duplicates’ branching times but not of the full duplicate se-
quence tree topology, a single reduced tree may represent
many different full topologies. In order to account for this, we
multiply the BDsky tree prior function of su by a scaling factor
c. Let ci be the number of possible ways the lineages can
merge at the ith bifurcation or degree-2 node. When the
ith node is a bifurcation node, ci is simply the number of
haplotype H duplicate sequences to which the node can be
attached at the time ui. The exact identity of the haplotype H
for each bifurcation node is always defined by the structure of

su. When the ith node is a degree-2 node, ci equals to
k
2

� �

and represents all the possible ways the k duplicates of the
corresponding haplotype H that exist after the time ui can
merge to k � 1 duplicates (see supplementary fig. S15,
Supplementary Material online, for a visual explanation).
Thus, ci is defined by the tree structure su as well as the times
array f, and we always have ci � 1. The tree prior f ½su; fjk;
d;w; q; T; S� is then obtained based on Stadler et al. (2013),
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equation (5) in Supplementary Information, by multiplying
the branching events with the corresponding ci values:

f ½su; fjk; d;w; q; T; S� ¼
q1ð0Þ

1� p1ð0Þ
YNþn�1

i¼1

ciklðuiÞqlðuiÞðuiÞ

Yn

i¼1

wlðviÞ
qlðviÞðviÞ

Ym
i¼1

qNi
i ð1� qiÞni qiþ1ðtiÞni :

The factors piðtÞ and qiðtÞ are defined as in Stadler et al.
(2013), equations (1) and (3) in the Supplementary
Information. We denote by qiðtÞ the probability density of
an individual at time t giving rise to an edge in an interval of
time delimited by t and ti. In addition, piðtÞ is the probability
that an individual alive at time t, where ti�1 � t < ti, for
i ¼ 1; . . . ;m, does not leave any sampled descendants at the
end of the process. Finally, l(t) is defined as l(t) ¼ i for
ti�1 � t < ti; i ¼ 1; . . . ;m:

Implementation in BEAST 2 Software
In order to implement the PIQMEE method in BEAST 2, we
rewrote the basic tree class of BEAST 2 to accommodate the
new tree structure. If the duplicate sequences of the same
haplotype are sampled at different time points, all such time
points are merged to a single representative tip to fulfill the
assumption that each sequence arose only once during the
process. The tip representing each haplotype in su is assigned
the date corresponding to the most recent sampling time of
that haplotype sequence. The different sampling times,
counts of the duplicates, and their branching times are
tracked internally. The BDsky model (Stadler et al. 2013)
was adapted for the phylodynamic inference, as was the gen-
eral implementation of the phylogenetic likelihood function
f ½Djs; h� for the phylogenetic inference. Modifications to
these functions are described above. Lastly, current tree oper-
ators were adapted and new tree operators were designed, to
allow the MCMC to efficiently explore the new tree space. For
adaptation of operators and details on implementation, see
the Supplementary Material online.

Simulations and (Real Data) Analyses
For details on how we simulated the sequences, performed
the analyses of simulated and real data sets, please refer to the
Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Stadler T, Kühnert D, Rasmussen DA, du Plessis L. 2014. Insights into the
early epidemic spread of Ebola in Sierra Leone provided by viral
sequence data. PLoS Curr. doi: 10.1371/
currents.outbreaks.02bc6d927ecee7bbd33532ec8ba6a25f.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313.

Suchard MA, Rambaut A. 2009. Many-core algorithms for statistical
phylogenetics. Bioinformatics 25(11):1370–1376.
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