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ABSTRACT: We present a novel time-resolved vibrational analysis for studying photoinduced
nuclear relaxation. Generalized modes velocities are defined from ab initio molecular dynamics
and wavelet transformed, providing the time localization of vibrational signals in the electronic
excited state. The photoexcited pyranine in aqueous solution is presented as a case study. The
transient and sequential activation of the simulated vibrational signals is in good agreement
with vibrational dynamics obtained from femtosecond stimulated Raman spectroscopy data.

Nowadays, the employment of the high resolution time-
resolved spectroscopic techniques makes possible the

investigation of photoinduced chemical reactions on the time
scale of nuclear motions. Specifically, vibrational spectros-
copies are suitable to watch nuclear motions of molecules in
real time upon excitation.1−3 Femtosecond stimulated Raman
spectroscopy (FSRS), for example, is one of the promising
experimental techniques capable of revealing at the atomistic
level the reaction mechanism triggered by photoexcitation and,
potentially, to unveil the nuclear-electronic coupling occurring
with the electronic density redistribution.4−6

The resulting experimental spectra are often extremely
complex, and the disentanglement of the information hidden in
the signals is not a simple task. In this context, the vibrational
dynamics provided by theoretical-computational approaches
can be an excellent support to shed light on the nature of the
vibrational modes giving rise to the observed experimental
signals. In spite of the active research in the field,7,8 an
integrated and well-established computational procedure able
to provide a molecular interpretation of the vibrational
photorelaxation phenomena is still unavailable.
The solution of the vibrational problem based on standard

Hessian-based quantum mechanical approaches requires the
localization of an energy minimum on the potential energy
surface and becomes prohibitive to apply for a large system
such as molecules in the condensed phase.9,10 An appealing
alternative is represented by the generalized vibrational modes
defined from ab initio molecular dynamics11,12 (AIMD) by
using the covariance matrix of the Cartesian atomic
velocities.13,14 This approach allows one to extract vibrational

motions underlying the dynamics of molecules modeled in
their realistic environment. Therefore, explicit solvent models
can be adopted.15−17

The assumption in this case is that at any temperature 3N
generalized molecular modes Q can be defined in such a way
to correspond to uncorrelated linear momenta; namely they
can be obtained by diagonalizing the K matrix of the mass
weighted atomic velocities q̇ with elements

= ̇ ̇K q q
1
2ij i j (1)

where i and j run over the 3N atomic coordinates, and ⟨...⟩
indicates the average over the time.18−21

Composition of the generalized modes are given by the K
eigenvectors collected in the unitary transformation matrix L.
Projection of mass weighted atomic velocities along the modes
gives us the time-resolved mode velocity vector Q̇(t), and
vibrational frequency values can be obtained by Fourier
transforming the corresponding autocorrelation functions.
The definition of generalized modes Q, unlike that of normal

and quasi-normal ones,22,23 does not require a quadratic form
of the potential, hence these collective coordinates correspond
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to molecular motions intrinsically anharmonic, showing
anharmonic frequencies and coupling to other vibrations.24

This methodology has been successfully adopted for the
vibrational analysis of molecular systems at the equilibrium,
which can be confronted to steady-state vibrational spec-
tra.19,20,25

In this work, we aim at extending the procedure above to the
analysis of far from equilibrium processes, specifically the
transient vibrational signals activated in relaxation processes at
the electronic excited state (ES). Once thermodynamic
equilibrium of a molecular system in the electronic ground
state has been characterized by AIMD simulations and
generalized mode analysis, a photorelaxation process can be
simulated by a proper number of ES AIMD trajectories starting
from suitable points (configurations and momenta) that
represent the ground state equilibrium. During the relaxation,
the time evolution of generalized modes QES in the excited
state can be obtained from mass weighted atomic velocities q̇ES
extracted and averaged from ES trajectories, according to the
transformation

̇ = ̇†t tQ L q( ) ( )ES ES (2)

Here we assume that the modes composition obtained in the
ground state (given by L†) still hold in the excited state, as long
as the relaxation has not led to a new arrangement of forces
among nuclei and, as a consequence, to a new normal modes
composition. This approximation is reasonably true in the
ultrafast part of the relaxation and in proximity of the Franck−
Condon region. The knowledge of relaxation times from
experimental time-resolved spectra can also assist and validate
the choice of this approach.
In order to obtain the vibrational frequency values along the

time, we adopted a multiresolution vibrational analysis based
on the Wavelet Transform (WT).26−31 WT has already been
employed in combination with AIMD simulations, to
disentangle the evolution of a simulated Stokes shift,32 of the
dipole moment in exciton dynamics,33 and to analyze the
phototriggered proton shuttle of green fluorescent protein in
the time-frequency domain.34 In the present work, for the first
time, we use WT to obtain transient vibrational signals
corresponding to the Q̇ES(t) modes extracted from AIMD.

We adopt the continuous WT expression

∫ ψ= ̇α αW a b t t tQ( , ) ( ) ( )da bES, , (3)

where α runs over the 3N generalized modes.35 In this way,
time dependent signals Q̇ES(t) are analyzed and decomposed
in terms of wavelet basis ψa,b. These are obtained from a so-
called mother wavelet by dilatation and translation.

ψ ψ= | | − ∈ ≠− i
k
jjj

y
{
zzzt a

t b
a

a b R a( ) ( , ; 0)a b,

1
2

(4)

We chose the Morlet function as the mother wavelet. The
scale parameter a, proportional to the inverse of frequency,
regulates the dilatation and contraction of the mother wavelet
and extracts the different frequencies hidden in the time-
dependent signal. On the other hand, the translation of the
wavelet basis, ruled by the b parameter, ensures the localization
of the frequencies in the time domain. We plot the magnitude
square of the transform |Wα(v, t)|

2 as the intensity of the
instantaneous frequency contribution to the signal. As final
result, we obtain power spectra of the generalized modes
velocity Q̇ES, by retaining localization of each signal in both
time and frequency domains. This approach allows one to
monitor characteristic photoinduced vibrational dynamics in
excited molecules.
The phototriggered vibrational dynamics of the 8-hydrox-

ypyrene-1,3,6-trisulfonic acid (HPTS or pyranine, see Figure
1a) in water solution has been chosen as the pilot application

Figure 1. a) 8-Hydroxypyrene-1,3,6-trisulfonic acid (HPTS or pyranine) and b) HPTS in aqueous solution: in the hybrid implicit/explicit solvation
model, HPTS is treated at the quantum mechanical level (DFT and TD-DFT level of theory for the ground and excited states, respectively), while
the remaining explicit solvent molecules are modeled by molecular mechanics.

Table 1. Mode Description, Experimental Frequency
(cm−1), and Kinetics (fs) of Pyranine Vibrational Bands
Analyzed in This Work47

mode
exp.
freq

exp. rise
time

exp. decay
time

oscillating
intensity

ring deformation + H out-
of-plane

952 140 600 no

out-of-plane ring
deformation

630 300 >1000 yes

ring deformation + COH
rocking

362 650 >1000 no

vertical breathing 191 320 540 no
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of the method. Pyranine is a popular photoacid36−39 with the
pKa value lowered by 7 units upon electronic excitation. The
excited state proton transfer (ESPT) reaction40−45 between the
photoacid molecule, acting as the proton donor, and a nearby
solvent water molecule occurs with time constants of 3 and 90
ps.46 Off-resonance FSRS experiments revealed that in the
electronic excited state HPTS undergoes a transient (subpico-
second time scale) and sequential activation and decay of low
frequency (<1200 cm−1) skeleton modes.47,48 This peculiar
Raman activity precedes and possibly prepares the ESPT
reactive event.
We adopted our method to analyze the transient vibrational

relaxation of the photoexcited HPTS in a time window of 1 ps
after the excitation. When experimental Raman activity over
time is mainly ruled by the vibrational relaxation, vibrational
dynamics simulated according to eqs 1−3 can retrace timing
and patterns of Raman signals.
As depicted in Figure 1b, the pyranine has been placed at the

center of a sphere filled by water molecules explicitly described
with the TIP3P model in a flexible version,49 while a
structureless solvent layer surrounds the explicit system.
By this hybrid explicit/implicit solvation method, which

exploits nonperiodic boundary conditions,15−17 we could
retain specific interactions between pyranine and the solvent
and accurately reproduce the solvent dynamics in proximity of
the solute.
In this model the pyranine was represented through Density

Functional Theory50−52 (DFT) and Time Dependent (TD)-
DFT53−56 to run AIMD trajectories in the electronic ground
(S0) and excited (S1) states, respectively.

57,58 In particular, five
points (coordinates and momenta) were extracted from the S0
trajectory as starting configurations of just as many ES
simulations.59 These trajectories were then used to perfom
time-resolved vibrational analysis according to eqs 1−3. As
support, quantum mechanical Hessian-based harmonic fre-

quency calculations on S0 and S1 pyranine minimum energy
structures in implicit aqueous solvent60−62 were also
performed. All the calculations were carried out with the
Gaussian16 suite program.63 Computational details are further
given as Supporting Information (SI).
In the following, we discuss vibrational signals testifying the

photorelaxation of the pyranine in aqueous solution after a
π−π* excitation to the first singlet S1 state. We analyzed, in
particular, those vibrational bands that show a complex
dynamics according to off-resonance FSRS data, with signals
appearing and disappearing in a tangled temporal sequence in
the first hundreds of femtoseconds, i.e., the time necessary to
complete the first important pyranine structural rearrange-
ment.47,64

Table 1 summarizes the main features of the vibrational
bands discussed in this work, namely the nature of the
corresponding mode, the experimental frequency, and the
experimental behavior over time (rise and decay time,
oscillatory or monotone pattern).
All of the vibrational modes have a collective nature,

involving the motion of the whole four ring aromatic system.
We considered the ring deformation modes at about 950, 630,
and 360 cm−1 and the skeletal breathing at about 190 cm−1.
Figures 2 and 3 summarize analysis of these modes

performed according to eqs 1−3, with q̇ES obtained from
excited state trajectories.
Generalized mode composition obtained according to the L†

transformation is shown in the right panels of Figures 2 and 3,
while wavelet spectra of corresponding Q̇ES velocities are
reported in the left panels as 2D maps. Spectra are plotted in
the frequency range of 0−2000 cm−1, because at higher
frequencies there are no signals of considerable intensity.
The generalized mode in the right panel of Figure 2a is an in

plane ring deformation with an important hydrogen out-of-
plane component. It corresponds to the normal mode with

Figure 2. Q modes (right panels) and corresponding 2D wavelet power spectra (left panels). The color scale states for the intensity are in arbitrary
units: a) a ring deformation mode combined with hydrogens out-of-plane motion, with an AIMD frequency at about 930 cm−1, an exp. value of 952
cm−1, an exp. rise time of 140 fs, and a decay time of 600 fs (from ref 47) and b) a combination of ring wagging and breathing mode, with an AIMD
frequency of 620 cm−1, an exp. value of 630 cm−1, and an exp. rise time of 300 fs.
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harmonic frequency calculated in S1 of 970 cm−1 (see Figure
S5 in the SI) and to the vibrational band observed at about 950
cm−1 by FSRS of Table 1. By inspection of the wavelet
spectrum of this mode in the left panel of Figure 2a, a well
isolated band centered above 930 cm−1 starts to rise after the
electronic excitation, at about 100 fs. Later, the signal shows a
decay at the time of 600 fs. This behavior shows a very good
agreement with the experimental evidence of kinetics constants
of 140 fs (rise) and 600 fs (decay) of the deformation band as
reported in Table 1.
In the right panel of Figure 2b is instead depicted the

composition of the generalized mode given by the combination
of ring wagging and breathing modes with both in plane and
out-of-plane ring deformations. This mode matches the normal
mode in Figure S4 with harmonic S1 frequency at 660 cm−1,
while the corresponding experimental FSRS band is recorded
at about 630 cm−1 (see Table 1).
By confronting the 2D wavelet map in the left panel of

Figure 2b with data in Table 1, the experimental frequency and
rise time of 300 fs are well reproduced for this vibrational band.
This mode has a decay time longer than 1 ps, and it is

characterized by an oscillating intensity behavior over the time.
Indeed, the wavelet spectrum shows that at the time of about
600 fs the signal starts to decrease, and then it raises again.
Spectra of generalized modes obtained by the present

procedure can show signals at different frequencies due to the
intrinsic anharmonicity. As a matter of fact, anharmonicity has
been proven to be responsible for the coupling between high
and low frequency modes in time-resolved vibrational
signals.24,65 In particular, low frequency vibrations at 360 and
190 cm−1, with time-resolved vibrational analysis reported in
Figure 3, show quite complex and informative spectra.
The signal at 360 cm−1 (see Figure 3a) is associated with the

deformation mode experimentally found at the frequency of
362 cm−1, and it appears at 600 fs. We note again the very
good agreement with the experimental frequency, as well as the
rise time of 650 fs. In the same spectrum, another important
signal is centered around 1156 cm−1. That is basically the
−COH phenolic rocking mode, experimentally found at 1154
cm−1. The 360 cm−1 mode is overall composed of a four ring
collective deformation and a strong phenolic −COH motion.
Nevertheless, the −COH rocking mode alone is located at

Figure 3. Q modes (right panels) and corresponding 2D wavelet power spectra (left panels). The color scale states for the intensity are in arbitrary
units: a) ring deformation modes associated with a strong −COH phenolic rocking, with an AIMD frequency of 320 cm−1, an exp. value of 321
cm−1, and an exp. rise time of 680 fs; b) COH phenolic rocking combined with the rocking motion of the nearby ring hydrogen, with an AIMD
frequency of 1156 cm−1 and an exp. value of 1154 cm−1; and c) a skeletal breathing mode, with an AIMD frequency of 190 cm−1, an exp. value of
191 cm−1, and an exp. decay time of 540 fs.
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1156 cm−1, and it was isolated and shown with the wavelet
map in Figure 3b. During the dynamics simulation, the
sampling of the 360 cm−1 mode involves also the −COH
rocking motion, and, as a consequence, the wavelet spectrum
shows a contribution from the band at 1156 cm−1. A further
contribution at about 500 cm−1, not experimentally observed,
is simulated in the spectrum of Figure 3a.
Lastly, in Figure 3c, the composition and wavelet spectrum

of the lower frequency ring breathing mode is shown. A
component below 200 cm−1, associated with the breathing
mode, is easily recognizable. Following the electronic
excitation, this mode quickly starts to rise showing a very
short lifetime, with a decay at about 300 fs. In addition, the
spectrum shows another important band appearing at about
500 fs in the 390−500 cm−1 region. This latter contribution
can be associated with a mode experimentally found at 460
cm−1, with a rise time of about 600 fs. From the static
frequencies calculation, the mode at 456 cm−1 seems to be very
similar to the breathing mode in terms of collective motion of
the four aromatic ring systems (see Figure S3). The AIMD
simulation made possible the sampling and isolation of the 191
cm−1 breathing mode, that is naturally and sequentially
coupled to the 460 cm−1. In the excited state wavelet
spectrum, we can observe the band at 460 cm−1 appearing
simultaneously with the breathing decay, qualitatively
reproducing the experimental rise time of 600 fs. This finding
has to be compared with the experimental assignment of a
signal at 460 cm−1 to the deprotonated HPTS chromophore.
The excited state trajectories64 show indeed a shorter bond
between the phenolic group of pyranine and hydrogen bonded
water molecule (i.e., the proton donor−acceptor pair). The
460 cm−1 transient mode seems to be rather characteristic of
the photoexcited HPTS protonated chromophore. A further
analysis of the composition of the breathing mode shows an
important contribution localized on the phenolic group, i.e.,
the COH phenolic rocking motion. The wavelet map in Figure
3c shows indeed also a signal localized at 1156 cm−1, as already
observed in the spectrum of 360 cm−1 mode. Hence, the three
components of vertical breathing (190 cm−1), horizontal
breathing (460 cm−1), and COH rocking (1156 cm−1) have
been sampled together.
In summary, we propose a new computational strategy for

the investigation of ultrafast nuclear photodynamics. The
present method is able to provide an accurate picture of the
time evolution of the photoactivated vibrational modes,
matching in many cases the kinetics time constants of the
experimental signals. As the first successful application, we
considered the case of pyranine photoacid, where nuclear
relaxation is finely controlled by a sequential and characteristic
activation of low frequency modes (<1000 cm−1). This
complex vibrational activity, observed by the FSRS experi-
ments, is mostly reproduced in our simulations.
The method can be generalized and adopted for the study of

photoinduced reactions. In particular, a promising extension of
the approach would be the prediction of the anharmonic
coupling between vibrational modes. The quantitative analysis
of the oscillatory paths of time-resolved signals would reveal
indeed the anharmonic coupling between frequencies.24,65
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