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Polycystic liver disease (PLD) is an incurable genetic
disorder characterised by the progressive growth of
hepatic cysts. We found that hepatic cystogenesis is
increased when the levels of miR-345 in PLD chol-
angiocytes (PLDCs) are reduced by autophagy. Resto-
ration of miR-345 in PLDCs via inhibition of autophagy
decreases hepatic cystogenesis and thus, is beneficial
for PLD.
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Background & Aims: Polycystic liver disease (PLD) is characterised by increased autophagy and reduced miRNA levels in chol-
angiocytes. Given that autophagy has been implicated in miRNA regulation, we tested the hypothesis that increased autophagy
accounts for miRNA reduction in PLD cholangiocytes (PLDCs) and accelerated hepatic cystogenesis.
Methods: We assessed miRNA levels in cultured normal human cholangiocytes (NHCs), PLDCs, and isolated PLDC autopha-
gosomes by miRNA-sequencing (miRNA-seq), and miRNA targets by mRNA-seq. Levels of miR-345 and miR-345-targeted
proteins in livers of animals and humans with PLD, in NHCs and PLDCs, and in PLDCs transfected with pre-miR-345 were
assessed by in situ hybridisation (ISH), quantitative PCR, western blotting, and fluorescence confocal microscopy. We also
assessed cell proliferation and cyst growth in vitro, and hepatic cystogenesis in vivo.
Results: In total, 81% of miRNAs were decreased in PLDCs, with levels of 10 miRNAs reduced by more than 10 times; miR-345
was the most-reduced miRNA. In silico analysis and luciferase reporter assays showed that miR-345 targets included cell-cycle
and cell-proliferation-related genes [i.e. cell division cycle 25A (CDC25A), cyclin-dependent kinase 6 (CDK6), E2F2, and
proliferating cell nuclear antigen (PCNA)]; levels of 4 studied miR-345 targets were increased in PLDCs at both the mRNA and
protein levels. Transfection of PLDCs with pre-miR-345 increased miR-345 and decreased the expression of miR-345-targeted
proteins, cell proliferation, and cyst growth in vitro. MiR-345 accumulated in autophagosomes in PLDCs but not NHCs. In-
hibition of autophagy increased miR-345 levels, decreased the expression of miR-345-targeted proteins, and reduced hepatic
cystogenesis in vitro and in vivo.
Conclusion: Autophagy-mediated reduction of miR-345 in PLDCs (i.e. miRNAutophagy) accelerates hepatic cystogenesis.
Inhibition of autophagy restores miR-345 levels, decreases cyst growth, and is beneficial for PLD.
Lay summary: Polycystic liver disease (PLD) is an incurable genetic disorder characterised by the progressive growth of
hepatic cysts. We found that hepatic cystogenesis is increased when the levels of miR-345 in PLD cholangiocytes (PLDCs) are
reduced by autophagy. Restoration of miR-345 in PLDCs via inhibition of autophagy decreases hepatic cystogenesis and thus,
is beneficial for PLD.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Polycystic liver disease (PLD) is a group of genetic disorders
characterised by the presence of multiple cholangiocyte-derived
cysts. The most common form of PLD, caused by mutations in 6
genes [(i.e. encoding polycystic kidney disease 1/2 (PKD1/2)
glucosidase II alpha subunit (GANAB), low-density lipoprotein
receptor-related protein 5 (LRP5), DnaJ heat shock protein
family (Hsp40) member B11 (DNAJB11), and alpha-1,2-
mannosyltransferase (ALG9)], coexists with autosomal domi-
nant polycystic kidney disease (ADPKD). Mutations in 2 genes
[i.e. polycystic kidney and hepatic disease 1 (PKHD1) and DAZ
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proteins; Cholangiocyte proliferation.
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interacting zinc finger protein 1 like (DZIP1L)] lead to PLD asso-
ciated with autosomal recessive PKD. Isolated autosomal domi-
nant polycystic liver disease (ADPLD) is linked to mutations in 7
genes (i.e. protein kinase C substrate 80K-H (PRKCSH), SEC63
homolog, protein translocation regulator (SEC63), LRP5, GANAB,
alpha-1,3-glucosyltransferase (ALG8), SEC61 translocon subunit
beta (SEC61B), and PKHD1).1,2

Mutations in PLD-causative genes initiate the formation of
hepatic cysts, the progressive growth of which involves multiple
mechanisms. In PLD cholangiocytes (PLDCs), the mRNA profile is
dramatically changed, with up to 60% of transcripts being up- or
downregulated.3 Clustering of these dysregulated transcripts
into biological pathways revealed �30 disturbed pathways in
PLDCs, among which autophagy, cell proliferation, cell cycle, and
cAMP signalling are the most altered.3 Genetic elimination of the
cell cycle protein, cell division cycle 25A (CDC25A), or inhibition
of autophagy in polycystic kidney (PCK) rats reduces hepatic
cystogenesis, further emphasising the contributing role of these
pathways to PLD progression.1,4–8
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Low levels of multiple miRNAs have been reported in chol-
angiocytes of an animal model of PLD, the PCK rat.9 However, the
mechanisms that account for miRNA reduction remain unclear.
Autophagy is also increased in PLDCs and its inhibition attenu-
ates PLD progression in PCK rats.3 Importantly limited research
have implicated autophagy in miRNA regulation,10–13 a process
that we suggest to term ‘miRNAutophagy’. However, it remains
unknown whether miRNAutophagy contributes to miRNA regu-
lation and hepatic cystogenesis in PLD.

In this study, we performed miRNA-sequencing (miRNA-seq)
analysis of cholangiocytes isolated from healthy humans (NHCs)
and patients with ADPKD-associated PLD, and observed that, in
PLDCs, the levels of most miRNAs were decreased, with miR-345
being the most-reduced miRNA. A decrease in miR-345 levels in
PLDCs resulted in overexpression of several miR-345-targeted
proteins, cholangiocyte hyperproliferation, and enhanced cysto-
genesis. Consistent with the concept of miRNAutophagy, miR-
345 was detected in autophagosomes of PLDCs but not of
NHCs. We also found that miR-345 levels in PLDCs were auto-
phagy regulated because inhibition of autophagy increased miR-
345 and expression of miR-345-targeted proteins. Subsequently,
cholangiocyte proliferation and hepatic cyst growth were
decreased. Thus, our results provide a mechanistic link between
increased autophagy and decreased miR-345 in PLDCs and show
that miRNAutophagy accelerates hepatic cystogenesis. Inhibition
of autophagy restores miR-345 levels, decreases cyst growth, and
is beneficial for PLD.
Materials and Methods
Human and rodent liver tissue, cell cultures, reagents, and
animals
Paraffin sections of liver tissue were used from healthy humans
and patients with PLD, wild type (WT) and PCK rats, and WT,
Pkd2WS25/-, and Pkhd1del2/del2 mice. Spontaneously immortalised
cholangiocytes derived from normal humans (NHCs), patients
with ADPKD-associated PLD (PLDCs), normal rat (NRCs) and PCK
rat (PCKCs) were maintained as previously described.14 Given
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that long-term cultured cholangiocytes might lose some
morphological and functional features, we validated them by
short tandem repeat profiling to ensure that they were not
misidentified and then tested for contamination. For autophagy
inhibition studies, cultured cholangiocytes were grown for 24 h
and then treated with 100 nM DMSO (control) or 100 nM HCQ
(Sigma, St Louis, MO, USA) for an additional 24 h. The study was
approved by the Mayo Clinic Institutional Review Board and
abides by the Declaration of Helsinki principles. The Mayo Clinic
Institutional Animal Care and Use Committee approved the an-
imal studies.

miRNA and mRNA sequencing, and pathway enrichment
analysis
miRNA sequencing of NHCs and PLDCs (both n = 3) was per-
formed by the Mayo Clinic Medical Genome Facility as previously
described.15 Differentially expressed miRNAs were selected
based on p <0.05, log2 fold change >−1.5 or <−1.5. mRNA-seq of
NHCs and PLDCs (both n = 3) was performed as previously
described.3 False discovery rate (FDR) 0.05 and log2 fold change
>−1 or <−−1 were considered as the cutoff for up- and down-
regulated genes. DAVID (https://david.ncifcrf.gov/) was used to
perform functional and pathway enrichment analysis. Gene
ontology (GO) analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were carried out
for transcripts dysregulated in PLDCs.16 TargetScan algorithms
were used to search for miR-345 targets.

miRNA extraction and quantification
Total RNA was extracted by using Trizol Reagent (Invitrogen,
Carlsbad, CA, USA). Mature miR-345 and U6 small nuclear RNA
(snRNA) were detected according to the manufacturer’s in-
structions using the TaqMan miRNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA) and analysed with the
Rotor-gene quantitative PCR instrument (Qiagen, Germantown,
MD, USA). The expression of miR-345 was normalised to snU6
using the change-in-threshold 2-DCT method. PLDCs were
transfected with an hsa-miR-345 precursor and pre-miR
C
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Fig. 2. miR-345 is decreased in PLDCs. (A) miR-345 levels (RPM) are lower in PLDCs compared with NHCs. n = 3 for each cell line. (B) Reduced miR-345 levels in
PLDCs were confirmed by quantitative PCR. n = 5 for each cell line. (C,D) ISH showed decreased immunoreactivity of miR-345 (green) in livers of rodents and
patients with PLD compared with their respective controls. n = 5 patients or rodents per group. Nuclei (blue) are stained with DAPI. Data are mean ± SD. **p <0.01,
****p <0.0001. Scale bars = 50 lm. ISH, in situ hybridisation; NHC, normal human cholangiocytes; PLD, polycystic liver disease; PLDC, polycystic liver disease
cholangiocyte; RPM, reads per million.
precursor control (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions.

In situ hybridisation
In situ hybridisation (ISH) was performed using sections
of liver tissue from WT and PCK rats; WT, Pkd2WS25/-,
JHEP Reports 2021
and Pkhd1del2/del2 mice; healthy humans and patients with
ADPKD- and autosomal recessive polycystic kidney disease
(ARPKD)-associated PLD; and cultured NHCs, PLDCs, NRCs, and
PCKCs according to published protocols17 and visualised with
Zeiss LSM 510 confocal microscope (Thornwood, NY, USA).
3vol. 3 j 100345
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Cell proliferation
Cell proliferation was determined by using the CellTiter 96
Aqueous One Solution Cell Proliferation Assay (Promega, Madison,
WI, USA) and cells were counted by using the Cellometer Auto4
(Nexcelom Bioscience, Lawrence, Massachusetts, USA) cell
counter. Cholangiocytes (2500 cells/well) were grown for 24 h
before the assay. Alterations in the proliferation of cultured
cholangiocytes after treatment were expressed as the percentage
change compared with untreated cholangiocytes in which cell
proliferation was considered to be equal to 100%. Proliferation of
PLD cholangiocytes in vivo was evaluated by the number of
proliferating cell nuclear antigen (PCNA)-positive nuclei, as
described previously.3

3D cultures
Cholangiocytes were seeded and grown in 3D matrices as pre-
viously described.18 Images were taken at days 1 (24 h after
JHEP Reports 2021
seeding) and 3. The circumference of any cystic structures was
measured by ImageJ as previously described.18
Treatment protocol
PCK rats (4–6-weeks old, n = 3 female, n = 3 male) were injected
intraperitoneally with hydroxychloroquine (HCQ; 15 mg/kg body
weight) dissolved in DMSO every other day for 6 weeks; doses
were adjusted to the weight of each rat every week. The un-
treated group (4–6-weeks old, n = 3 female, n = 3 male) received
equal doses of DMSO via intraperitoneal injection. Rats were
sacrificed and the livers removed, fixed, and paraffin embedded
for histology. Cystic hepatic areas were analysed as described
elsewhere.3,14,19 Based on previous experience, that the per-
centage of liver parenchyma occupied by hepatic cysts does not
differ between male and female PCK rats,14,19 these samples were
combined for estimation of cystic and fibrotic areas. A sample
5vol. 3 j 100345
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size of 6 animals per group was considered the minimum
required to guarantee sufficient statistical power.
Statistical analysis
The data are expressed as mean ± SD or as the fold change in
mean. Data were analysed with a 1-way ANOVA using Prism
software, which was also used for the generation of all bar graphs.
Results were considered statistically significant at p <0.05.

A detailed description of all methods is provided in the
supplementary materials.
Results
miRNA profile is altered in PLDCs
We performed miRNA profiling in NHCs and PLDCs. In total, 210
miRNAs were detected in NHCs and 166 in PLDCs. Of these
miRNAs, 55 were uniquely present in NHCs and 11 in PLDCs; 155
miRNAs were common to both cell lines (Fig. 1A).
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Most miRNAs are decreased and miR-345 is the most-reduced
miRNA in PLDCs
We further analysed the expression of 155 miRNAs common to
both NHCs and PLDCs. The levels of 56 miRNAs (i.e. 34%) were
comparable in NHCs and PLDCs. Out of 99 miRNAs (i.e. 66%)
differentially expressed in PLDC, the levels of 19 miRNAs were
increased and the levels of 80 miRNAs were reduced (Fig. 1B).
The 10 most-decreased miRNAs in PLDC are detailed in Fig. 1C;
all differentially expressed miRNAs are listed in Supplementary
Tables S1 and S2. Notably, miR-345 was the most decreased
miRNA in PLDCs (Fig. 1C).
The levels of miR-345 are decreased in PLDCs
The reduced expression of miR-345 in PLDCs was demon-
strated by miRNA-seq (Fig. 2A), quantitative PCR (Fig. 2B) and
ISH in cholangiocytes lining liver cysts in animal models and
patients with PLD compared with the respective controls
(Fig. 2C,D).
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Cell cycle and cell proliferation are the most-dysregulated
pathways in PLDCs
Out of 16,241 mRNAs detected by an in silico search as potential
targets of 80 downregulated miRNAs, 11,321 transcripts were
present in PLDCs (Fig. 3A). Further analysis revealed that 3,996
transcripts were unchanged, 3,281 were upregulated, and 4,044
transcripts were downregulated (Fig. 3B). Importantly, these
11,321 mRNAs belonged to several functional pathways,
JHEP Reports 2021
including cell cycle, autophagy, cAMP-mediated signalling, and
cell proliferation, which are crucial for PLD progression (Fig. 3C).

Next, 2,523 out of 3,371 mRNAs predicted to be targeted by
miR-345 were detected in PLDCs. Clustering of these 2,523
mRNAs revealed the top-10 affected pathways in PLDCs,
including cell cycle, cell proliferation and cAMP-mediated sig-
nalling (Fig. 3D). Notably, miR-345 had more mRNA targets
compared with the other 9 most-decreased miRNAs
7vol. 3 j 100345
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(Supplementary Table S3 and Fig. S1). CDC25A, cyclin-dependent
kinase 6 (CDK6), transcription factor E2F2, and proliferating cell
nuclear antigen (PCNA) were among the miR-345-targeted
mRNAs predicted by an in silico search. Importantly, only miR-
345 targets all the assessed cell cycle and cell proliferation-
related genes (Supplementary Table S4). To confirm the bind-
ing of miR-345 to mRNAs of interest, we performed in vitro
functional assays using the luciferase reporter containing the
miR-345 recognition sequences for CDC25A, CDK6, E2F2, and
PCNA (Supplementary Fig. S2A,B). A significant decrease in
relative luciferase expression was observed in NHCs treated with
the miR-345-mimic compared with untreated controls, indi-
cating the binding of miR-345 to the 30-untranslated region
(UTR) of corresponding mRNAs (Supplementary Fig. S2C).

As expected, CDC25A, CDK6, E2F2, and PCNA were increased
in PLDCs at both the mRNA (Fig. 4A) and protein levels (Fig. 4B)
in cholangiocytes lining liver cysts in animal models and patients
with PLD (Fig. 4C and Supplementary Fig. S3).

Transfection of PLDC with pre-miR-345 increases miR-345
levels and decreases expression of miR-345-targeted proteins,
cell proliferation, and cyst growth in 3D cultures
PLDCs were transfected with pre-miR-345 and control pre-miR.
The levels of miR-345 in PLDCs transfected with control miR-
NAs were comparable to those of untransfected PLDC, whereas
the level of miR-345 was increased by �70% after transfection
with pre-miR-345 (Fig. 5A). In PLDCs transfected with pre-miR-
345, the expression of miR-345-targeted proteins was inhibited
�2-fold (Fig. 5B), and proliferation was reduced by 55–60%
(Fig. 5C). Finally, in vitro growth of cystic structures formed by
PLDCs transfected with pre-miR-345 was decreased by 50%
(Fig. 5D).

In PLDC, miR-345 is localised to autophagosomes
We performed combined ISH for miR-345 and confocal micro-
scopy for the autophagosome marker, LC3B, in healthy and PLDCs
in vitro and in vivo. An increased number of miR-345-LC3-
positive structures was observed in cholangiocytes lining liver
cysts in rodents and patients with PLD, and in cultured NHCs,
PLDCs, NRCs and PCKCs compared with the corresponding con-
trols (Fig. 6A–E).
JHEP Reports 2021
MiR-345 is present in autophagosomes isolated from PLDCs
We isolated autophagosomes from PLDCs (Fig. 7A) and analysed
the miRNA profiles by miRNA-seq. In total, 210 miRNAs were
detected in isolated PLDC autophagosomes (Fig. 7B). We then
compared the profiles of miRNAs reduced in PLDCs with profiles
of miRNAs detected in isolated PLDC autophagosomes. In total,
57 miRNAs (i.e. 71%) were detected in isolated PLDC autopha-
gosomes out of a total of 80 miRNAs that were reduced in PLDCs
(Fig. 7B). Importantly, all 10 of the most-reduced miRNAs,
including miR-345, were present in isolated PLDC autophago-
somes (Fig. 7C).

Inhibition of autophagy increases miR-345 levels and
decreases expression of miR-345-targeted proteins and
hepatic cystogenesis
Treatment of cultured PCKCs with the autophagy inhibitor, HCQ,
increased miR-345 levels (Fig. 8A,B), inhibited proliferation
(Fig. 8C), and reduced expression of CDC25A, CDK6, E2F2, and
PCNA (Fig. 8D). Consistent with this observation, the level of
miR-345 was also increased in cholangiocytes of PCK rats treated
with HCQ, whereas the levels of miR-345-targeted proteins and
hepatic cystogenesis were reduced (Fig. 8E,F).
Discussion
The key findings of this study are that, in PLD: (i) the levels of
most cholangiocyte miRNAs were decreased and the levels of 10
miRNAs were reduced by more than 10 times; (ii) miR-345 was
the most reduced miRNA; (iii) CDC25A, CDK6, E2F2, and PCNA
targeted by miR-345 were overexpressed at both the mRNA and
protein levels; (iv) re-introduction of miR-345 decreased the
expression of miR-345-targeted proteins, proliferation, and cyst
growth; (v) miR-345 accumulated in autophagosomes; and (vi)
inhibition of autophagy increased miR-345 levels and inhibited
expression of miR-345-targeted proteins and hepatic cysto-
genesis. Thus, our data demonstrate that autophagy-mediated
reduction of miR-345 in PLDC contributes to hepatic cystogenesis.

We analysed the profile of miRNAs in cholangiocytes isolated
from patients with ADPKD-associated PLD and found that 66% of
miRNAs were differentially expressed, with most of them (i.e.
81%) being decreased. This finding is consistent with previous
8vol. 3 j 100345
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observations demonstrating a global reduction of miRNAs in
cholangiocytes from PCK rats.9,20 Our data are in line with other
reports showing altered miRNA profiles in multiple pathological
conditions, with most miRNAs being decreased.21–24

Combined miRNA-seq–mRNA-seq analysis for targets of
downregulated miRNAs in PLDCs identified the cell cycle, auto-
phagy, cAMP-mediated signalling, and cell proliferation as the 4
most-affected pathways. All 4 pathways have a crucial role in
hepatic cystogenesis and have been considered for therapeutic
interventions in PLD.3,5,6,19,25 The benefit of cAMP targeting in
attenuation of hepatic cyst growth has been demonstrated in
multiple preclinical and clinical studies.1,6,7,14,19,25,26 Inhibition of
autophagy has also been reported to decrease hepatic cysto-
genesis in animal models of PLD.3 Our current study substantially
JHEP Reports 2021
refines and extends previously published data by showing
the linkage between increased autophagy, altered miR-345–miR-
345-targeted protein networks, cholangiocyte hyperpro-
liferation, and hepatic cystogenesis.

Our data also provide experimental evidence that autophagy-
mediated decrease of miR-345 contributes to PLD pathogenesis.
Reduced miR-345 was observed in patients with PLD and in
animal models of this disease. We also found that miR-345 tar-
gets more mRNAs expressed in PLDCs (i.e. 21%) compared
with the other 9 most-decreased miRNAs. Targets of miR-345
include genes that encode proteins related to cell cycle and cell
proliferation (i.e. 2 cellular processes that are crucial for hepatic
cystogenesis26–28). In line with our observation, decreased miR-
345 has also been reported in cancers and, in several instances,
9vol. 3 j 100345
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miR-345 was the most decreased miRNA.29,30 Finally, similarly to
PLD, reduced expression of miR-345 in cancer cells was linked
to dysregulated cell cycle and increased cell proliferation.31–33

We found by in silico analysis that miR-345 has multiple
predicted mRNA targets, many of which are expressed in PLDCs,
as detected by mRNA-seq. In this study, we focussed on: (i)
CDC25A, a master cell-cycle phosphatase; (ii) CDK6, a cell cycle-
related protein; (iii) E2F2, a transcriptional factor involved in the
regulation of cell cycle-related proteins; and (iv) PCNA, a cell
proliferation-related protein. These targets were chosen because:
(i) the pathway cluster analysis of miR-345-targeted genes
showed the cell cycle and cell proliferation to be the top most-
affected pathways in PLDCs; (ii) the cell cycle has previously
been reported to be dysregulated in PLDCs and cell cycle-related
proteins are overexpressed;8,9 and (iii) cell proliferation is a
marker of PLD progression/regression.8,19

Most miRNAs are known to negatively regulate their targets
and miRNA–mRNA pairing inversely correlates with their levels
(i.e. if expression of a given miRNA is decreased, the levels of
targeted genes are increased and vice versa. Indeed, miR-345-
targeted proteins (i.e. CDC25A, CDK6, E2F2, and PCNA) are
overexpressed in PLDCs at both the mRNA and protein levels. As
expected, when we experimentally increased miR-345 in PLDCs,
the level of miR-345-targeted proteins was reduced, cell prolif-
eration decreased, and cyst growth inhibited. These data suggest
that miR-345 contributes to cyst expansion and, therefore, might
represent a novel molecular target in PLD.

The mechanisms that account for miRNA dysregulation in
disease are poorly understood, but several have been proposed,
including genomic defects in miRNA coding regions, repression
by transcriptional factors, or epigenetic modifications.34 Limited
research suggests that miRNA levels are regulated by autophagy.
For example, in Caenorhabditis elegans, autophagy modulates
miRNA expression by removing a component of the miRNA
processing machinery, the miRNA RNA-induced silencing com-
plex (miRISC).10 In mammalian cells, the components of miRNA
biogenesis, DICER and Argonaute 2 (AGO2), are targeted for
autophagic degradation, decreasing miRNA expression.11 Finally,
autophagy-mediated degradation of mature miR-224 was
observed in hepatocellular carcinoma.12

Therefore, we examined the role of autophagy in miR-345
degradation. We found that, in PLDCs, miR-345 is localised to
autophagosomes. In addition, the other 9 miRNAs most
decreased in PLDCs were detected in isolated autophagosomes.
Although autophagy was initially considered as a bulk degrada-
tion pathway, it is now evident that it is also selective (i.e.
mitophagy, ribophagy, lipophagy, etc.).35 Our data show that
JHEP Reports 2021
miRNAs are degraded by autophagy, and we propose to term this
selective type of autophagy, ‘miRNAutophagy’.

The upstream regulator of miRNAutophagy in PLDCs is un-
known. In general, regulation of autophagy occurs by multiple
intracellular signalling pathways including, but not limited to,
mammalian target of rapamycin (mTOR) signalling.36 Consistent
with this, it was previously demonstrated that increased auto-
phagy in PLD is linked to the cAMP-protein kinase A (PKA)-
cAMP-response element binding protein (CREB) pathway.3

Given that molecular and cellular events underlying hepatic
cystogenesis are interconnected, we speculate that the activated
PLDC cAMP pathway might be the upstream regulator of
miRNAutophagy.

We found that accumulation of miR-345 in PLDC autopha-
gosomes is associated with overexpression of miR-345-targeted
proteins. HCQ, a widely accepted autophagy inhibitor,37,38

increased miR-345, reduced the expression of miR-345 targets,
and inhibited cholangiocyte proliferation and hepatic cysto-
genesis. Although our data provide a mechanistic link between
increased autophagy and decreased miR-345 in PLD, we recog-
nise that effects of bulk autophagy inhibitors on hepatic cysto-
genesis might also occur via miR-345-independent mechanisms.

In addition to miR-345, by in silico search, we found other
miRNAs with binding sites to CDC25A, CDK6, E2F2, and PCNA. We
observed that many of them are downregulated in PLDCs and
present in isolated autophagosomes (Supplementary Table S5).
Therefore, we cannot exclude the possibility that multiple miR-
NAs target the genes of interest, acting in concert and contrib-
uting to the levels of CDC25A, CDK6, E2F2, and PCNA in PLDCs
under basal conditions or in response to HCQ.

Direct pharmacological modulation of miRNA expression in
PLD/PKD remains an undeveloped area. The anti-miR-17A
antisense oligonucleotide drug, RGLS4326, decreases the level
of miR-17A overexpressed in kidney, subsequently inhibiting
renal cystogenesis in an animal model of PKD.39,40 Another
drug that re-establishes the levels of downregulated miR-29 in
fibrotic diseases, but not in PKD, is remlarsen.41,42 However,
these drugs might not be feasible for PLD treatment because
our miRNA-seq data show that the levels of miR-17A and miR-
29 are comparable in healthy and PLD cholangiocytes. Thus,
inhibition of autophagy is currently the only option to restore
miRNA levels in PLDCs.

In summary, our data demonstrate that autophagy-mediated
reduction of miR-345 levels in PLDCs is associated with increased
expression of miR-345-targeted proteins and enhanced hepatic
cystogenesis, whereas restoration of miRNAs in PLDCs is bene-
ficial for disease progression.
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