Loads of trematodes: discovering hidden diversity of paramphistomoids in Kenyan ruminants

MARTINA R. LAIDEMITT¹*, EVA T. ZAWADZKI¹, SARA V. BRANT¹, MARTIN W. MUTUKU², GERALD M. MKOJI² and ERIC S. LOKER¹

¹ Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, 167 Castetter MSCO3 2020 Albuquerque, New Mexico 87131, USA ² Center for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O. Box 54840-00200, Nairobi, Kenya

(Received 23 May 2016; revised 24 August 2016; accepted 7 September 2016; first published online 20 October 2016)

SUMMARY

Paramphistomoids are ubiquitous and widespread digeneans that infect a diverse range of definitive hosts, being particularly speciose in ruminants. We collected adult worms from cattle, goats and sheep from slaughterhouses, and cercariae from freshwater snails from ten localities in Central and West Kenya. We sequenced *cox1* (690 bp) and internal transcribed region 2 (ITS2) (385 bp) genes from a small piece of 79 different adult worms and stained and mounted the remaining worm bodies for comparisons with available descriptions. We also sequenced *cox1* and ITS2 from 41 cercariae/rediae samples collected from four different genera of planorbid snails. Combining morphological observations, host use information, genetic distance values and phylogenetic methods, we delineated 16 distinct clades of paramphistomoids. For four of the 16 clades, sequences from adult worms and cercariae/rediae matched, providing an independent assessment for their life cycles. Much work is yet to be done to resolve fully the relationships among paramphistomoids, but some correspondence between sequence- and anatomically based classifications were noted. Paramphistomoids of domestic ruminants provide one of the most abundant sources of parasitic flatworm biomass, and because of the predilection of several species use *Bulinus* and *Biomphalaria* snail hosts, have interesting linkages with the biology of animal and human schistosomes to in Africa.

Key words: Paramphistomoidea, biodiversity, DNA barcode, host specificity, Schistosoma.

INTRODUCTION

The Superfamily Paramphistomoidea is a prominent group of digeneans where adults are characterized by the absence of an oral sucker and the presence of an acetabulum at or near the posterior end of the body. The systematics of this group of digeneans is a work in progress. Sey (1991) concluded it is comprised of eight families, whereas Jones (2005a) concluded there are 12 families. Paramphistomoids are often called rumen flukes because many of the bestknown representatives live in this habitat in domestic ruminants. However, many species also inhabit the intestines of fish, amphibians, reptiles, birds and non-ruminant mammals. They feature a life cycle in which cercariae produced in rediae emerge from snails and encyst on vegetation as metacercariae, which are later ingested by the definitive host (Jones, 2005a). As part of a larger study to determine how digenean community diversity influences the transmission of schistosomes in Kenya, we provide new results regarding the overall diversity and host relationships of paramphistomoids in Kenya, based

* Corresponding author: Center for Evolutionary and Theoretical Immunology, University of New Mexico, Department of Biology, 167 Castetter MSCO3 2020, Albuquerque, New Mexico 87131, USA. E-mail: mlaidemitt@unm.edu on cercariae collected from snails and adult worms from domestic animals from abattoirs.

Paramphistomoids are of interest to parasitologists in several contexts. They are diverse in number of species and provide an understudied model group for those focused on revealing patterns and mechanisms of diversity. Of the 12 recognized paramphistomoid families recognized by Jones (2005a), representatives of nine occur in Africa. The diversity of paramphistomoids in Africa reflects the presence of many species of terrestrial mammals, including elephants, rhinoceroses, hippopotami and a rich diversity of wild and domestic ruminants. Three families in particular (Paramphistomidae, Gastrodiscidae and Gastrothylacidae) are speciose in Africa. The distribution of diversity in rumen hosts can partly be explained by characters (e.g. regressed pharyngeal appendages) that are apomorphic, which have allowed them to colonize the forestomach (Sey 1991). The three families comprise over 40% of all known paramphistomoids, the majority of which use ruminants as their definitive hosts (Sey, 1991).

Paramphistomoids have thick bodies, which make detailed morphological characterization of adult features and species identification challenging (Horak, 1971; Jones, 1991; Mage *et al.* 2002; Rinaldi *et al.* 2005). The bodies of paramphistomoid cercariae are also relatively thick and typically filled with

Parasitology (2017), **144**, 131–147. © Cambridge University Press 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0031182016001827

cystogenous material or pigment, also rendering identification difficult. Nonetheless, a meticulous framework for paramphistomoid identification and classification has been developed (see reviews by Sey, 1991; Jones, 2005a). Given the inherent difficulties in identification, coupled with a growing list of studies from other digenean groups documenting the presence of cryptic species (Detwiler et al. 2012; Herrmann et al. 2014; McNamara et al. 2014), paramphistomoids are ideal for studies attempting to meld traditional morphological identification with sequence data characterization provided by molecular approaches. The number of studies that use molecular techniques to provide assessments of the diversity of paramphistomoids have in general been limited, especially so for African species (Lotfy et al. 2010; Mansour et al. 2014; Sibula et al. 2014; Titi et al. 2014; Dube *et al.* 2015).

In addition to being speciose, paramphistomoids are often remarkably abundant (Horak, 1971; Cheruiyot and Wamae, 1988; Rolfe et al. 1994; Sanabria and Romero, 2008). In fact, one might be hard pressed to find a larger source of sheer digenean biomass than is presented routinely at abattoirs by ruminant paramphistomoids. Given the large worm populations that can occur in individual cattle, goats or sheep, vast numbers of paramphistomoid eggs are regularly passed into the environment. In rural West Kenya, we can routinely collect 10 000 paramphistomoid eggs from a single cow dung sample. As domestic ruminants regularly seek water from natural habitats, it is not surprising that many paramphistomoid eggs enter freshwater, creating the potential for high levels of infection in their snail hosts (Chingwena et al. 2002a; Mohammed et al. 2016).

A review of the East African paramphistomoid literature reveals that many of the described species are transmitted by Biomphalaria and Bulinus, the snail genera also of concern with respect to their role in transmission of human schistosomiasis in Africa (Dinnik, 1954; Dinnik and Dinnik, 1957; Dinnik, 1961; Eduardo, 1983; Brown, 1994; Chingwena et al. 2002b; Jones, 2005b, c). In some areas, Bulinus and Biomphalaria are the most commonly implicated snail hosts for paramphistomoids (Dinnik, 1965; Wright et al. 1979; Loker et al. 1981; Chingwena et al. 2002b; Ahmed et al. 2006; Mohammed et al. 2016). The presence of other digenean species utilizing the same snail species as schistosomes could be a factor that influences the overall success of animal and human schistosome transmission (Lim and Heyneman, 1972; Combes, 1982; Hechinger et al. 2011; Spatz et al. 2012). This is particularly so for species such as paramphistomoids that produce rediae as larval stages within their snail hosts, because rediae may attack, damage and consume schistosome sporocysts (Lim and Heyneman, 1972).

We collected cercariae and adult worms from ten localities in Kenya. We provide stained whole mounts and provisional identification of adults that are linked to sequence data for cytochrome oxidase 1 (cox1) and the internal transcribed region 2 (ITS2). In some cases, we provide matches with sequences obtained from cercariae and adult worms thus providing probable life cycle linkages. We also provide new hypotheses for phylogenetic relationships among the paramphistomoids that include available sequences from NCBI GenBank, which show that some species of paramphistomoids are geographically widespread throughout Africa. Data presented here will contribute to an increased understanding of the superfamily Paramphistomoidea, including providing greater clarification for how these worms are distributed among hosts, their potential roles if any in causing disease in domestic or wild animals, and their interactions with other digeneans, including schistosomes.

MATERIALS AND METHODS

Sampling

We collected larval and adult paramphistomoids from ten different localities in central and especially western Kenya between 2005 and 2015 (Table 1). All species of field-collected aquatic snails were brought to the laboratory at Kisian, near Kisumu, Kenya. The snails were cleaned and then placed individually into 12well tissue culture plates in 3 mL of aged tap water. The tissue culture plates were placed in natural light for 2 h to induce shedding of cercariae. Snails shedding cercariae were identified using keys and information in Brown and Kristensen (1989) and Brown (1994), and cercariae were preliminarily identified using keys (Frandsen and Christensen, 1984; Schell, 1985) and by reference to regional monographs (e.g. Fain, 1953). All cercariae designated as paramphistomoids were confirmed as such according to Sey (1991). Snails were either dissected at the time of collection to procure rediae, or re-shed two and four weeks later to determine if snails were harboring prepatent infections at the time of collection. Snails were kept in 20 L plastic tanks and fed red leaf lettuce following collection. Cercariae and rediae were preserved in 95% ethanol for later molecular analysis.

Adults were collected from the rumen or reticulum of *Bos indicus, Capra aegagrus hircus* and *Ovis aries* from one slaughterhouse in central Kenya and three in Western Kenya (Table 1). Adults were preserved in 95% ethanol for later molecular and morphological identification.

Staining adult worms

Adult worms were placed into 70% ethanol for 24 h prior to staining. Sections of the adult worms were

Table 1. Collection localities in central and west Kenya

Site name	Lat.	Long.
Asao Stream	-0.3181	35.0069
Katito Slaughterhouse	-0.2700	34.9719
Sondu Slaughterhouse	-0.3927	35.018
Kasabong Stream	-0.1519	34.3355
Mgosi Slaughterhouse	-0.0768	34.7754
Mwea	-0.8180	37.6220
Ng'alalia	-1.5357	37.2361
Kibwezi Slaughterhouse	-2.4167	37.9667
Nyabera Swamp	-0.1091	34.7750
Powerhouse Lake Victoria	-0.0941	34.7076

stained and mounted according to Eduardo (1982). Because of their thickness, each adult was sectioned frontally using a razor blade. Part of the posteroterminally placed acetabulum was severed and used for molecular analysis.

Collection of molecular data

A partial sequence of cox1 mtDNA and internal transcribed spacer two (ITS2) were amplified by polymerase chain reaction (PCR) to facilitate differentiation among paramphistomoid specimens. One to six cercariae, one to three rediae or a portion of the acetabulum from adults were used for DNA extraction. Genomic DNA was extracted from 120 paramphistomoid samples (Table 2) by the alkaline-lysis (HOT-SHOT) method (Truett et al. 2000), or by the QIA amp DNA Micro Kit following the manufacturer's instructions, with a final elution volume of $30 \,\mu\text{L}$ (Qiagen, Valencia, CA). Although not the equal of the QIAamp Kit with respect to absolute quality of the DNA produced, the HOT-SHOT method also produced DNA of quality and proved more amenable for use under conditions where controlled conditions were less available.

Cox1 oligonucleotide primers were designed based on the barcode region (Folmer et al. 1994) and on conserved regions in the Fasciola hepatica (NC_ 002546), Paragonimus westermani (AF219379) and Paramphistomum cervi (NC_023095) mitochondrial genomes. Cox1 was amplified using primers 123F [5'-ATTCGTTTGAACTATATGGA-3'] and 858R [5'-CATATGATGAGCCCAAACAAC-3']. The volume of each PCR reaction was $25 \,\mu$ L with 1 μ L of 100 ng of DNA, 0.8 mM L⁻¹ dNTPs, 2.5 mM L⁻¹ MgCl2, 0.25 units of Ex Taq DNA (Clontech, Mountain View, CA) and $0.4 \,\mu\text{M}$ L of each primer. PCR cycles were programmed as follows: 2 min denaturation hold at 94 °C; 94 °C for 1 min, 46 °C for 30 s and 72 °C for 1 min for three cycles; 94 °C for 1 min, 45 °C for 30 s, and 72 °C for 1 min for three cycles; 94 °C for 1 min, 44 °C for 30 s and 72 °C for 1 min for three cycles; 94 °C for 1 min, 44 °C for 30 s and 72 °C for 1 min for 20 cycles, and followed by an extension step for 7 min at 72 °C.

ITS2 was amplified using GA1 [5'-AGA ACA TCG ACA TCT TGA AC-3'] (Anderson and Barker, 1998) and BD2 primers [5'-TAT GCT TAA ATT CAG CGG GT-3'] (Bowles *et al.* 1995). The volume of each reaction was $25 \,\mu$ L, with $12 \cdot 5 \,\mu$ L of Premix TaqTM (Clontech, Mountain View, CA), $0.4 \,\mu$ M L⁻¹ of each primer, and one μ L of 55 ng of DNA. PCR cycles were performed on Eppendorf Mastercycler epigradient machines, which were programmed as follows: 1 C s⁻¹ rate of change, one cycle at 98 °C for 10 s, followed by 30 cycles of 98 °C for 1 min, 52 °C for 2 min and 72 °C for 1 min with an extension step for 7 min at 72 °C.

PCR fragments were separated by agarose gel electrophoresis and visualized with 0.5% GelRed[™] Nucleic acid gel stain (Biotium, Hayward, CA). PCR products were purified using the QIAquick purification kit (Qiagen, Valencia, CA) or by ExoSap-IT[®] (Affymetrix, Santa Clara, CA). Both strands were sequenced using an Applied Biosystems 3130 automated sequencer and BigDye terminator cycle sequencing kit Version 3.1 (Applied Biosystems, Foster City, CA). DNA sequences were verified by aligning reads from the 5' and 3' directions using Sequencher 5.0 and manually corrected for ambiguous base calls (Gene Codes, Ann Arbor, MI).

Outgroup determination

To determine the most appropriate outgroup available for our data, we reconstructed trees with the most likely outgroups based on Lockyer et al. (2003) and chose the sister group to the paramphistomoids (ingroup). Species from the following nine families were used from 12 digenean mitochondrial genomes for maximum-likelihood (ML) analysis: Dicrocoelium dendriticum (NC_025280), Fasciola gigantica (NC 024025), P. cervi (NC 023095), Opisthorchis felineus (NC_011127), Clonorchis sinensis (NC_012147), Orthocoelium streptocoelium (NC_028071), Echinostoma hortense (NC_028010), Fischoederius elgonatus (NC_028001), P. westermani (NC_027673), Eurytrema pancreaticum (NC_026916), F. hepatica (NC 002546) and Ogmocotyle sikae (NC 027112).

Sequence alignment and phylogenetic analyses

Phylogenetic analyses were done with *cox*1 and ITS2 sequences using ML and Bayesian interference (BI). The analysis included four specimens from NCBI-GenBank for *cox*1 and 43 for ITS2 (Table 2). Non-identical haplotypes of *cox*1 and ITS2 sequences were aligned by eye and edited in MEGA6 (Tamura *et al.* 2013). A total of 690 bases

Specimen name host	Provisional ID	Stage	Locality	Year	MSB/KEMRI Voucher	GenBank ITS2	GenBank cox1
PA1 Goat	Calicophoron microbothrium	Adult	Asao Stream	Aug-12	MSB:Para:25079	KX668901	KX670098
PA2 Cattle	Cotylophoron sp.	Adult	Mgosi	Feb-13	MSB:Para:25101	KX668933	KX670128
PA3 Cattle	Calicophoron clavula	Adult	Mgosi	Jan-10	MSB:Para:25088	KX668944	KX670139
PA4 Sheep	Calicophoron raja	Adult	Mgosi	Feb-13	MSB:Para:25078	KX668955	KX670150
PA5 Cattle	Calicophoron raja	Adult	Mgosi	Oct-13	MSB:Para:25051	KX668966	KX670161
PA6 Goat	Calicophoron phillerouxi	Adult	Asao Stream	Aug-12	MSB:Para:25080	KX668977	KX670172
PA7 Goat	Calicophoron microbothrium	Adult	Mgosi	Oct-13	MSB:Para:25050	KX668988	KX670183
PA8 Sheep	Paramphistomoidea	Adult	Mgosi	Nov-13	MSB:Para:25047	KX668999	KX670194
PA9 Sheep	Paramphistomoidea	Adult	Mgosi	Dec-13	MSB:Para:25053	KX669010	KX670205
PA10 Cattle	Carmyerius mancupatus	Adult	Mgosi	Jan-14	*MSB:Para:25300/KEMRI:Para:1	KX668902	KX670099
PA11 Cattle	Cotylophoron sp.	Adult	Mgosi	Jan-14	*MSB:Para:25045/KEMRI:Para:2	KX668913	KX670108
PA12 Cattle	Carmyerius gregarius	Adult	Mgosi	Jan-14	*MSB:Para:25055/KEMRI:Para:3	KX668924	KX670119
PA13 Goat	Cotylophoron sp.	Adult	Mgosi	Jan-14	*MSB:Para:25157//KEMRI:Para:4	KX668926	KX670121
PA14 Sheep	Calicophoron raja	Adult	Mgosi	Jan-14	*MSB:Para:25153/KEMRI:Para:5	KX668927	KX670122
PA15 Ceratophallus natalensis	Paramphistomoidea	Cercariae	Nyabera	Jan-05	MSB:Para:25059	KX668928	KX670123
PA16 Ceratophallus natalensis	Paramphistomoidea	Cercariae	Nyabera	Jan-05	MSB:Para:25060	KX668929	KX670124
PA17 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Kasabong	Jan-14	*MSB:Para:25138/KEMRI:Para:6	KX668930	KX670125
PA18 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao Stream	Feb-13	MSB:Para:25065	KX668931	KX670126
PA19 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao Stream	Jan-15	*MSB:Para:25287/KEMRI:Para:7	KX668932	KX670127
PA20 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao Stream	Jan-15	*MSB:Para:25288/KEMRI:Para:8	KX668934	KX670129
PA21 Bulinus forskalii	Calicophoron phillerouxi	Cercariae	Mwea	Feb-13	MSB:Para:25064	KX668935	KX670130
PA22 Bulinus forskalii	Calicophoron microbothrium	Cercariae	Ng'alalia	May-10	MSB:Para:25150	KX668936	KX670131
PA23 Biomphalaria pfeifferi	Unknown	Cercariae	Asao Stream	Jul-15	*MSB:Para:25289/KEMRI:Para:9	KX668937	KX670132
PA24 Cattle	Carmyerius gregarius	Adult	Mgosi	May-10	MSB:Para:25113	KX668938	KX670133
PA25 Cattle	Carmyerius mancupatus	Adult	Mgosi	Jun-14	*MSB:Para:25070/KEMRI:Para:10	KX668939	KX670134
PA26 Cattle	Carmyerius exporous	Adult	Mgosi	Jun-14	*MSB:Para:25071/KEMRI:Para:11	KX668940	KX670135
PA27 Cattle	Calicophoron microbothrium	Adult	Mgosi	Jun-14	*MSB:Para:25073/KEMRI:Para:12	KX668941	KX670136
PA28 Cattle	Calicophoron raja	Adult	Mgosi	Jan-10	MSB:Para:25085	KX668942	KX670137
PA29 Cattle	Calicophoron microbothrium	Adult	Kibwezi	Oct-13	MSB:Para:25092	KX668943	KX670138
PA30 Cattle	Calicophoron microbothrium	Adult	Kibwezi	Oct-13	MSB:Para:25093	KX668945	KX670140
PA31 Segmentorbis	Gastrothylacidae	Cercariae	Lake Victoria	Oct-13	MSB:Para:25094	KX668946	KX670141
PA32 Segmentorbis	Gastrothylacidae	Cercariae	Lake Victoria	Oct-13	MSB:Para:25095	KX668947	KX670142
PA33 Cattle	Carmyerius exporous	Adult	Mgosi	Jan-10	MSB:Para:25114	KX668948	KX670143
PA34 Segmentorbis	Gastrothylacidae	Cercariae	Lake Victoria	Oct-13	MSB:Para:25096	KX668949	KX670144
PA35 Cattle	Calicophoron microbothrium	Adult	Mgosi	Jan-10	MSB:Para:25115	KX668950	KX670145
PA36 Ceratophallus natalensis	Carmyerius mancupatus	Cercariae	Nyabera	Jan-15	*MSB:Para:25290/KEMRI:Para:13	KX668951	KX670146
PA37 Cattle	Cotylophoron sp.	Adult	Mgosi	Feb-13	MSB:Para:25109	KX668952	KX670147
PA38 Cattle	Carmyerius exporous	Adult	Mgosi	Feb-13	MSB:Para:25145	KX668953	KX670148
PA39 Cattle	Calicophoron phillerouxi	Adult	Mgosi	Feb-13	MSB:Para:25108	KX668954	KX670149
PA40 Cattle	Calicophoron clavula	Adult	Mgosi	Jan-10	MSB:Para:25081	KX668956	KX670151
PA41 Cattle	Calicophoron microbothrium	Adult	Mgosi	Jan-14	*MSB:Para:25048/KEMRI:Para:14	KX668957	KX670152
	-				,		KX670153
PA41 Cattle PA42 Cattle	Calicophoron microbothrium Cotylophoron sp.	Adult Adult	Mgosi	Jan-14 Jan-14	*MSB:Para:25048/KEMRI:Para:14 *MSB:Para:25054/KEMRI:Para:15	KX668957 KX668958	

Table 2. Specimen name, host collected from, collection locality, provisional identification, Museum of Southwestern Biology/KEMRI voucher numbers, and GenBank accession numbers of paramphistomoid specimens used in this study

134

PA43 Cattle	Cotylophoron cotylophorum	Adult	Mgosi	Jan-10	MSB:Para:25083	KX668959	KX670154	1
PN1 Notocotylidae	Notocotylidae	Cercariae	Lake Victoria	Jan-15	*MSB:Para:25299/KEMRI:Para:16	KX669021	KX670216	he
PA44 Goat	Cotylophoron sp.	Adult	Mgosi	Jan-14	*MSB:Para:25302/KEMRI:Para:17	KX668960	KX670155	di
PA45 Cattle	Calicophoron phillerouxi	Adult	Mgosi	Oct-13	MSB:Para:25057	KX668961	KX670156	vei
PA46 Cattle	Calicophoron phillerouxi	Adult	Katito	Mar-13	MSB:Para:25142	KX668962	KX670157	rse
PA47 Sheep	Calicophoron phillerouxi	Adult	Mgosi	Jan-13	MSB:Para:25105	KX668963	KX670158	рa
PA48 Goat	Calicophoron phillerouxi	Adult	Asao	Aug-12	MSB:Para:25075	KX668964	KX670159	ura
PA49 Goat	Calicophoron phillerouxi	Adult	Asao	Aug-12	MSB:Para:25076	KX668965	KX670160	1m
PA50 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Kasabong	Jan-15	*MSB:Para:25291/KEMRI:Para:18	KX668967	KX670162	ohi
PA51 Cattle	Cotylophoron sp.	Adult	Mgosi	Feb-13	MSB:Para:25107	KX668968	KX670163	sto
PA52 Cattle	Cotylophoron sp.	Adult	Katito	Feb-13	MSB:Para:25144	KX668969	KX670164	tomoids
PA53 Sheep	Cotylophoron sp.	Adult	Sondu	Feb-13	MSB:Para:25058	KX668970	KX670165	nd
PA54 Goat	Cotylophoron sp.	Adult	Mgosi	Feb-13	MSB:Para:25102	KX668971	KX670166	s of
PA55 Cattle	Cotylophoron sp.	Adult	Mgosi	Feb-13	MSB:Para:25102 MSB:Para:25041	KX668972	KX670167	
	Cotylophoron sp.			Feb-13 Feb-13	MSB:Para:25074	KX668973		Kenya
PA56 Cattle		Adult	Mgosi				KX670168	iye
PA57 Cattle	Cotylophoron sp.	Adult	Mgosi	Feb-13	MSB:Para:25099	KX668974	KX670169	~
PA58 Cattle	Cotylophoron sp.	Adult	Mgosi	Jan-14	*MSB:Para:25292/KEMRI:Para:28	KX668975	KX670170	
PA59 Cattle	Cotylophoron sp.	Adult	Mgosi	Feb-13	MSB:Para:25106	KX668976	KX670171	
PA60 Segmentorbis	Gastrothylacidae	Cercariae	Lake Victoria	Oct-13	MSB:Para:25097	KX668978	KX670173	
PA61 Cattle	Carmyerius exporous	Adult	Katito	Feb-13	MSB:Para:25143	KX668979	KX670174	
PA62 Cattle	Carmyerius exporous	Adult	Katito	Feb-13	MSB:Para:25110	KX668980	KX670175	
PA63 Cattle	Carmyerius exporous	Adult	Mgosi	Jun-14	*MSB:Para:25069/KEMRI:Para:33	KX668981	KX670176	
PA64 Cattle	Carmyerius exporous	Adult	Katito	Feb-13	MSB:Para:25038	KX668982	KX670177	
PA65 Cattle	Carmyerius exporous	Adult	Katito	Feb-13	MSB:Para:25036	KX668983	KX670178	
PA66 Cattle	Carmyerius exporous	Adult	Katito	Feb-13	MSB:Para:25112	KX668984	KX670179	
PA67 Cattle	Carmyerius exporous	Adult	Katito	Feb-13	MSB:Para:25140	KX668985	KX670180	
PA68 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25135	KX668986	KX670181	
PA69 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Kasabong	Mar-13	MSB:Para:25293	KX668987	KX670182	
PA70 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Kasabong	Jun-14	*MSB:Para:25297/KEMRI:Para:34	KX668989	KX670184	
PA71 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25120	KX668990	KX670185	
PA72 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25124	KX668991	KX670186	
PA73 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Aug-12	MSB:Para:25068	KX668992	KX670187	
PA74 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Aug-12	MSB:Para:25116	KX668993	KX670188	
PA75 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25121	KX668994	KX670189	
PA76 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Kasabong	Jul-14	*MSB:Para:25294/KEMRI:Para:35	KX668995	KX670190	
PA77 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25118	KX668996	KX670191	
PA78 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25134	KX668997	KX670192	
PA79 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Feb-13	MSB:Para:25295	KX668998	KX670193	
PA80 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Kasabong	Jan-15	*MSB:Para:25296/KEMRI:Para:19	KX669000	KX670195	
PA81 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25136	KX669001	KX670196	
PA82 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25137	KX669002	KX670197	
PA83 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25119	KX669003	KX670198	
PA84 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Feb-13	MSB:Para:25063	KX669004	KX670199	
PA85 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25122	KX669005	KX670200	
PA86 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25122 MSB:Para:25123	KX669006	KX670201	
PA87 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25125	KX669007	KX670202	
1 1307 Diomphatanta pjetjjen	1 arampinstomoldea	Cercariae	11540	ivial - 1 3	1910 10.1 a1a.23123	1111007007	11110/0202	-

Tab	le 2.	(Cont.)	
1 400		(00,000,000)	

Specimen name host	Provisional ID	Stage	Locality	Year	MSB/KEMRI Voucher	GenBank ITS2	GenBank cox1
PA88 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25126	KX669008	KX670203
PA89 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25127	KX669009	KX670204
PA90 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25128	KX669011	KX670206
PA91 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Asao	Mar-13	MSB:Para:25130	KX669012	KX670207
PA92 Cattle	Carmyerius exporous	Adult	Sondu	Feb-13	MSB:Para:25301	KX669013	KX670208
PA93 Cattle	Carmyerius exporous	Adult	Sondu	Feb-13	MSB:Para:25141	KX669014	KX670209
PA94 Cattle	Carmyerius exporous	Adult	Sondu	Feb-13	MSB:Para:25151	KX669015	KX670210
PA95 Cattle	Carmyerius exporous	Adult	Katito	Feb-13	MSB:Para:25043	KX669016	KX670211
PA96 Cattle	Carmyerius exporous	Adult	Sondu	Feb-13	MSB:Para:25111	KX669017	KX670212
PA97 Cattle	Carmyerius exporous	Adult	Katito	Feb-13	MSB:Para:25037	KX669018	KX670213
PA98 Cattle	Carmyerius exporous	Adult	Sondu	Feb-13	MSB:Para:25044	KX669019	KX670214
PA99 Biomphalaria pfeifferi	Paramphistomoidea	Cercariae	Kasabong	Jun-14	*MSB:Para:25298/KEMRI:Para:20	KX669020	KX670215
PA100 Sheep	Carmyerius mancupatus	Adult	Sondu	Oct-13	MSB:Para:25154	KX668903	KX670100
PA101 Goat	Carmyerius mancupatus	Adult	Mgosi	Jan-14	*MSB:Para:25067/KEMRI:Para:21	KX668904	KX670101
PA102 Goat	Calicophoron raja	Adult	Mgosi	Jan-14	*MSB:Para:25052/KEMRI:Para:22	KX668905	KX670102
PA103 Goat	Calicophoron raja	Adult	Mgosi	Jan-14	*MSB:Para:25046/KEMRI:Para:23	KX668906	KX670103
PA104 Cattle	Calicophoron raja	Adult	Mgosi	Jan-14	*MSB:Para:25100/KEMRI:Para:24	KX668907	KX670104
PA105 Cattle	Calicophoron raja	Adult	Mgosi	Jan-14	*MSB:Para:25281/KEMRI:Para:25	KX668908	KX670105
PA106 Goat	Calicophoron raja	Adult	Asao	Jan-14	*MSB:Para:25077/KEMRI:Para:26	KX668909	KX670106
PA107 Sheep	Calicophoron microbothrium	Adult	Katito	Jan-14	*MSB:Para:25049/KEMRI:Para:27	KX668910	KX670107
PA108 Cattle	Calicophoron microbothrium	Adult	Sondu	Feb-13	MSB:Para:25039	KX668911	KX670096
PA109 Cattle	Calicophoron microbothrium	Adult	Mgosi	Feb-13	MSB:Para:25282	KX668912	KX670097
PA110 Cattle	Calicophoron microbothrium	Adult	Mgosi	Jan-10	MSB:Para:25089	KX668914	KX670109
PA111 Cattle	Calicophoron microbothrium	Adult	Mgosi	Jan-14	*MSB:Para:25139/KEMRI:Para:29	KX668915	KX670110
PA112 Bulinus forskalii	Calicophoron microbothrium	Cercariae	Kasabong	Jan-15	*MSB:Para:25283/KEMRI:Para:36	KX668916	KX670111
PA113 Cattle	Calicophoron microbothrium	Adult	Kibewze	Oct-13	MSB:Para:25091	KX668917	KX670112
PA114 Goat	Calicophoron microbothrium	Adult	Mgosi	Jan-14	*MSB:Para:25284/KEMRI:Para:30	KX668918	KX670113
PA115 Goat	Calicophoron microbothrium	Adult	Mgosi	Jan-14	*MSB:Para:25056/KEMRI:Para:31	KX668919	KX670114
PA116 Cattle	Calicophoron microbothrium	Adult	Mgosi	Jan-14	*MSB:Para:25285/KEMRI:Para:32	KX668920	KX670115
PA117 Sheep	Calicophoron microbothrium	Adult	Katito	Feb-13	MSB:Para:25152	KX668921	KX670116
PA118 Goat	Calicophoron microbothrium	Adult	Mgosi	Jan-10	MSB:Para:25090	KX668922	KX670117
PA119 Cattle	Calicophoron microbothrium	Adult	Sondu	Feb-13	MSB:Para:25286	KX668923	KX670118
PA120 Cattle	Calicophoron microbothrium	Adult	Sondu	Feb-13	MSB:Para:25040	KX668925	KX670120

PA1-PA44 contain representatives of the 16 different clades used to construct the ML and Bayesian trees. PA45-PA120 were included in the preliminary trees. An (*) denotes samples that are in Kenya.

were used for cox1 alignment and 385 bases for ITS2 alignments. Sequences generated in this study were submitted to GenBank (Table 2). ML analyses used PAUP* 4.0 b10 (Wilgenbusch and Swofford, 2003) and BI analyses were carried out using MrBayes (v 3.12) (Ronquist and Huelsenbeck, 2003). MrModeltest 2.0 (Nylander, 2004) was used to find the best fit model of substitution for BI and ML for both genes. Heuristic searchers were utilized for ML analyses (excluding the third codon for *cox*1) and 100 bootstrap replicates were run for each dataset. For BI analyses of the cox1 dataset (excluding the third codon for cox1), the parameters were: nst = 6, rates = invgamma and ngammacat = 4. Four heated chains were run simultaneously for 1 000 000 generations. For BI analyses of the ITS2 dataset, the parameters were: nst = 6, rates =gamma and ngammacat = 4. Four heated chains were run simultaneously for 1 400 000 generations. In both datasets, the trees were sampled every 100 cycles, and the first 25% of trees with pre-asymptotic likelihood scores were discarded as burn-in. A number of generations were determined sufficient because the s.d. dropped below 0.01 at the end of the runs.

Nucleotide substitution saturation at the third codon was tested in DAMBE5 (Xia, 2013) for cox1. Uncorrected pairwise distance values were calculated in MEGA6 (Tamura et al. 2013). Data were summarized within and between groups (Tables 3 and 4). We used similar criteria of other studies that used a P-distance value >5% difference with cox1 and nd1 mtDNA markers and >1.0% for ITS to indicate separate species (Vilas et al. 2005; Brant and Loker, 2009; Detwiler et al. 2010).

RESULTS

Samples

Paramphistomoid adults were collected from three species of ruminants and cercariae and/or rediae were collected from four different genera of planorbid snails (Biomphalaria, Bulinus, Ceratophallus, Segmentorbis) from ten localities in central and west Kenva (Tables 1 and 2). Paramphistomoid cercariae were not found in other snail species examined (Melanoides tuberculata, Radix natalensis, Physa acuta and Bellamya unicolor). Ruminants were typically heavily infected, and often hundreds of adult worms could be quickly collected per host. From our samples collected, we examined and sequenced 79 adult and 41 cercariae specimens (120 total specimens) that represented obvious variants. To facilitate sampling if a large numbers of adult worms were acquired from a single host, we separated them by differences in adult host morphology (size and presence of a pouch or a genital sucker). To further assure collection of a diversity of specimens,

14 15 16			0-004 0-109 0-010	0.110 0.111 0.013
13 1		0.012	0.088	
12		0-009 0-123	0.129 0.130	0.131
11		0.160	0.145 0.165	0.157
10	0.140	0.130 0.141	0.138 0.134	0.142
6	0-010 0-128 0-155	0.136 0.123	$0.121 \\ 0.122$	0.140
8	- 0.063 0.155	0.145 0.140	0.132 0.127	0.130
7	- 0.105 0.140 0.145	0.144	0.135 0.135	0.137
9	-0.098 0.062 0.161 0.126	0.135 0.135	0.130 0.121	0.147
S	0-010 0-120 0-128 0-128 0-128 0-128 0-133	0.122	0.131 0.124	0.130
4	0-003 0-126 0-133 0-134 0-132 0-132 0-132 0-164	0.138 0.149	0.150	0.145
3	0-003 0-132 0-143 0-162 0-163 0-163 0-163 0-168	0.157	0.176 0.176	0.170
2	0-011 0-108 0-108 0-127 0-155 0-155 0-165 0-165 0-146 0-138 0-155	0.156 0.164	0.162 0.162	0.151
1	$\begin{array}{c} - \\ 0.185 \\ 0.199 \\ 0.175 \\ 0.167 \\ 0.167 \\ 0.167 \\ 0.167 \\ 0.167 \\ 0.167 \end{array}$	0.151	0.158 0.161	0.165
N	1 1 2 2 2 4 1 1 1 2 2 2 2	30 - 30 -	~ ~1 ∝	ى در
Clade	1. Clade 1 2. Clade 2 3. Clade 2 4. Clade 4 5. Clade 4 5. Clade 5 6. Clade 6 7. Clade 7 8. Clade 8 9. Clade 10 10. Clade 10	12. Clade 12	15. Clade 15	16 Clade 16

Table 3. Intra- and interclade P- distance values of cow1 amplified from paramphistomoids from Kenya

Values in bold are intraclade divergences. Note that "-" indicates only a single specimen was collected and within distances could

not be calculated

Clade	N	1	2	3	4	Ŋ	9	7	8	6	10	11	12	13	14	15	16
1. Clade 1	1	I															
2. Clade 2	17	0.063	0.003														
3. Clade 3	2	0.065	0.009	0.000													
4. Clade 4	ы	0.064	0.009	0.016	0.005												
5. Clade 5	4	0.061	0.010	0.015	0.011	0.002											
6. Clade 6	1	0.077	0.042	0.045	0.043	0.038	I										
7. Clade 7	1	0.073	0.038	0.042	0.039	0.034	0.004	I									
8. Clade 8	1	0.073	0.038	0.042	0.039	0.034	0.004	0.001	I								
9. Clade 9	13	0.075	0.040	0.044	0.042	0.036	0.007	0.003	0.003	0.003							
10. Clade 10	2	0.068	0.017	0.023	0.018	0.014	0.040	0.036	0.036	0.039	0.003						
11. Clade 11	2	0.058	0.018	0.025	0.019	0.015	0.041	0.038	0.038	0.040	0.019	0·00					
12. Clade 12	30	0.067	0.036	0.042	0.038	0.034	0.050	0.046	0.046	0.048	0.038	0.021	0.003				
13. Clade 13	6	0.061	0.021	0.027	0.022	0.018	0.042	0.038	0.038	0.040	0.025	0.018	0.026	0.003			
14. Clade 14	2	0.057	0.022	0.029	0.023	0.019	0.035	0.031	0.031	0.034	0.026	0.017	0.025	0.006	0.001		
15. Clade 15	8	0.060	0.020	0.026	0.021	0.017	0.038	0.034	0.034	0.037	0.024	0.015	0.023	0.004	0.003	0.001	
16. Clade 16	22	0.061	0.027	0.033	0.028	0.023	0.040	0.035	0.035	0.038	0.030	0.021	0.029	0.011	0.004	0.007	0.003

Outgroup determination

With the diversity of sequence data available in GenBank, our analysis revealed that O. sikae (Notocotylidae) is more closely related to paramphistomoids than members of Echinostomatidae or Fasciolidae used as outgroups for other paramphistomoid molecular phylogenies (Lotfy et al. 2010; Shylla et al. 2011; Ghatani et al. 2012). For phylogenetic analyses of both genes, we used three species of notocotylids as outgroup taxa.

Cox1 phylogenetic analyses and pairwise distance divergences

In general, trees were first constructed incorporating all 120 specimens (Supplementary Figs. S1 and S2). Because some clades were represented by multiple specimens (haplotypes with a 1-4 bp difference for cox1) we reduced the number of specimens per clade to simplify the trees for display purposes (Figs. 1 and 2). Many of the deeper nodes were not supported; however, the trees nonetheless provided a useful way to visualize the overall diversity of specimens found, and to provide comparisons with available systematic treatments. The specific clades identified (names next to the bolded black vertical lines) on the *cox*1 tree represent conspecifics (Fig. 1).

Partial sequences of cox1 (690 bp) were obtained for all 120 samples (Supplementary Fig. S1). ML and BI (Supplementary Fig. S3) trees were created for the cox1 alignment, and the ML tree is shown (Fig. 1). MrModeltest 2.3 selected the GTR + I + G model of nucleotide substitution. Based on bootstrap and posterior probabilities in Table 3, 16 distinct cox1 clades were identified among Kenyan specimens and are portrayed alongside the tree in Fig. 1 (vertical black lines or arrows). We used genetic distance data to determine if a clade was comprised more than one species. A single species was of determined for specimens with genetic distance values <1.3%, and species were designated as distinct when genetic distance values were >6.2% (Table 3). Most interclade pairwise distance values were >10.0% and they ranged up to 19.9%. These same clade numbers or scientific names were also used adjacent to the ITS2 tree in Fig. 2.

ITS2 phylogenetic analyses and pairwise distance divergences

For ITS2, sequences were obtained from all 120 samples and our phylogenetic analyses also included 46 samples from GenBank (Supplementary Fig. S2). The ITS2 alignment included 61 bp of 5.8S, 283 bp of ITS2 and 46 bp of 28S. The average intraclade

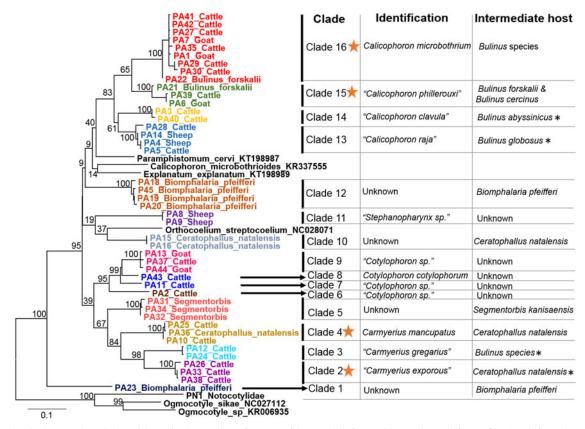


Fig. 1. Phylogenetic relationships of 44 samples of paramphistomoids from this study and from GenBank based on *cox*1 (690 bp) sequences inferred from ML (bootstrap values) analysis. Specimens are named based on sample name, the host it was collected from and are colour coded based on intraclade *P*-distance values <1.3% and interclade values >6.5%. An orange star represents clades where we matched cercariae and adult sequences. Identifications were made based on GenBank sequences and on the species descriptions in the literature (parentheses). An (*) denotes intermediate host use from studies in the literature that have not been sequenced confirmed.

pairwise distance was 0.30% and the average interclade pairwise distance was 3.9% (Table 4). MrModeltest 2.3 selected the GTR+G model of nucleotide substitution for ITS2. Both BI and ML analyses were run using 33 or 46, respectively, additional relevant species sequences from GenBank, with the ML tree shown (Figs 2 and Fig S4). Not surprisingly, the degree of resolution provided by phylogenetic analysis of ITS2 sequences was not high given the more conservative rate of change of this widely used nuclear gene marker (Locke et al. 2010). Based on ML and BI analyses, 12 ITS2 clades were identified among our Kenyan specimens (Fig. 2 and Supplementary Fig. S4). Intraclade genetic distance values were <0.6%, and interclade genetic distance values were >1.0%.

Further comparisons of the cox1 and ITS2 datasets

Cox1 and ITS2 trees did not conflict, but the ITS2 trees did not have as much support for the deeper nodes as cox1 (Figs 1 and 2). All 12 clades from ITS2 were represented in the cox1 dataset. The cox1 genetic distance data enabled differentiation

among some of the worms clustered with *Cotylophoron cotylophorum* in the ITS2 dataset, and also clearly differentiated clades 14 and 15 (Fig. 2).

In three cases (clades 4, 10 and 16), cox1 sequence matches (<1.3%) were obtained between worms from ruminants and cercariae from snails (Fig. 1, orange stars). Clade 2 matched an ITS2 sequence from GenBank of cercariae from Ceratophallus natalensis, thus also confirming the intermediate host for this clade (Fig. 1). In four cases (clades 1, 5, 10 and 12), sequences were found from cercariae with no matches from adult worms for either sequence (Fig. 1). In at least five cases (PA7, PA26, PA27, PA35 and PA42), the ITS2 nuclear sequences obtained clustered in different clades than what is seen in the cox1 trees (clades highlighted with red star in Fig. 2). These samples appear to have nuclear mitochondrial discordance (NMD) and are identified as worms with likely hybrid ancestry (see discussion).

Provisional identification of the paramphistomoids

Provisional identifications were based on the paramphistomoid systematics literature (Eduardo,

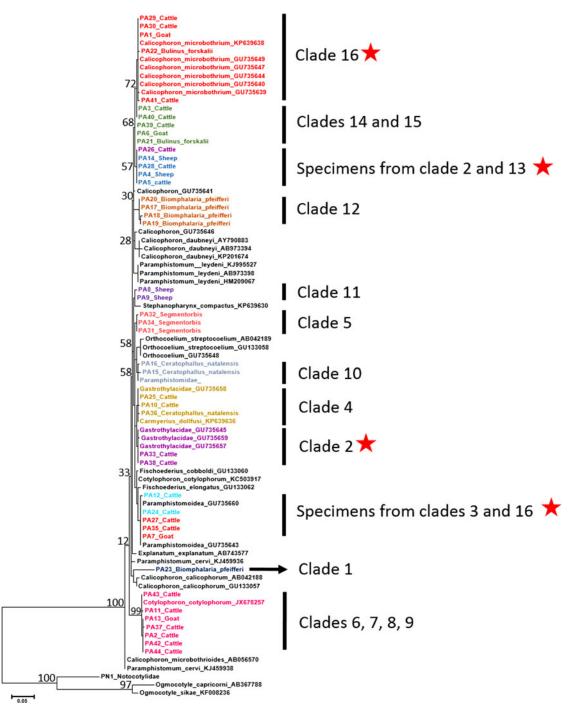


Fig. 2. Phylogenetic relationships of 44 samples of paramphistomoids from this study and from GenBank based on ITS2 (385 bp) sequences inferred from ML (bootstrap values) analysis. Specimens are named based on sample name, the host it was collected from, and colour coded based on clade designation from cox1 distance values. A red star represents clades where we have found evidence of putative hybrids. Adjacent to these indicated clades, are clade numbers that correspond to the same specimens and clade numbers as appearing on the cox1 tree (Fig. 1).

1983; Sey, 1991; Jones, 2005*b*, *c*, *d*) pertaining to intermediate or definitive host use, and descriptions of adult worms in comparison to our mounted adult specimens (Table 5, Fig. 3). Some of the sequences we obtained matched sequences from named species in GenBank, and in those cases the names we provide here are the ones from GenBank (clades 4, 8 and 16). Four clades were represented only by

cercariae and did not match any sequences derived from adult worms in this study or from GenBank. These included two clades from *B. pfeifferi* (clades 1 and 12), one from *Segmentorbis kanisaensis* (clade 5) and one from *C. natalensis* (clade 10). Our 16 clades represented three different families of Paramphistomoidea: Gastrothylacidae, Paramphistomidae and Stephanopharyngidae. Species names in quotation

Clade	Provisional identification	Stage	Ventral pouch	Acetabulum type	Genital sucker	Known intermediate hosts	Hosts from this study	References
1	Unknown	С	n/a	n/a	n/a	n/a	B. pfeifferi	(Sey, 1991; Jones, 2005 <i>a</i>)
2	Carmyerius exporus	С, А	Yes	Ċarmyerius	No	Ćeratophallus natalensis	C. natalensis and cattle	(Dinnik, 1965; Sey, 1991; Jones, 2005 <i>c</i>)
3	Carmyerius gregarius	А	Yes	Carmyerius	No	Bulinus species	Cattle	(Looss, 1896; Sey, 1991)
4	Carmyerius mancupatus	С, А	Yes	Gastrothylax	No	Ceratophallus natalensis	<i>C. natalensis</i> , cattle, sheep and goats	(Gretillat, 1964; Dinnik, 1965; Sey, 1991; Jones, 2005 <i>c</i>)
5	Unknown	С	n/a	n/a	n/a	n/a	S. kanisaensis	(Sey, 1991; Jones, 2005c)
6	Cotylophoron sp.	А	No	Cotylophoron	Yes	Unknown	Cattle	(Sey, 1991; Jones, 2005b)
7	Cotylophoron sp.	А	No	Cotylophoron	Yes	Unknown	Cattle	(Sey, 1991; Jones, 2005b)
8	Cotylophoron cotylophorum	А	No	Cotylophoron	Yes	Unknown	Cattle	(Sey, 1991; Eduardo, 1983; Jones, 2005 <i>b</i>)
9	Cotylophoron sp.	А	No	Cotylophoron	Yes	Unknown	Cattle, sheep and goats	(Sey, 1991; Jones, 2005b)
10	Unknown	С	n/a	n/a	n/a	Ceratophallus natalensis	C. natalensis	(Sey, 1991; Jones, 2005 <i>a</i>)
11	Stephanopharynx sp.	А	No	Stephanopharynx	No	Unknown	Sheep	(Sey 1991; Jones, 2005d)
12	Unknown	С	n/a	n/a	n/a	n/a	B. pfeifferi	(Sey, 1991; Jones, 2005 <i>a</i>)
13	Calicophoron raja	А	No	Calicophoron	No	Bulinus globosus	Cattle, sheep and goats	(Dinnik and Dinnik, 1954; Eduardo, 1983; Sey, 1991)
14	Calicophoron clavula	А	No	Calicophoron	No	Bulinus abyssinicus	Cattle	(Sobrero, 1962; Eduardo, 1983; Sey, 1991)
15	Calicophoron phillerouxi	С, А	No	Calicophoron	No	Bulinus forskalii	<i>B. forskalii</i> , cattle, sheep and goats	(Dinnik, 1961; Eduardo, 1983; Sey, 1991)
16	Ĉalicophoron microbothrium	С, А	No	Calicophoron	No	Bulinus species	<i>B. forskali</i> ,cattle, sheep and goats	(Dinnik and Dinnik, 1954; Eduardo, 1983; Sey, 1991)

Table 5. Provisional identification of the paramphistomoids was based on species descriptions and intermediate host use from the literature and on position in phylogenetic trees

Cercariae (C), adults (A) and their associated hosts are listed. Ventral pouch, acetabulum type and genital sucker were useful morphological features for genus and species placement.

<u>1000 µ</u>m

Fig. 3. Sections of adult paramphistomoids collected from domestic ruminants in Kenya and their provisional identifications. (A) *Calicophoron phillerouxi*, (B) *Calicophoron raja*, (C) *Calicophoron clavula*, (D) *Calicophoron microbothrium*, (E) *Cotylophoron sp.*, (F) *Cotylophoron cotylophorum*, (G) *Cotylophoron sp.*, (H) *Carmyerius exporous*, (I) *Carmyerius gregarius*, (J) *Carmyerius mancupatus*. Note that the photographed specimens represent sections of adults, and presence of some organs like the testes (T) or genital sucker (GS) are indicated. For the genus *Carmyerius*, a ventral pouch was present, but is not visible in the sections chosen for presentation.

marks in Fig. 1 were assigned based on our morphological identification from species descriptions.

DISCUSSION

Paramphistomoid flukes are speciose in sub-Saharan Africa, reflective of the presence there of many mammal species, particularly wild and domestic ruminants. These flukes are also ubiquitous and can have a high prevalence among domestic ruminants reaching 100% in some villages (Chingwena et al. 2002a; Nzalawahe et al. 2015). During our sampling of Kenyan slaughterhouses we found up to 90% of the domestic ruminants infected, and many individual animals harboured hundreds of adult worms. Of the many adult worm and cercariae samples collected, we further investigated 120 samples (79 adult worms and 41 cercariae) determined most likely to be genetically distinctive. We found 16 distinct clades in three families of the Paramphistomoidea. For future comparisons, all of our specimens are available as vouchers at the Parasite Division, Museum of Southwestern Biology (MSB) or at the Kenyan Medical Research Institute (KEMRI).

Previous studies have used the easily obtained ITS2 sequence as a molecular marker to distinguish among paramphistomoid species (Itagaki et al. 2003; Rinaldi et al. 2005; Goswami et al. 2009; Lotfy et al. 2010; Sanabria et al. 2011; Ichikawa et al. 2013; Shylla et al. 2013; Ghatani et al. 2014; Dube et al. 2015). ITS2 is helpful for distinguishing paramphistomoid genera and differentiating more divergent species within a genus (Rinaldi et al. 2005; Ghatani et al. 2012). Because mitochondrial DNA accumulates substitutions more frequently than the internal transcribed spacers, it is more useful to differentiate among closely related species, particularly cryptic species (Blouin, 2002; Vilas et al. 2005; Locke et al. 2015), or to reveal intraspecific variation (Ghatani et al. 2014). Consequently, we used genetic distance values for cox1 sequence data as the primary means to delineate species. For cox1, interclade *P*-distance values were >6.2%, although the majority of pairwise comparisons were >10.0%. In contrast, intraclade pairwise divergence values were <1.3%. Other studies have used a *P*-distance value >5% difference with cox1 and nd1 mtDNA markers to indicate separate species (Vilas et al. 2005; Brant and Loker, 2009; Detwiler et al. 2010).

Our data suggests that ITS2 should not be used alone to differentiate species for paramphistomoids.

We also examined the delineated clades with respect to where they grouped in either ML or BI phylogenetic analyses based on either cox1 or ITS2 sequences. In general, there was low bootstrap/posterior probability support for many of the deeper nodes in either ML or BI trees, suggesting that broader taxon sampling, along with sequencing of additional markers, is needed to more definitively support or refute the morphologically based systematic framework developed for paramphistomoids (Sey, 1991; Jones, 2005a). The phylogenetic trees were useful, however, in providing preliminary hypotheses for how the various clades were related to one another (see the paragraph below). Relative to other paramphistomoid molecular phylogenetic studies involving specimens from African ruminants and snails, we recovered five out of the six previously reported taxa from Kenya, Egypt and Tanzania noted by Lotfy et al. (2010), three of the three identified taxa from Zimbabwe, Zambia and Botswana (Dube et al. 2015) and one of the two identified taxa from Algeria (Titi et al. 2014). The extent of overlap among specimens recovered from all four studies suggests that at least some of the species have broad distributions in Africa. Additional sampling is needed to provide a more comprehensive picture of African paramphistomoid diversity, particularly from Central and West Africa.

The phylogenetic trees provided support for anatomically based taxon delineations as four clades identified as Calicophoron grouped together, as did three clades of Carmyerius and four clades of Cotylophoron. Furthermore, worms in the Stephanopharyngidae (Stephanopharynx) formed a clade, as did presumptive members of the Gastrothylacidae. However, all presumptive members of the Paramphistomidae did not group together. It is possible that this is a paraphyletic group or certain genera, such as Cotylophoron belong in a different family. Clade 1 is quite divergent from the other specimens discussed and it is possible it represents a different family or superfamily. The trees also show some incongruences between nuclear and mitochondrial sequences (discussed further below).

With respect to host use, specimens from a particular clade were reported from the same snail host species or genus. Also, different clades that group together tend to share the same genus of snail host (*Calicophoron*, in clades 13–16, in *Bulinus*) or snail genera in related tribes (*Carymerius* in clades 2, 3 and 5 in *Segmentorbis* and *Ceratophallus*). For 10 of 11 clades for which snail host usage could be identified, those snails belong in the family Planorbidae. Snail host use may thus have had an important impact on paramphistomoid diversification, which has also been suggested for other digenean groups (Brant and Loker, 2013). In only one instance have we found cercariae that we have assigned to the same clade (clade 10) that derive from two different snail genera: cercariae from *C. natalensis* collected from this study and cercariae from *Biomphalaria sudanica* collected by Lotfy *et al.* (2010). Many other digenean groups also indicate high first intermediate host specificity (Shoop, 1988; Donald *et al.* 2004; Detwiler *et al.* 2010; Brant and Loker, 2013). By contrast, adult worms of a particular clade were often recovered from more than one definitive host species, and we recovered up to three different taxa of paramphistomoids from an individual bovine.

Sequence data derived from life cycle stages from different hosts provide an important alternative way to piece together the complex life cycles of digeneans, especially when experimental exposures are not possible (Chibwana et al. 2015). We provide supportive evidence for the life cycles of four of our identified clades (Fig. 1) by matching genetic sequences (<0.6% for ITS2 and <1.3% cox1) collected from cercariae and adults: (1) ITS2 sequences from cercariae from C. natalensis (GU735645) collected in Kenya grouped with sequences from adult worms we recovered from cattle (clade 2), provisionally identified as Carmyerius exporous (Dinnik and Dinnik, 1960). (2) Cercariae (clade 4) we collected from C. natalensis matched adults collected in this study as well as two adults from Botswana (KP639636) and Kenya (GU735658) identified as Carmyerius dollfusi by Dube et al. (2015). The latter species was synonymized with C. mancupatus (Sey, 1991), a species known to be transmitted by C. natalensis (Dinnik, 1965). (3) Sequences from seven adults we obtained (clade 15) matched sequences collected from a cercariae sample from B. forskalii. We provisionally identified the adults as C. phillerouxi, which is known to be transmitted by B. forskalii (Dinnik, 1961). (4) Lastly, two cercariae samples we collected from B. forskalii matched with 23 adults collected in this study, and with one cercariae sample from *B. forskalii* and 18 adults in GenBank, all of which were identified as C. microbothrium (clade 16). As the host record and sequence databases grow, the probabilities that more matches will be found also increases, providing a way forward in working out life cycles that will help offset increasing difficulties in doing so with more conventional experimental infections.

The most common paramphistomoid genus we collected was *Calicophoron* (40 out of the 120 specimens examined), and the most abundant species was *Calicophoron microbothrium* which is transmitted by bulinid snails. This species is the most geographically widespread paramphistome in Africa, its presence confirmed with molecular markers from Egypt, Kenya, Tanzania, Zambia, Zimbabwe, South Africa, Algeria and Botswana (Lotfy *et al.* 2010; Titi *et al.* 2014; Dube *et al.* 2015). Given the

difficulties in discriminating this species from others based on morphology alone, the broad geographic distribution, and the diversity of different bulinid snails reported as hosts, this species is a good candidate for further inspection as a possible complex of cryptic species. Presently the best sequence available to evaluate this possibility is cox1, but most of the data in the literature thus far for this species are for ITS2. Our ML analysis based on 354 bp of ITS2 (figure not shown) suggests there are distinct clades among the samples identified as C. microbothrium in GenBank, with an average distance among them of 0.75%. Other sequence markers are needed to determine if C. microbothrium is a complex of cryptic species, and how well differentiated they prove to be from the other Calicophoron clades (13-15) identified in this study.

We found some specimens with discordant nuclear and mitochondrial sequences, consistent with the possibility of hybrid origins (red stars, Fig. 2). For example, two samples (PA12 and PA24) grouped with C. microbothrium in the ITS2 trees, but fell in their own clade (3) in the cox1 trees. PA12 and PA24 were also morphologically distinct from C. microbothrium, being provisionally identified as members of the gastrothylacid genus Carmyerius. As we have noted, multiple species of paramphistomoids are frequently recovered from a single ruminant host, creating circumstances conducive for potential hybridization. The putative parental species and hybrids (PA7, PA12, PA24 PA27, PA35) all use Bulinus as intermediate hosts. It seems possible that the likelihood of successful hybridization would be increased if both parental species use the same genus or species of intermediate host, if as appears intermediate host use is more specific than definitive host use among the paramphistomoids. Other examples of sequence discordance in digeneans also involve groups with closely related species that can hybridize, and that share snail hosts, such as with some species of fasciolids and schistosomes (Steinauer et al. 2008; Peng et al. 2009). Further studies using microsatellite markers or RADSeq technology will be needed to verify a hybrid origin for paramphistomoids with discordant sequences.

Members of the basommatophoran family Planorbidae are the most common intermediate hosts transmitting paramphistomoids in Kenya, although snails of the Family Lymnaeidae have also been identified as hosts for paramphistomoids in East Africa (Sey, 1991). The snail hosts for some of the clades we have identified such as clades 3, 6, 7, 8 (*C. cotylophorum*), 9 and 11 (*Stephanopharynx* sp.) are unknown or require additional sequencebased verification. *Bulinus* snails, with an ancient history and diversification in Africa (Van Damme 1984; Brown, 1994; De Groeve, 2005), are particularly prominent as African paramphistomoid hosts

(Sey, 1991). By contrast, Biomphalaria supports fewer paramphistomoid species and has a much shorter evolutionary history in Africa, with estimates ranging from <1-5 mya (million years ago) (Woodruff and Mulvey, 1997; Campbell et al. 2000; DeJong et al. 2001). It is noteworthy that clade 1, which is known only from cercariae from B. *pfeifferi*, is one of the most divergent clades we recovered. Clade 1 cercariae are also much larger than the other paramphistomoid cercariae we recovered (about $2.0 \times$ longer in combined body and tail length). This raises a possibility that the diversification of paramphistomoids is more recent than the longer evolutionary history of Bulinus in Africa might suggest. More data are needed to resolve the phylogenetic position of this and other paramphistomoid clades, including those found in non-ruminant species.

In Kenya, Bulinus globosus, B. nasutus, B. africanus, B. tropicus, B. forskalii and Biomphalaria pfeifferi, are known to transmit paramphistomoids as well as ruminant and/or human schistosomes (Southgate et al. 1989; Brown, 1994). The overlap in use of snail hosts creates opportunities for distinctive interactions between the two common digenean groups. For example, in Kenya, Southgate et al. (1989) found that Bulinus tropicus was capable only of supporting the development of Schistosoma bovis to production of cercariae if it was first exposed to C. microbothrium. Similarly, in South America, Biomphalaria oligoza and Biomphalaria orbignvi are naturally resistant to S. mansoni, but become susceptible to S. mansoni if first exposed to Zygocotyle lunata (Spatz et al. 2012). Paramphistomoids can also have the opposite influence on the success of other digeneans during co-infections. For example, as compared to snails exposed only to F. hepatica, significantly fewer Pseudosuccinea columella produced F. hepatica cercariae if first exposed to Calicophoron daubneyi and then later exposed to F. hepatica (Dreyfuss et al. 2016).

This study has shown that even in a fairly circumscribed area within one East African country that a considerable diversity of paramphistomoid flukes is present and that several of these fluke species are abundantly represented. Paramphistomoids are of veterinary interest because of their ubiquitous presence in herds of cattle, sheep and goats that are routinely watered in natural habitats where the presence of susceptible species of snails ensures their transmission. Whether the species we have encountered have long parasitized domestic livestock or represent recent acquisitions from the region's many wild ruminants is an interesting question for future study. Studies currently underway in Kenya indicate that paramphistomoid infections are very common in some snail populations, so much so that they may represent significant impediments to the ongoing transmission of schistosomes using the very same snail hosts in the same aquatic habitats

(Laidemitt M.R., personal communication, 2016). Furthermore, the spectra of freshwater snails used by these two common digenean groups are broadly overlapping, further increasing the likelihood that interesting interactions and accommodations have been made over evolutionary time. It will be interesting to more fully ascertain how these two major groups of digeneans influence one another's abundance. It is clear though that the domestication of livestock ensures that both paramphistomoid and schistosome (both human and ruminant schistosome species) life cycles are perpetuated side-by-side in the same habitats year after year. Livestock domestication may well prove to have had multiple downstream effects - mediated by the digeneans of livestock - on the present-day transmission of the all-too-common human blood flukes of sub-Saharan Africa.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/S003118201600 1827.

ACKNOWLEDGEMENTS

We thank Sarah K. Buddenborg, Dr Si-Ming Zhang, Dr Ben Hanelt, Joesph Kinuthia, and Ibrahim Mwangi for assistance with collection of field samples; Kylie Greider for help with sequencing preparation; and to the International Livestock Research Institute (ILRI), Nairobi, Kenya for sequencing a number of our samples. This research was undertaken with the approval of the National Commission for Science, Technology and Innovation, Permit Number NACOSTI/P/15/9609/4270.

FINANCIAL SUPPORT

Technical assistance at the University of New Mexico Molecular Biology Facility was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P30GM110907. We gratefully acknowledge the following agencies for their financial support: The National Institute of Health (NIH) grant RO1 AI101438, and the Bill and Melinda Gates Foundation for the Grand Challenges Explorations Initiative grant. All authors were supported by each grant. The content for this paper is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This paper was published with the approval of the Director of KEMRI.

REFERENCES

Ahmed, A. A. M., Ibrahim, N. A. and Idris, M. A. (2006). Laboratory studies on the prevalence and cercarial rhythms of trematodes from *Bulinus truncatus* and *Biomphalaria pfeifferi* snails from Khartoum State, Sudan. *Sultan Qaboos University Medical Journal* **6**, 65–69.

Anderson, G. R. and Barker, S. C. (1998). Inference of phylogeny and taxonomy within the Didymozoidae (Digenea) from the second internal transcribed spacer (ITS2) of ribosomal DNA. *Systematic Parasitology* **41**, 87–94.

Blouin, M. S. (2002). Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. *International Journal of Parasitology* **32**, 527–531.

Bowles, J., Blair, D. and Mcmanus, D.P. (1995). A molecular phylogeny of the human schistosomes. *Molecular Phylogenetics and Evolution.* **4**, 103–109.

Brant, S. V. and Loker, E. S. (2009). Molecular systematics of the avian schistosome genus *Trichobilharzia* (Trematoda: Schistosomatidae) in North America. *Journal of Parasitology*, **95**, 941–963.

Brant, S. V. and Loker, E. S. (2013). Discovery-based studies of schistosome diversity stimulate new hypotheses about parasite biology. *Trends* in *Parasitology*, **29**, 449–459.

Brown, D.S. (1994). Freshwater Snails of Africa and their Medical Importance, 2nd Edn. Taylor & Francis, London, Bristol, PA.

Brown, D. S. and Kristensen, T. K. (1989). A Field Guide to African Freshwater Snails, Southern African Species. Danish Bilharziasis Laboratory, Publication number 383.

Campbell, G., Jones, C.S., Lockyer, A.E., Hughes, S., Brown, D., Noble, L. R. and Rollinson, D. (2000). Molecular evidence supports an African affinity of the Neotropical freshwater gastropod, *Biomphalaria* glabrata, Say 1818, an intermediate host for *Schistosoma mansoni*. *Proceedings of the Royal Society B: Biological Sciences* 267, 2351–2358.

Cheruiyot, H. K. and Wamae, L. W. (1988). Incidence of bovine paramphistomiasis in Kenya. *Bulletin of Animal Health and Production in Africa* **36**, 55–57.

Chibwana, F.D., Nkwengulila, G., Locke, S.A., McLaughlin, J.D. and Marcogliese, D.J. (2015). Completion of the life cycle of *Tylodelphys mashonense* (Sudarikov, 1971) (Digenea: Diplostomidae) with DNA barcodes and rDNA sequences. *Parasitology Research* 114, 3675–3682. Chingwena, G., Mukaratirwa, S., Kristensen, T.K. and Chimbari, M. (2002a). Larval trematode infections in freshwater snails from the highveld and lowveld areas of Zimbabwe. *Journal of Helminthology* 76, 283–293.

Chingwena, G., Mukaratirwa, S., Kristensen, T.K. and Chimberi, M. (2002b). Susceptibility of freshwater snails to the amphistome *Calicophoron microbothrium* and the influence of the species on susceptibility of *Bulinus tropicus* to *Schistosoma haematobium* and *Schistosoma mattheei* infections. Journal of Parasitology **88**, 880–883.

Combes, C. (1982). Trematodes – Antagonism between species and sterilizing effects on snails in biological-control. *Parasitology* **84**, 151–175.

De Groeve, E. (2005). The late Cenozoic freshwater Mollusca of the Tugen Hills (Kenya): Taxonomy, palaeoecology and palaeozoogeography. MSc. Thesis. Gent: University of Gent, 117 pp.

DeJong, R.J., Morgan, J.A., Paraense, W.L., Pointier, J.P., Amarista, M., Ayeh-Kumi, P.F., Babiker, A., Barbosa, C.S., Bremond, P., Pedro Canese, A., de Souza, C.P., Dominguez, C., File, S., Gutierrez, A., Incani, R. N., Kawano, T., Kazibwe, F., Kpikpi, J., Lwambo, N.J., Mimpfoundi, R., Njiokou, F., Noel Poda, J., Sene, M., Velasquez, L.E., Yong, M., Adema, C. M., Hofkin, B.V., Mkoji, G.M. and Loker, E.S. (2001). Evolutionary relationships and biogeography of *Biomphalaria* (Gastropoda: Planorbidae) with implications regarding its role as host of the human bloodfluke, *Schistosoma mansoni*. *Molecular Biology and Evolution* 18, 2225–2239.

Detwiler, J. T., Bos, D. H. and Minchella, D. J. (2010). Revealing the secret lives of cryptic species: examining the phylogenetic relationships of echinostome parasites in North America. *Molecular Phylogenetics and Evolution* 55, 611–620.

Detwiler, J.T., Zajac, A.M., Minchella, D.J. and Belden, L.K. (2012). Revealing cryptic parasite diversity in a definitive host: echinostomes in muskrats. *Journal of Parasitology* **98**, 1148–1155.

Dinnik, J. A. (1954). Paramphistomum sukari n. sp. from Kenya cattle and its intermediate host. Parasitology 44, 414–421.

Dinnik, J.A. (1961). Paramphistomum phillerouxi sp. nov. Paramphistomatidae) and its development in Bulinus forskalii. Journal of Helminthology Trematoda **35**, 69–90.

Dinnik, J. A. (1965). The snail hosts of certain Paramphistomatidae and Gastrothylacidae (Trematoda) discovered by the late Dr. P. L. LeRoux in Africa. *Journal of Helminthology* **39**, 141–150.

Dinnik, J. A. and Dinnik, N. N. (1954). The life cycle of *Paramphistomum* microbothrium Fischoeder, 1901 (Trematoda, Paramphistomidae). *Parasitology* 44, 285–299.

Dinnik, J.A. and Dinnik, N.N. (1957). Development of *Paramphistomum sukari* Dinnik, 1954 (Trematoda: Paramphistomidae) in a snail host. *Parasitology* **47**, 209–216.

Dinnik, J. A. and Dinnik, N. N. (1960). Development of *Carmyerius exoporus* Maplestone (Trematoda: Gastrothylacidae) in a snail host. *Parasitology* **50**, 469–480. **Donald, K. M., Kennedy, M., Poulin, R. and Spencer, H. G.** (2004). Host specificity and molecular phylogeny of larval Digenea isolated from New Zealand and Australian topshells (Gastropoda: Trochidae). *International Journal for Parasitology* **34**, 557–568.

Dreyfuss, G., Vignoles, P. and Rondelaud, D. (2016). *Pseudosuccinea* columella: experimental co-infections of juvenile and pre-adult snails with the digeneans *Calicophoron daubneyi* and *Fasciola hepatica*. *Journal of Helminthology* **23**, 1–7.

Dube, S., Sibula, M. S. and Dhlamini, Z. (2015). Molecular analysis of selected paramphistome isolates from cattle in southern Africa. *Journal of Helminthology* 1–5.

Eduardo, S. L. (1982). The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. 2. Revision of the genus *Paramphistomum* Fischoeder, 1901. *Systematic Parasitology* **4**, 189–238.

Eduardo, S. L. (1983). The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. 3. Revision of the genus *Calicophoron* Nasmark, 1937. *Systematic Parasitology*. **5**, 25–79.

Fain, A. (1953). Contribution à l'étude des formes larvaires des trématodes au Congo belge et spécialement de la larve de Schistosoma Mansoni. *Memoires. Institut Royal Colonial Belge. Section des Sciences Naturelles et Medicales* 22, 1–312.

Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology* **3**, 294–299.

Frandsen, F. and Christensen, N. O. (1984). An introductory guide to the identification of cercariae from African freshwater snails with special reference to cercariae of trematode species of medical and veterinary importance. *Acta Tropica* **41**, 181–202.

Ghatani, S., Shylla, J. A., Tandon, V., Chatterjee, A. and Roy, B. (2012). Molecular characterization of pouched amphistome parasites (Trematoda: Gastrothylacidae) using ribosomal ITS2 sequence and secondary structures. *Yournal of Helminthology*, **86**, 117–124.

Ghatani, S., Shylla, J. A., Roy, B. and Tandon, V. (2014). Multilocus sequence evaluation for differentiating species of the trematode Family Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification. *Gene* **548**, 277–284.

Goswami, L. M., Prasad, P. K., Tandon, V. and Chatterjee, A. (2009). Molecular characterization of *Gastrodiscoides hominis* (Platyhelminthes: Trematoda: Digenea) inferred from ITS rDNA sequence analysis. *Parasitology Research* **104**, 1485–1490.

Gretillat, S. (1964). Valeur taxonomique des caractéres morphologiques et anatomiques du pore génital chez les Trématodes du genre *Carmyerius* (Gastrothylacidae). *Revue d'élevage et de médecine vétérinaire des pays tropicaux* **17**, 421–428.

Hechinger, R. F., Wood, A. C. and Kuris, A. M. (2011). Social organization in a flatworm: trematode parasites form soldier and reproductive castes. *Proceedings of the Royal Society B: Biological Sciences* 278, 656–665. Hermann, K. K., Poulin, R., Keeney, D. B. and Blasco-Costa, I. (2014). Genetic structure in a progenetic trematode: signs of cryptic species with contrasting reproductive strategies. *International Journal of Parasitology* 44, 811–818.

Horak, I. G. (1971). Paramphistomiasis of domestic ruminants. Advances in Parasitology 9, 33–72.

Ichikawa, M., Kondoh, D., Bawn, S., Maw, N.N., Htun, L.L., Thein, M., Gyi, A., Sunn, K., Katakura, K. and Itagaki, T. (2013). Morphological and molecular characterization of *Explanatum explanatum* from cattle and buffaloes in Myanmar. *Journal of Veterinary Medicine Science* **75**, 309–314.

Itagaki, T., Tsumagari, N., Tsutsumi, K. and Chinone, S. (2003). Discrimination of three amphistome species by PCR-RFLP based on rDNA ITS2 markers. *Journal of Veterinary Medicine Science* **65**, 931–933. Jones, A. (1991). Characterisation of the muscular organs of paramphistomes from Asian fishes. *Systematic Parasitology* **18**, 9–16.

Jones, A. (2005*a*). Superfamily Paramphistomoidea fischoeder, 1901. In *Keys to the Trematoda* (ed. Jones, A., Bray, R. A. and Gibson, D. I.), pp. 221–327. CABI Publishing and the Natural History Museum, New York. Jones, A. (2005*b*). Family Paramphistomidae Fischoeder, 1901. In *Keys to the Trematoda* (ed. Jones, A., Bray, R. A. and Gibson, D. I.), pp. 229–246. CABI Publishing and the Natural History Museum, New York.

Jones, A. (2005c). Family Gastrothylacidae Stiles & Goldberger 1910. In *Keys to the Trematoda* (ed. Jones, A., Bray, R. A. and Gibson, D. I.), pp. 337–341. CABI Publishing and the Natural History Museum, New York. Jones, A. (2005d). Family Stephanopharyngidae Stiles & Goldberger 1910. In *Keys to the Trematoda* (ed. Jones, A., Bray, R. A. and Gibson, D. I.), pp. 347–348. CABI Publishing and the Natural History Museum, New York.

Lim, H. K. and Heyneman, D. (1972). Intramolluscan inter-trematode antagonism: a review of factors influencing the host-parasite system and its possible role in biological control. Advances in Parasitology 10, 191–268. Locke, S. A., McLaughlin, J. D., Dayanandan, S. and Marcogliese, D. J. (2010). Diversity and specificity in *Diplostomum spp*. metacercariae in freshwater fishes revealed by cytochrome c oxidase I and internal transcribed spacer sequences. *International Journal of Parasitology* 40, 333–343.

Locke, S.A., Al-Nasiri, F.S., Caffara, M., Drago, F., Kalbe, M., Lapierre, A.R., McLaughlin, J.D., Nie, P., Overstreet, R.M., Souza, G.T., Takemoto, R.M. and Marcogliese, D.J. (2015). Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. *International Journal of Parasitology* **45**, 841–855.

Lockyer, A. E., Olson, P. D. and Littlewood, D. T. J. (2003). Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. *Biological Journal of the Linnean Society* **78**, 155–171.

Loker, E.S., Moyo, H.G. and Gardner, S.L. (1981). Trematodegastropod associations in 9 non-lacustrine habitats in the Mwanza Region of Tanzania. *Parasitology* **83**, 381–399.

Looss, A. (1896). Recherches sur la faune parasitaire d'Egypte. In Mémoires présentés à l'Institut égyptien, t. 3 Le Caire.

Lotfy, W. M., Brant, S. V., Ashmawy, K. I., Devkota, R., Mkoji, G. M. and Loker, E. S. (2010). A molecular approach for identification of paramphistomes from Africa and Asia. *Veterinary Parasitology* **174**, 234–240. Mage, C., Bourgne, H., Toullieu, J. M., Rondelaud, D. and Dreyfuss, G.

(2002). Fasciola hepatica and Paramphistomum daubneyi: changes in prevalences of natural infections in cattle and in Lymnaea truncatula from central France over the past 12 years. Veterinary Research **33**, 439–447.

Mansour, M.F.A., Ellazek, Y.O. and Madkour, M.M. (2014). Molecular characterization of five digenetic trematode species from different hosts in Egypt. *The Egyptian Society of Experimental Biology Journal* **10**, 1–8.

McNamara, M. K., Miller, T. L. and Cribb, T. H. (2014). Evidence for extensive cryptic speciation in trematodes of butterflyfishes (Chaetodontidae) of the tropical Indo-West Pacific. *International Journal* of Parasitology 44, 37–48.

Mohammed, N. A. I., Madsen, H. and Ahmed, A. A. M. (2016). Types of trematodes infecting freshwater snails found in irrigation canals in the East Nile locality, Khartoum, Sudan. *Infectious Diseases of Poverty* **5**, 16–26.

Nylander, J. A. A. (2004). *MrModeltest v2*. Evolutionary Biology Centre, Uppsala University.

Nzalawahe, J., Kassuku, A.A., Stothard, J.R., Coles, G.C. and Eisler, M. C. (2015). Associations between trematode infections in cattle and freshwater snails in highland and lowland areas of Iringa Rural District, Tanzania. *Parasitology* **142**, 1430–1439.

Peng, M., Ichinomiya, M., Ohtori, M., Ichikawa, M., Shibahara, T. and Itagaki, T. (2009). Molecular characterization of *Fasciola hepatica*, *Fasciola gigantica*, and aspermic *Fasciola* sp. in China based on nuclear and mitochondrial DNA. *Parasitology Research* **105**, 809–815.

Rinaldi, L., Perugini, A. G., Capuano, F., Fenizia, D., Musella, V., Veneziano, V. and Cringoli, G. (2005). Characterization of the second internal transcribed spacer of ribosomal DNA of *Calicophoron daubneyi* from various hosts and locations in southern Italy. *Veterinary Parasitology* **131**, 247–253.

Rolfe, P. F., Boray, J. C. and Collins, G. H. (1994). Pathology of infection with *Paramphistomum ichikawai* in sheep. *International Journal of Parasitology* 24, 995–1004.

Ronquist, F. and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* **19**, 1572–1574.

Sanabria, R. E. F. and Romero, J. R. (2008). Review and update of paramphistomosis. *Helminthologia* **45**, 64–68.

Sanabria, R., Moré, G. and Romero, J. R. (2011). Molecular characterization of the ITS-2 fragment of *Paramphistomum leydeni* (Trematoda: Paramphistomidae). *Veterinary Parasitology* **177**, 182–185.

Schell, S. C. (1985). Handbook of Trematodes of North America north of Mexico. University Press of Idaho, Moscow, Idaho.

Sey, O. (1991). CRC Handbook of the Zoology of Amphistomes. CRC Press, Boca Raton, Fla.

Shoop, W.L. (1988). Trematode transmission patterns. Journal of Parasitology 74, 46-59.

Shylla, J. A., Ghatani, S., Chatterjee, A. and Tandon, V. (2011). Secondary structure analysis of ITS2 in the rDNA of three Indian paramphistomid species found in local livestock. *Parasitol Res* **108**, 1027– 1032.

Shylla, J. A., Ghatani, S. and Tandon, V. (2013). Utility of divergent domains of 28S ribosomal RNA in species discrimination of

paramphistomes (Trematoda: Digenea: Paramphistomoidea). Parasitology Research 112, 4239-4253.

Sibula, M. S., Dhlamini, Z. and Dube, S. (2014). Molecular characterization of paramphistomes from cattle from matebeleland region (Zimbabwe) using random amplified polymorphic DNA (RAPDs) and amplified ribosomal DNA restriction analysis (ARDRA). *Advances in Bioresearch* 5, 92–99.

Sobrero, R. (1962). Ricostruzione del ciclo di vita di Paramphistomum clavula (Näsmark, 1937), parassita dei ruminanti in Somalia. Parassitologia 4, 165–167. Southgate, V.R., Brown, D.S., Warlow, A., Knowles, R.J. and Jones, A. (1989). The influence of *Calicophoron microbothrium* on the susceptibility of *Bulinus tropicus* to *Schistosoma bovis*. Parasitology Research 75, 381–391.

Spatz, L., Cappa, S. M. and de Nunez, M. O. (2012). Susceptibility of wild populations of *Biomphalaria spp*. from neotropical South America to *Schistosoma mansoni* and interference of *Zygocotyle lunata*. *Journal of Parasitology* **98**, 1291–1295.

Steinauer, M. L., Hanelt, B., Mwangi, I. N., Maina, G. M., Agola, L. E., Kinuthia, J. M., Mutuku, M. W., Mungai, B. N., Wilson, W. D., Mkoji, G. M. and Loker, E. S. (2008). Introgressive hybridization of human and rodent schistosome parasites in western Kenya. *Molecular Ecology* 17, 5062–5074.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: molecular Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution* **30**, 2725–2729.

Vilas, R., Criscione, C.D. and Blouin, M.S. (2005). A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. *Parasitology* **131**, 839–846.

Wilgenbusch, J. C. and Swofford, D. (2003). Inferring evolutionary trees with PAUP*. Current Protocols in Bioinformatics, Chapter 6, Unit 6 4.

Woodruff, D.S. and Mulvey, M. (1997). Neotropical schistosomiasis: African affinities of the host snail *Biomphalaria glabrata* (Gastropoda: Planorbidae). *Biological Journal of the Linnean Society* **60**, 505–516.

Wright, C. A., Rollinson, D. and Goll, P. H. (1979). Parasites in *Bulinus* senegalensis (Mollusca: Planorbidae) and their detection. *Parasitology* **79**, 95–105.

Xia, X. (2013). DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. *Molecular Biology and Evolution* **30**, 1720–1728.