
RESEARCH ARTICLE

GINDEL: Accurate Genotype Calling of
Insertions and Deletions from Low
Coverage Population Sequence Reads
Chong Chu1, Jin Zhang2, Yufeng Wu1*

1. Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, United
States of America, 2. The Genome Institute, Washington University School of Medicine, St. Louis, Missouri,
United States of America

*ywu@engr.uconn.edu

Abstract

Insertions and deletions (indels) are important types of structural variations.

Obtaining accurate genotypes of indels may facilitate further genetic study. There

are a few existing methods for calling indel genotypes from sequence reads.

However, none of these tools can accurately call indel genotypes for indels of all

lengths, especially for low coverage sequence data. In this paper, we present

GINDEL, an approach for calling genotypes of both insertions and deletions from

sequence reads. GINDEL uses a machine learning approach which combines

multiple features extracted from next generation sequencing data. We test our

approach on both simulated and real data and compare with existing tools,

including Genome STRiP, Pindel and Clever-sv. Results show that GINDEL works

well for deletions larger than 50 bp on both high and low coverage data. Also,

GINDEL performs well for insertion genotyping on both simulated and real data. For

comparison, Genome STRiP performs less well for shorter deletions (50–200 bp)

on both simulated and real sequence data from the 1000 Genomes Project.

Clever-sv performs well for intermediate deletions (200–1500 bp) but is less

accurate when coverage is low. Pindel only works well for high coverage data, but

does not perform well at low coverage. To summarize, we show that GINDEL not

only can call genotypes of insertions and deletions (both short and long) for high

and low coverage population sequence data, but also is more accurate and efficient

than other approaches. The program GINDEL can be downloaded at: http://

sourceforge.net/p/gindel
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Introduction

Structural variation (SV) is the genetic variation in structure of an organism’s

genome. Recent advances in high-throughput sequencing technologies enable the

finding of large number of structural variations from population-scale sequence

data. For example, the ongoing 1000 Genomes Project [1, 2] has released called

structural variations for several human populations from hundreds of sequenced

individuals [3]. In this paper, we focus on analyzing low coverage population

sequence reads, such as those being generated by the 1000 Genomes Project. There

are many types of structural variations. Here, we focus on insertions and deletions

(indels), which are more commonly found than other types of SVs in the human

genome. The length of indels may vary greatly. In this paper, we focus on indels

that are longer than 50 bp, which may potentially have large impact on disease

susceptibility.

Over the past several years, a number of increasingly sophisticated

computational approaches for discovering indels from sequence reads have been

developed. These include e.g. [4–8]. Now suppose we have detected indels in the

genome. The next natural research question is calling the genotypes of these

indels. Genotype plays an important role in genetics. For example, genotypes at

some genetic variation sites may affect disease susceptibility. Accurate calling of

indel genotypes is not an easy computational problem especially for low-coverage

noisy population sequence data. There are several existing approaches for calling

deletion genotypes from sequence reads [9–11]. One tool is Genome STRiP [9],

which has been used in the 1000 Genomes Project. Genome STRiP combines

several sources of information contained in the sequence reads. And it is mainly

designed for calling genotypes of long deletions. Simulation results show that

Genome STRiP can accurately call genotypes of relatively long deletions (200 bp

or longer). However, for shorter deletions (i.e. from 50 bp to 200 bp), Genome

STRiP performs poorly. Another tool is Clever-sv [11] that is primarily designed

for calling genotypes of midsize deletions at medium coverage. Clever-sv

combines split-mapped reads and discordant paired-end reads to call genotypes of

deletions. Although Clever-sv works well for intermediate deletions, it performs

less well for low coverage data. Dindel [12] can also call genotypes of deletions,

but it mainly focuses on small deletions (30 bp or smaller). Pindel [5] is primarily

designed for calling insertions and deletions. Recently, a new option has been

added to Pindel for calling genotypes for both short and long deletions. However

Pindel is quite sensitive to reads coverage, and performs poorly when the coverage

is low.

In this paper, we develop a new indel genotype calling approach (called

GINDEL) from low coverage population sequence reads that not only works for

insertions and both short and long deletions, but also is more accurate and

efficient than Genome STRiP, Pindel, and Clever-sv. In particular,

1. Similar to Genome STRiP and Clever-sv, GINDEL also extracts various

information (called features) from sequence reads and calls genotypes by

combining these features. A main difference is that GINDEL uses more
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features than Genome STRiP and Clever-sv. Another difference is that

GINDEL uses a machine learning approach for combining features. As a

result, GINDEL uses the data in a more effective way. Also, GINDEL can call

insertion genotypes, while the current approaches only call deletion

genotypes.

2. We show that GINDEL outperforms Genome STRiP, Clever-sv, and Pindel

in both the genotype accuracy and also efficiency on both simulated data

and real population sequence data.

Background

Signatures of indels on reads

Each indel can be specified by a pair of breakpoints. A breakpoint is a genomic

coordinate in the reference genome, which indicates where the indel starts or

ends. When sequence reads are taken from an indel site, various signatures left by

the indel may be found from the reads.

In this paper, we are mainly concerned with paired-end reads. Suppose a

paired-end read (also called read pair) is mapped to the reference genome using a

tool such as BWA [13]. Sometimes both reads of a read pair are mapped with the

two reads agreeing on the orientation and order, but the insert size is discordant

with the library insert size. This can be an indication that there is a SV (e.g.

deletion) between the two reads since the chance of having unusually large or

small insert size is small. So we have:

(i) Discordant encompassing pair signature: the number of discordant pairs.

A discordant pair has insert size from the two mapped reads is outside the range

½m{3v,mz3v�, where m is the mean insert size and v is the standard variation of

the insert size.

See Figure 1 for an illustration of discordant encompassing pairs for deletions.

There are many methods that detect SVs by analyzing the insert size of discordant

encompassing pairs, such as PEMer [14], BreakDancer [4] and VariationHunter

[15].

Now we consider unmapped reads. Often unmapped reads are caused by

sequencing error. Another cause of unmapped sequence reads is the presence of

structural variations such as indels. To fix ideas, let us consider the case of

deletions. When a read contains the breakpoints of a deletion, the read will

contain two parts: one from the region prior to the deletion and one from the

region following the deletion. We call such a read spanning read for the deletion.

The spanning read may be unmappable as one piece because the read is a

concatenation of the two parts and is not contained in the reference genome as a

whole. Sometimes one or both parts of a spanning read can be mapped to the

reference genome. If both parts are mapped correctly, the mapped spanning reads

may reveal the position of the deletion. So we have:
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(ii) Split-read signature: the number of split-reads. A split-read is a read that

cannot be mapped as a whole but can be mapped as two parts.

Figure 1 gives examples of mapped split-reads. Split-reads mapping has been

used in the programs Pindel [5], SVseq [6, 7] and PRISM [8] for finding deletions.

Read depth is another commonly used signature for finding deletions. For a

position in the reference genome, read depth is equal to the number of mapped

reads that cover that position. Intuitively, when a deletion is present, the average

read depth of the deletion region is likely to be smaller than expected. So we have:

(iii) Read depth signature: the average read depth of the deletion region. A

region on the reference with smaller read depth than expected may suggest the

presence of the deletion. Average read depth of a region is calculated by:
PLd

i~1 (di)=Ld, where Ld is the length of the region and di is the read depth at

position i of the region.

Figure 1 illustrates the difference in read depth for different deletion genotypes.

In particular, when deletions are present, read depth tends to be smaller. Read

depth has been used in programs such as CNVnator [16].

Genotypes and reads

A diploid organism (such as human) has two copies for each chromosome.

Although these are often called ‘copies’, they are not identical. We consider a

genetic variation site (such as a deletion). For one copy of chromosome, we use

state (called allele) 1 to indicate that the variation is indeed present at this copy,

and use state 0 otherwise. For convenience, we often refer to allele 0 as the

wild-type and allele 1 as indel allele. A description of the conflated (mixed) data

from the two copies is called a genotype. When both copies have allele 0 (respectively

1) at a site, the genotype has state 0 (respectively 2), and is called a homozygote.

Otherwise, the genotype has state 1 at that site and is called a heterozygote. Note

that a genotype is for a particular diploid individual at a specific variation site.

In this paper, we want to call the genotypes of indels from low coverage

population sequence reads. Accurate calling of indel genotypes from low-coverage

whole-genome sequencing data poses a significant challenge. First, current

population sequencing usually adopts the low coverage scheme [1, 2]. So the

Figure 1. Features for the three deletion genotypes: discordant and concordant pairs, split-read, fully-mapped reads, and read depth.

doi:10.1371/journal.pone.0113324.g001

GINDEL: Genotyping Insertions and Deletions from Sequence Reads

PLOS ONE | DOI:10.1371/journal.pone.0113324 November 25, 2014 4 / 22



average coverage (i.e. the number of reads overlapping the sites of interests) is

usually low. Moreover, sequence data is obtained using the so called ‘‘shotgun’’

approach. That is, short DNA fragments called reads are generated from randomly

selected locations on the two chromosomes. There is usually large variations in

coverage. Some genetic variation sites may have very low coverage or even no

reads at all. Even if there are some reads at a site, calling genotypes may still not be

easy. Note that a read may be from either chromosome copy. If, for example, there

are only two reads generated from a heterozygous deletion locus, there is a 50%

chance that one allele (say allele 1, the one with deletion) would be missed. If this

happens, it is difficult to reliably call the heterozygote genotype. Other inherent

noises (such as sequencing errors) will only make matters worse.

A simple way of calling genotypes using sequence reads is to first obtain the

number of reads showing each type of allele, and then call the genotypes based on

these read counts. Such a scheme has been used in calling SNP genotypes from

sequence reads (see e.g. [17]). Our experience is that this simple scheme is not

very accurate for our problem. A main problem with this scheme is that it does

not consider all the information about indels. Recall that there are different

signatures (e.g. spanning reads and discordant encompassing pairs) for an indel. It

is unclear how to combine these information from different sources when calling

genotypes. There are several existing computational approaches for calling indel

genotypes, including Genome STRiP [9], Clever-sv [11], Pindel [5] and Dindel

[12]. Genome STRiP uses encompassing pairs and read depth (but not split-

reads) and calls deletion genotypes based on Bayesian likelihood. Empirical results

show that Genome STRiP performs well for longer deletions (1,000 bp or longer).

For short deletion (less than 200 bp), Genome STRiP often does not call

genotypes and only reports ‘‘low quality’’. Clever-sv is a tool for calling genotypes

of deletions. In addition to using features such as split-reads, Clever-sv also uses

Mendelian rules in genotype calling. Originally developed in [5] for the purpose

of finding deletion sites, Pindel has been extended to call the genotypes of indels.

Simulation results show that both Clever-sv and Pindel do not perform well for

low coverage data. Dindel only calls genotypes for indels that are shorter than the

ones we are focusing in this work. This indicates that there is still much room for

improvement in indel genotype calling.

Methods

High-level approach

Our method, GINDEL, assumes that a list of indels (including the types and

genomic positions) and a set of population sequence reads in the BAM format are

given as input. GINDEL also requires training data (that is, known indel

genotypes for the indels along with the sequence reads). The key idea of GINDEL

is treating each genotype for each given indel and each individual as a data point

in a multi-dimensional space, and calling genotypes based on classification of

these points. The coordinates of these data points are based on features collected
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from sequence reads from the specific individual and indel. Choosing the

appropriate features is the key for GINDEL. If an extracted feature can represent

the property of one aspect of the whole data, then this feature is considered as a

good feature. In contrast, if an extracted feature can only represent the property of

part of the data, then we see this feature as a bad or less important feature.

GINDEL uses the three signatures explained in the Background Section as features

and several more features for the presence of indels. It is important to note that

genotype calling requires features indicating both the presence and the absence of

indels. GINDEL thus also uses several features for showing the absence of indels.

Moreover, features for insertions and deletions may be different. Finally, GINDEL

combines these features and views each genotype of an indel as a point in a multi-

dimensional space. The dimension is equal to the number of features we use for

the genotype. Then the genotyping problem becomes a classification problem.

That is, the genotypes classified into the same category are called the same

genotype states. Figure 2 illustrates the classification approach using 4096 deletion

genotypes from the real 1000 Genomes Project data [18]. There are clearly three

categories for these points, which correspond to the three genotypes: 0, 1 and 2.

We use support vector machine (SVM) to classify the genotypes. We first train the

SVM with some training data. Then with the trained SVM, GINDEL can call the

genotypes of deletions and insertions accurately and efficiently.

Details of our approach

GINDEL calls genotypes of indels in three steps. In the first step, GINDEL collects

all the relevant reads for each given indel from the given reads in the BAM file.

Then we collect all the features needed by parsing these relevant reads of each

individual for the indel. Finally, we train an SVM model using the training data,

and then use the trained SVM model to call the genotypes of testing data.

Reads collection

For a given deletion or insertion with known breakpoint ½b1,b2�, GINDEL collects

all the reads whose mapping positions are relevant to this indel. We say a read is

relevant to the indel at ½b1,b2� if the read falls within the region

½b1{dmax,b2zdmax�, where dmax~mz3vz2r. Here, m and v are the mean and

standard deviation of the insert size in the given reads, and r is the read length.

GINDEL allows the user to specify the values of m and v. If m and v values are not

specified, GINDEL calculates m and v from the reads in the BAM file. Intuitively,

dmax specifies the maximum distance between a read and the boundary of the

indel if the read pair containing this read overlaps the indel. We say a read pair

overlaps the indel if the interval formed by the leftmost and rightmost positions of

the read pair overlaps the interval of the indel. If the insert size of a paired-end

read is larger than dmax, we treat this pair as an invalid pair (possibly wrongly

mapped), which is then discarded. We also discard low-quality reads from the set

of the relevant reads. A paired-end read is discarded if both reads are of low

mapping quality or unmapped. A read may have multiple alignments in the BAM
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file, and this is allowed in our approach. Thus, all surviving reads are mapped or

partially mapped. There are three allowed situations for a surviving paired-end

read: (i) both mapped, (ii) one end mapped and the other end partially mapped

(see below), and (iii) one end mapped and the other end unmapped.

Feature parsing

Once relevant sequence reads are found, GINDEL parses various features at an

indel of an individual. This is the key step in our approach. As explained before,

we use features for showing both the presence and absence of indels. These

features are obtained by analyzing three aspects of reads for an indel: (i)

encompassing read pairs (i.e. two reads in the pairs are mapped to different sides

of the indel), (ii) spanning reads (i.e. reads mapped to a region that overlaps the

indel), and (iii) read depth near the deletion. Table 1 lists all the features used by

GINDEL for insertions and deletions.

Encompassing pairs. We first find all discordant encompassing pairs for the

indel. Note that this is made easy by the known breakpoints of the indel: the insert

size of an encompassing pair for an indel should be close to the expected library

insert size after being adjusted by the indel length. Moreover, concordant

encompassing pairs suggest at least one wild-type allele. So we have:

(iv) Concordant encompassing pair feature: the number of encompassing

pairs that have insert size from the mapped positions that falls within the range

Figure 2. Illustration of classification-based genotype calling with the real 1000 Genomes Project data. Each point refers to one of the 4096 deletion
genotypes for 123 deletions on chromosomes 11 and 20. The coordinates of the points are calculated based on extracted features, and each point is labeled
by the benchmarked genotype [18]. For better visualization, the number of features used is reduced. There are clearly three categories for the benchmarked
genotypes, where each category corresponds to one of three possible genotypes: 0 (circle/blue), 1 (square/red) and 2 (cross/green).

doi:10.1371/journal.pone.0113324.g002

GINDEL: Genotyping Insertions and Deletions from Sequence Reads

PLOS ONE | DOI:10.1371/journal.pone.0113324 November 25, 2014 7 / 22



½m{3v,mz3v�. A high value of this feature shows the presence of at least one

wild-type allele.

Recall that m is the mean and v is the standard deviation of the insert size.

See Figure 1 for an illustration of concordant pairs. The case of insertion needs

more consideration. Note that if the insertion is very long, then it is possible

that one end will be from the inserted sequence and will be unmapped. So we

may not be able to find any discordant encompassing pairs for an insertion.

Here, we can extract another feature from paired-end reads:

(v) Single-end-mapped pair feature: the number of read pairs that one read is

mapped and the other is unmapped. This type of read pairs may occur when one

read originates within the inserted sequence and the other read which is outside

the insertion. So a high value suggests the existence of at least one long insertion

allele.

Spanning reads. GINDEL uses split-read signature. In addition, GINDEL also

uses partially-mapped reads:

(vi) Partially-mapped reads feature: the number of spanning reads that cannot

be mapped as a whole but one segment (prefix or suffix) is mapped (as soft-clip).

A high value of this feature suggests the existence of an indel allele.

A partially-mapped read differs from a split-read in that both prefix and suffix

segments of a split-read can be mapped. Partially-mapped reads can be useful

when split-reads cannot be found. For insertions, partially-mapped reads are

more useful because one segment of a spanning read is from the inserted sequence

and thus cannot be properly mapped. Besides split-reads and partially-mapped

reads (which are unmapped reads as a whole), we also have:

(vii) Fully-mapped spanning reads feature: the number of spanning reads that

are mapped as a whole. A high value of this feature suggests the existence of a

wild-type allele.

For example, in the g51 case of Figure 1, the presence of fully-mapped reads

supports the existence of a wild-type allele. Note that features obtained from split-

reads or partially-mapped reads are more sensitive to the accuracy of breakpoints

than other features. In practice, sometimes SV discovery tools may not be able to

call the breakpoints with high accuracy. Also, reads may not be perfectly clipped at

the breakpoints because of error or high sequence similarity near the breakpoints.

Table 1. List of features used to call genotypes of insertions and deletions.

Features Deletion Insertion

Discordant and concordant pair-end reads Yes Yes (for short insertion)

Single-end-mapped pair-end reads No Yes (for long insertions)

Partially-mapped spanning reads No Yes

Fully-mapped reads Yes Yes

Split-reads Yes No

Read depth Yes No

Yes/No: whether a feature is used in calling the genotypes of the indels.

doi:10.1371/journal.pone.0113324.t001
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So we allow some flexibility in determining whether a split-read or partially

mapped read occurs at the specific breakpoint of a given indel. GINDEL provides

a ‘‘-c’’ option with the default value being 15, which means reads clipped 15 bp

from the breakpoints are considered as clipped at the breakpoints.

Read depth. Read depth is informative for deletion genotype calling because the

number of reads mapped to the region of the reference genome between the two

breakpoints depends on the deletion genotype. For homozygous deletions, no or

very few reads are to be mapped to this region and thus the read depth is close to

0. The read depth for heterozygous deletions is likely to be between the two

homozygous cases. Another advantage of read depth is that it does not rely on

knowing the exact breakpoints. GINDEL uses the read-depth signature for

evidence for the presence of both the deletion and wild-type alleles. Refer to

Figure 1 for an illustration.

We note that coverage may be quite different in training and testing data. Even

when training data and testing data are from the same source, coverage around

different deletions or insertions may be different. Suppose the coverage around

one deletion is low. Then even if there are only few discordant encompassing

pairs, these reads still provide a strong signal that the deletion is not homozygous

wild-type. However, for another deletion whose local coverage is high, a small

number of discordant encompassing pairs may not be a strong signal. Therefore,

we need to normalize the features parsed for each indel. GINDEL uses local read

depth to do normalization for each indel. Here, local read coverage is equal to the

average read coverage of two regions ½b1{m{3v{2r,b1{r� and

½b2zr,b2zmz3vz2r�, where b1 and b2 are the breakpoints of the indel (b1 and

b2 are same for insertions), m and v are the mean and standard deviation of insert

size, and r is the read length.

Model training and genotype calling

All features are quantified using the sequence reads for the specific individual and

the indel for all individuals. Let K be the number of features for a specific type of

indel (say deletion). We obtain a length-K vector. We treat each such vector as a

point in a K dimensional space. There are total NM points, where N is the

number of diploid individuals and M is the number of deletions. Intuitively,

points with the same genotype values tend to resemble each other. So, we expect

to see three categories of points, which correspond to three possible genotypes: 0,

1 and 2. Refer to Figure 2 for an illustration. We use the support vector machine

to perform classification. In particular, we use LibSVM [19] to train models using

provided training data, and then use the trained SVM model to call genotypes of

test data. The model training usually takes two steps. First, all training data is

labeled and then scaled. When there is no validated data or labeled data provided,

we can use simulated data to train the model. A simulator is released in our

program. See the Material S1 for detail steps of generating simulated data. Second,

grid search and 10-cross validation are used to find the optimal parameters, and

default kernel function is used in this procedure. Then we use the trained model
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to call the genotypes of the test data. Also for training and testing, a ‘‘-b’’ option

can be used in LibSVM to generate the probability for each genotype.

Results

GINDEL can call genotypes for both insertions and deletions. We test GINDEL on

both simulated and real data for calling insertion and deletion gentoypes. For

insertion genotype calling, we cannot find any benchmarked real data, nor

existing tools for calling genotypes of insertions (larger than 50 bp). Thus, we use

an indirect measure for evaluating the accuracy of GINDEL. To evaluate the

performance of GINDEL on deletion genotype calling, we compare GINDEL with

the latest version of Genome STRiP (version 1.04.1358), Pindel (version 0.2.5),

and Clever-sv (interim version downloaded at 05/01/2014) on both simulated

data and real data. Here, we present the key results. More detailed results,

commands used and detailed parameters are given in the Material S1.

Calling deletion genotypes with simulated data

Results for different deletion sizes and coverages

45 individuals are simulated from chromosome 15 of NCBI36. We introduce 221

deletions from the CEU population reported by [3] to the simulated datasets. The

deletion file is union.2010 06. deletions.genotypes.vcf.gz in the 1000 Genomes

Project data release. For these deletions, the smallest, largest and average deletion

sizes are 51 bp, 160,798 bp and 339 bp respectively. We choose these called

deletions because these deletions include both long and short ones. Because the

haplotypes are unknown, for heterogeneous deletions we arbitrarily put one copy

of the deletion on one of the haplotypes of an individual. We simulate paired-end

reads with the reads simulator wgsim, with 2% error rate, read length of 100, and

insert size of 500. Three datasets with coverage 4.26, 6.46, and 106 are

simulated. BWA is used with default parameters to map the simulated reads to

NCBI36.

We run GINDEL, Genome STRiP, Pindel, and Clever-sv on this data. For

GINDEL, to make sure the results are convincing, 10 rounds of experiments are

done. For each round, we randomly choose 31 individuals (75% of all the

individuals) as training data, and the other 14 individuals (25% of all the

individuals) are used as testing data. The average accuracy of the 10 rounds is

reported. For Genome STRiP, there are various parameters for users to set. One

parameter is called depth.effectiveLengthThreshold, which specifies the minimum

effective length of deletions for calling genotypes. The default of this parameter is

200. We use the following two ways to run Genome STRiP. The first is using the

default setting (denoted as STRiP v1), which does not call deletions shorter than

200 bp. The second is setting the effective length threshold to be 51 bp (denoted

as STRiP v2). This setting allows calling more deletion genotypes longer than

51 bp. We note that Genome STRiP does not call genotypes for all deletions

GINDEL: Genotyping Insertions and Deletions from Sequence Reads
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longer than the effective length threshold (some are marked as low quality and not

called). For Pindel, we first run with default parameters, and then use pindel2vcf

to call out the genotypes. Not all of the benchmark deletions are called out in the

first step. So we only use those deletions that overlap with the benchmark in

comparison. For Clever-sv, because it does not accept the alignment generated by

BWA, we first run laser (a tool used in Clever-sv for reads alignment), then run

genotyper (a tool used by Clever-sv to call genotypes). For laser, ‘‘-w’’ option with

value ‘‘ten percent of the read coverage’’ is used. And for genotyper, default

parameters are used.

Table 2 shows the results of GINDEL, Genome STRiP, Pindel, and Clever-sv for

calling deletion genotypes on simulated data with three different coverages. To

evaluate the effects of sequence coverage and deletion length, we provide itemized

results for various deletion lengths besides the overall accuracy for each coverage.

For longer deletions (1.5 kbp or longer), the gap between GINDEL and Genome

STRiP is smaller. For shorter deletions, GINDEL tends to significantly outperform

Genome STRiP. This is especially true for deletions of length 400 bp or shorter,

where there are totally 116 such shorter deletions (about 52.5% of all deletions).

For Pindel, no genotypes are called for coverage 6.46 and 4.26. For the dataset

with coverage 106, 47,457 deletions are called out, where only 104 deletions are

concordant with the benchmark. Both GINDEL and Clever-sv perform better for

intermediate deletions (length 200–1500 bp) than Genome Strip and Pindel.

GINDEL performs better than Clever-sv for larger (1.5 kbp or longer) and smaller

(50–200 bp) deletions, especially for datasets of coverage 6.46 and 4.26. Overall,

GINDEL performs well on all three coverages compared with the three existing

tools.

Results for different features

GINDEL uses a machine learning approach combing five features to call the

genotypes of deletions: the number of discordant read-pairs, the number of

concordant read-pairs, the number of split-mapped reads, the number of fully-

mapped reads, and read depth. In order to see how different features contribute to

the final results, we combine different features that are generated by GINDEL. We

train a model for each group of features and test the accuracy of each

combination. The same 6.46 dataset used in the last section is used in this

experiment. And we randomly choose 75% of the data as the training data, and

the rest 25% as the testing data. Table 3 shows the eight groups of results of

combining different features. The results show that: 1) The number of split-

mapped reads and the number of fully-mapped reads contribute more for short

deletions (50–200 bp), and they also are good features for larger ones. 2) The

number of discordant read-pairs and the number of concordant read-pairs have

more effects for large deletions (larger than 200 bp). 3) Read depth performs less

well when used independently. But the classifier will performs better if read depth

is combined with other features, which indicates read depth is also a good

supplementary. 4) All the five features have significant contributions to the final

results. The more features are combined, the better the performance of classifiers.
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Results for different deletion frequencies

Because GINDEL treats each deletion independently, GINDEL can call the

genotypes of deletions for both single individual and multiple individuals in a

population. To see how GINDEL works on population data, we also give the

genotype accuracy of deletions with different deletion frequencies. We use the

same three simulated datasets of coverage 10.06, 6.46 and 4.26. Here we do

not compare with Genome STRiP and Clever-sv. This is because Genome STRiP is

primarily designed for long deletions, while Clever-sv is mainly designed for

midsize deletions. If we calculate statistic according to deletion frequencies, it will

be unfair for these tools, because for one specific deletion frequency, there may be

short, midsize and long deletions. Indeed our experiment also shows that the

accuracy for some specific deletion frequencies is really low for Genome STRiP

and Clever-sv. So here we only show the results of GINDEL. Table 4 shows the

performance of GINDEL on different deletion frequencies with different

coverages. The results show that GINDEL performs well for different deletion

frequencies with different coverages. The accuracy drops a little as deletion

frequency increases. This indicates that GINDEL performs a little better for

homozygous wild-types than the other two kinds of genotypes.

Table 2. Comparison of GINDEL, two versions of Genome STRiP (with different setting of the effective length threshold), Pindel and Clever-sv on simulated
data.

Coverage Length Del. Num. GINDEL
Genome
STRiP v1

Genome
STRiP v2 Pindel

Clever-
sv

106 50–200 70 0.9869 0.0000 0.6254 0.5476 0.9857

200–400 46 0.9769 0.4423 0.8349 0.5502 0.9859

400–500 13 1.0000 0.8516 0.9327 0.3333 1.0000

500–1500 34 1.0000 0.9942 0.9942 0.5830 0.9948

.1500 58 0.9979 0.9805 0.9805 0.5950 0.9540

6.46 50–200 70 0.9791 0.0000 0.5679 - 0.8867

200–400 46 0.9697 0.3927 0.7869 - 0.9754

400–500 13 1.0000 0.8496 0.9162 - 0.9915

500–1500 34 1.0000 0.9542 0.9542 - 0.9699

.1500 58 0.9967 0.9548 0.9667 - 0.9345

4.26 50–200 70 0.9645 0.0000 0.4429 - 0.6756

200–400 46 0.9651 0.3562 0.6984 - 0.9068

400–500 13 1.0000 0.8308 0.8940 - 0.9538

500–1500 34 0.9979 0.9144 0.9144 - 0.9458

.1500 58 0.9963 0.9686 0.9801 - 0.8966

Results on the percentage of correctly called genotypes are given for deletions with different lengths. Del. Num. indicates the number of deletions in specific
length (the number of genotypes is Del. Num. multiply the number of individuals), and because Pindel discovers 104 out of the 221 deletions, so the number
of deletions in each specific length (from small to large) are: 24, 21, 5, 20, and 34 respectively. Pindel does not call genotype for data with lower coverages.
So no results are reported.

doi:10.1371/journal.pone.0113324.t002
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Calling deletion genotypes with real data

Three datasets, high resolution CNV benchmark data, low coverage sequence data

with short deletions, and high coverage trio data, are used as real data. We first

compare GINDEL and Genome STRiP using the high resolution CNV benchmark

data, low coverage sequence data. Here, we do not compare with Clever-sv

because Clever-sv requires raw reads (in the fastq format), but not all reads are

Table 3. Accuracy of GINDEL trained by combination of different features.

Length Gntps D. C. S. F. R. D. S. D. C. R. R. S. F. D. C. S. F. All

50–75 294 0.8844 0.9218 0.7721 0.9252 0.8844 0.9082 0.9388 0.9592

75–100 294 0.8878 0.9728 0.8844 0.9490 0.9354 0.9728 0.9762 0.9796

100–150 238 0.8866 0.9958 0.8277 0.9454 0.9664 0.9874 1.0000 1.0000

150–200 154 0.9351 0.9610 0.9351 0.9870 0.9870 0.9545 0.9870 0.9870

200–300 224 0.9420 0.9200 0.8259 0.9464 0.9688 0.9375 0.9643 0.9688

300–400 420 0.9262 0.9333 0.8262 0.9381 0.9619 0.9405 0.9643 0.9667

400–500 182 0.9615 0.9670 0.8736 0.9560 1.0000 0.9780 1.0000 1.0000

500–800 140 0.9929 0.9714 0.9214 0.9929 1.0000 0.9714 1.0000 1.0000

800–1100 168 1.0000 0.9464 0.8929 1.0000 1.0000 0.9583 1.0000 1.0000

1100–1500 168 0.9702 0.9643 0.9226 0.9702 1.0000 0.9702 0.9940 1.0000

1500–2000 210 0.9714 0.9762 0.9476 0.9857 1.0000 0.9762 0.9952 0.9952

2000–4000 252 0.9762 0.9444 0.9246 0.9722 0.9960 0.9841 0.9881 0.9960

4000–9000 238 0.9748 0.9500 0.8277 0.9706 0.9748 0.9538 0.9832 0.9874

.9000 112 0.9821 0.9821 0.8660 0.9821 1.0000 0.9821 1.0000 1.0000

Results on the percentage of correctly called genotypes are given for deletions with different lengths. Gntps represents the total number of genotypes in
specific length. D., C., S., F., and R. represents # of discordant read-pairs, # of concordant read-pairs, # of split-mapped reads, # of fully mapped reads,
and read depth. All means using all the five features.

doi:10.1371/journal.pone.0113324.t003

Table 4. Performance of GINDEL on different deletion frequencies with different coverage.

Coverage Del. Freq. Del. Num. GINDEL

10.06 0–5 138 0.9984

6–15 34 0.9895

16–30 27 0.9630

31–45 34 0.9675

6.46 0–5 138 0.9974

6–15 34 0.9790

16–30 27 0.9444

31–45 34 0.9416

4.26 0–5 138 0.9964

6–15 34 0.9748

16–30 27 0.9418

31–45 34 0.9351

Del. Freq. is the deletion frequency from 0 to 45 (there are 45 individuals in all). Del. Num. is the number of deletions on specific deletion frequency.

doi:10.1371/journal.pone.0113324.t004
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released in these two datasets. We also do not compare with Pindel because the

output of Pindel changes significantly for different coverages, and this makes the

comparison complex and unfair. In order to compare with Clever-sv and Pindel,

we perform a separate experiment using the high coverage trio data. In this second

experiment, we do not compare with Genome STRiP because Genome STRiP

requires at least 20 to 30 individuals to get good results.

High resolution CNV benchmark data

We first use the low-coverage population sequence phase two data released by the

1000 Genomes Project. This data consists of alignment files of 66 individuals on

chromosomes 11 and 20 (33 individuals for each chromosome). For the 33

individuals of each chromosome, 13 of the individuals are from CEU population

and the others are from the YRI population. These alignment datasets are mapped

using BWA with soft-clips on NCBI37. There are 122 deletions in these two

chromosomes, where genotypes are called in [18]. These CNVs are validated

through array-CGH using a set of NimbleGen, and thus we use these genotypes as

our benchmark. These deletions are usually long: only 16 are within the range of

450 bp to 960 bp, and the others are longer then 1 k bp. The minimum deletion

size is 450 bp. The maximum deletion size is 88,384 bp, and the average size is

2,461 bp.

Recall that GINDEL needs training data. There are various ways of training.

One approach is, for each chromosome, splitting the collected feature data into

training data and testing data. Here, we perform 10 rounds experiments to get

convincing results. For each round, we randomly choose 75% of all the

individuals as the training data and the rest 25% as the testing data. Table 5 shows

the average accuracy of the 10 rounds on the benchmark data. To evaluate

GINDEL and Genome STRiP for data with different coverages, we manipulate the

reads by randomly keeping a fraction of the reads in the original data. The

fractions are chosen from 100% (i.e. using all the reads), 75%, 50% and 25%.

Training strategies may also affect the genotype accuracy. We experiment with

two other training strategies: (i) train with given genotypes on one chromosome

(say chromosome 11), and use the trained model to call genotypes on the other

chromosome (say chromosome 20); (ii) train with simulated data, and test on real

sequence reads. It is clear that GINDEL consistently outperforms Genome STRiP

on all the tests we performed on these longer deletions. Also note that training

does affect the genotype accuracy. Genotypes called with models trained by

simulated data tend to be slightly less accurate than trained by real data.

Genotypes for shorter deletions with low coverage real data

The results from [18] are mostly for longer deletions. And we did not find any real

population sequence reads with benchmarked genotypes on short deletions. So in

order to evaluate the performance of genotype calling on deletions of different

lengths, we use an indirect way. We use the real sequence reads in the 1000

Genomes Project from the same 33 sequenced individuals in the high resolution

CNV benchmark data from chromosome 11. For deletions, we use all the 737
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reported deletions on the chromosome 11 that are released by the 1000 Genomes

Project pilot phase (released at June 2010). Note that the 1000 Genomes Project

did not release the genotypes for these deletions. In order to evaluate the genotype

accuracy, we use the following strategy. We use SVseq2 [7] and Genome STRiP

(only the Discovery part) to call deletions on reads from each of the 33

individuals. Note that we treat each individual at a step (i.e. not pooling reads

from multiple individuals). SVseq2 and Genome STRiP call 1,106 and 510

deletions respectively. We then use the deletions called by both SVseq2 and

Genome STRiP, which are also included in the released pilot data release from the

1000 Genomes Project. There are 267 such deletions. For each deletion, the

genotype is marked as ‘‘no deletion’’ or ‘‘with deletion’’ for each individual. That

is, we do not distinguish homozygous and heterozygous deletions. In particular,

we mark a genotype of an individual to be ‘‘with deletion’’ if this deletion is called

out by both SVseq2 and Genome STRiP for this individual. Similarly, if a deletion

is neither called out by SVseq2 nor by Genome STRiP, it is marked as ‘‘no

deletion’’. To get more accurate genotype marking, deletions for cases where there

are conflicts between SVseq2 and Genome STRiP are not used in comparison. We

also test how read coverage affects the results by using a fraction of reads.

Figure 3 shows the results of GINDEL and Genome STRiP with different

fraction of data used (100%, 50% and 25%). GINDEL is trained using simulated

data. Note that the reported accuracy here is the percentage of the called

genotypes matching the marked genotypes (i.e. if the called genotype is

homozygous wild-type and the marking is ‘‘no deletion’’ or the called genotype is

not homozygous wild-type and the marking is ‘‘with deletion’’). One can see that

GINDEL outperforms Genome STRiP in most cases, especially for the shorter

Table 5. Comparison of GINDEL and Genome STRiP on high resolution benchmark data with various coverages on chromsomes 11 and 20.

GINDEL Genome STRiP

Training Coverage Chr 11 Chr 20 Chr 11 Chr 20

Split 100% 95.03 94.39 92.15 90.03

75% 94.57 93.43 91.76 89.90

50% 94.01 91.97 90.81 88.18

25% 86.86 84.39 84.62 80.20

Chrom 100% 93.17 92.51 92.15 90.03

75% 92.78 91.49 91.76 89.90

50% 92.78 91.49 90.81 88.18

25% 86.01 83.28 84.62 80.20

Simulation 100% 92.39 90.39 92.15 90.03

75% 92.02 90.07 91.76 89.90

50% 91.56 89.97 90.81 88.18

25% 85.62 82.47 84.62 80.20

We run GINDEL using the following training strategies. Split: train with 75% genotypes and call the rest 25%. Chrom: train with data from the other
chromosome. Simulation: train with simulated data. Coverage: percent of reads from the original data used in genotype calling. Genotype accuracy is
reported as the percentage of genotypes called correctly.

doi:10.1371/journal.pone.0113324.t005
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deletions (400 bp or shorter). Note that there are many such shorter deletions:

there are 101 such deletions (about 37.8% of all deletions). This is consistent with

the results on simulated data in the ‘‘Results for different deletion sizes and

coverages’’ Section. We also note that GINDEL performs well when different

fraction of data is used.

Genotypes for deletions with high coverage trio data

To further evaluate the performance of GINDEL on real data and compare with

Pindel and Clever-sv, we perform experiments on a group of high coverage trio

data released by Illumina (Platinum Genomes, http://www.ebi.ac.uk/ena/data/

view/ERP001960). Three samples NA12877 (father), NA12878 (mother), and

NA12882 (son) are used, and the average coverage of each sample is about 506.

First, we run SVseq2, Pindel, and Mate-Clever to call deletions for these three

samples on chromosome 11. The numbers of deletions called by SVseq2, Mate-

Clever and Pindel are 94, 2,504 and 38,008 respectively. Second, we collect the 40

deletions that are called out by all three tools (using a slack value 5 bp on both

end of a deletion when comparing the called deletions). Then, we call genotypes

for these 40 deletions using GINDEL, Clever-sv and Pindel. For GINDEL, we use

simulated data to train the models. Two datasets (6 samples for each) of coverages

506 and 106 are simulated, and we use the same 221 deletions used in the

simulation section. Detailed information on training is provided in the Material

S1. To evaluate the performance of tools on data with different coverages, we

Figure 3. Comparison of GINDEL and Genome STRiP for calling deletion genotypes on real reads from the 1000 Genomes data on deletions of
various sizes. Horizontal axis: range of deletion length (in bp). The number of deletions within a length range is given in the left part (below the length).
Vertical axis: percentage of genotypes that agree with the genotype marking. We also give the number of deletions within each length range (in the left part,
below the deletion length. For example, there are 15 deletions within range of 100 to 200 bp. Genome STRiP v1 does not call genotypes for deletions
shorter than 200 bp, and so no result is given.

doi:10.1371/journal.pone.0113324.g003
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perform downsampling for the original data. To perform downsampling,

samtools with option ‘‘view –s’’ is used, and two datasets are generated with

average coverage 12.56 and 7.56 respectively. Note that Pindel cannot genotype

deletions with given positions. That is, Pindel needs to start with deletion finding

in order to call genotypes. So when coverage decreases, deletions called out may

change to another genotype or sometimes not be called by a tool. In our

experiments, for coverage 12.56 and 7.56, 36 and 31 out of the 40 deletions are

called out respectively by Pindel.

Three metrics are used to evaluate the performance of the tools.

1. The number of deletions violating Mendelian inheritance. Genotypes of trio

can be checked for Mendelian inheritance. For example, if both parents have

genotypes 2 at a deletion, then their child will almost always have genotype 2

at the same deletion. Eight discordant cases for the trio genotypes are used:

(0,0,1),(0,0,2), (0,1,2), (0,2,0), (0,2,2), (1,2,0), (2,2,0), and (2,2,1), where the

first two represent the genotype of the parents, and the third one is the

genotype of the child. A discordant case is an indication that some called

genotypes in the trio may be wrong.

2. The number of deletions with all-0 genotypes for the trio. Because the

coverage is quite high, and the deletions are called out by all three tools, it is

highly likely that the deletion allele appears in at least one family member of

the trio for each of the 40 deletions. So the all-0 genotypes of the family at a

deletion is an indication of genotype error in some of family members at the

deletion.

3. The number of changed genotypes when coverage decreases. We assume

that all methods perform better at higher coverages (e.g. 506) than at lower

coverages (e.g. 7.56). Then when we perform downsampling, some

genotypes called at lower coverage may be different (either a different

genotype or not called) from those called at high coverage. These genotypes

are likely to be wrong due to insufficient data for the particular method.

Table 6 shows the results of GINDEL, Pindel, and Clever-sv on the high

coverage trio data. The results shows that, when coverage is at 506, the results for

GINDEL, Pindel, and Clever-sv are simliar. There are only one or two deletions

that do not agree with Mendelian inheritance or have all-0 genotypes. This

supports our assumption that all three tools perform well at high coverage.

However, as the coverage decreases, Pindel performs less well. For example, at

12.56 coverage, 10 out of 36 deletions violate the Mendelian inheritance, and 5

out of 36 deletions with all-0 genotyps. Clever-sv appears to perform better than

Pindel, especially at higher coverage. However, at lower coverage (say 12.56), at

least one genotype cannot be called out for half of the 40 deletions. In contrast, we

notice that GINDEL performs relatively well as coverage reduces. For the worst

case, only three deletions violate Mendelian inheritance. Moreover, GINDEL

produces more consistent called genotypes when coverage reduces from 506 to

7.56: the percentage of changed genotypes is 17.50% for GINDEL, 72.05% and

36.67% for Pindel and Clever-sv respectively.
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For coverage 506, we also compare the concordance between GINDEL, Pindel

and Clever-sv. The concordance ratio is 87.50% for GINDEL and Clever-sv,

86.67% for GINDEL and Pindel, and 84.17% for Pindel and Clever-sv.

Insertion genotype calling with simulated data

GINDEL can also call genotypes of insertions. We test our method on both

simulated and real data. For simulated data, 25 individuals based on human

chromosome 11 of NCBI 37 are simulated. There are 126 insertions of

chromosome 11, with the minimum size 33 bp, the maximum size 6,017 bp and

the average size 282 bp, as released by the 1000 Genomes Project pilot phase. We

randomly create the genotype for each insertion site with 10% homozygous

insertions, 70% homozygous wild-type, and 20% heterozygous insertions. For

heterozygous insertions, we arbitrarily put the insertions on one of the two copies.

Reads are simulated in the same way as in the deletion case (explained as above).

Here is the accuracy of called insertion genotypes by GINDEL. The percentages of

accurately called genotypes are 94.38%, 92.10%, and 91.30% for coverage at 6.46,

4.26 and 3.26 respectively.

Insertion genotype calling with real data

To further evaluate the performance of GINDEL on insertion genotype calling on

real data, we test on a group of high coverage trio data released by the 1000

Genomes Project at pilot 2 stage. Three samples NA12891 (father), NA12892

(mother), and NA12878 (child) are used with average coverage of about 406.

The positions and lengths of insertions are also released by the 1000 Genomes

Project on June 2010 (contained in file CEU.trio.2010 06.

MobileElementInsertion.sites.vcf). We collect all the insertions larger than 50 bp

called on chromosome 11, which include 66 insertions with minimum, median,

and maximum length being 50 bp, 292 bp, and 6,062 bp respectively. We perform

Table 6. Comparison of GINDEL, Pindel and Clever-sv on high coverage trio data using downsampling.

Coverage Metrics GINDEL Pindel Clever-sv

100%(506) # discordant deletions 1(40) 1(40) 0(40)

# deletions with all-0 genotypes 2(40) 1(40) 2(40)

25%(12.56) # discordant deletions 0(40) 10(36) 0(20)

# deletions with all-0 genotypes 1(40) 5(36) 2(20)

# changed genotypes in downsampling 11(120) 35(108) 30(120)

15%(7.56) # discordant deletions 3(40) 5(31) 0(14)

# deletions with all-0 genotypes 1(40) 21(31) 1(14)

# changed genotypes in downsampling 21(120) 67(93) 44(120)

The number of possibly wrongly called deletions (outside the parenthesis) and the total number of deletions (inside the parenthesis) are reported based on
three creteria. # discordant deletions: number of deletions violating the Mendelian law; # deletions with all-0 genotypes: number of deletions with genotype
0 for both parents and the child in the trio (which contradicts the calling of the deletion from the same trio data); # changed genotypes in downsampling: the
number of the genotypes that are called differently for the down-sampled data when compared with the full data results.

doi:10.1371/journal.pone.0113324.t006
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downsampling to evaluate the performance on data with different coverages. The

‘‘view –s’’ option of samtools is used to get 50% and 25% of the original data. We

train the models on simulated data. Two datasets (6 samples for each) with

coverage 406 and 156 are simulated based on chromosome 11. We use the

simulated data whose coverage is 406 to train a model and then test on the real

data with coverage 406, and use simulated data with coverage 156 to train a

model and then test on the other two datasets of real data. More detailed

information on simulation and training is given in the Material S1.

Two out of the three metrics used in the deletion genotype calling for high

coverage trio data are used here to evaluate the performance: the number of

discordant insertions that violate the Mendelian law and the number of changed

genotypes when coverage decreases. We do not use the other metric (the number

of insertions with all genotypes are 0) because the 66 insertions are called out from

6 samples (two group of trio data), thus many deletions are only exist in the other

trio data but not exist in the trio data used here, so it is normal to have a insertion

that all the genotypes of the three samples are 0. Table 7 shows the detailed results

of insertion genotype calling on different coverage data. The results show that

GINDEL works well on both high and low coverage data.

Running time and memory usage

GINDEL runs reasonably efficiently with less memory consuming on the data we

test. As one example, we run GINDEL, Genome STRiP, Pindel and Clever-sv on

simulated data from chromosome 15, where there are 6 individuals and 221

deletions with the average coverage 106, and the server configuration is: eight

core CPU(Intel(R) Xeon(R) 65482 @ 3.20 GHz) with 32 G memory. The time

for GINDEL is 105 minutes and 8 seconds (including training and testing), and

the maximum memory usage is 1.5%. For comparison, Genome STRiP takes

201 minutes and 18 seconds for preprocessing and genotyping with maximum

memory usage 7.2%, Pindel takes 3220 minutes and 37 seconds to call and

genotype deletions with maximum memory usage 19.8%, and Clever-sv takes

1203 minutes and 39 seconds to do alignment and genotyping with maximum

memory usage 37.8%. Recall that Pindel cannot call genotypes only at specified

positions, and needs to call out the deletions first. And to get a good results,

Table 7. Performance of insertion genotype calling of GINDEL on high coverage trio data using downsampling.

Coverage # of discordant insertions # of changed genotypes

100%(406) 3(66) -

50%(206) 3(66) 8(198)

25%(106) 6(66) 21(198)

The number of possibly wrongly called insertions (outside the parenthesis) and the total number of insertions (inside the parenthesis) are reported based on
two creteria. # discordant insertions: number of insertions violating the Mendelian law; # changed genotypes in downsampling: the number of the
genotypes that are called differently for the down-sampled data when compared with the full data results.

doi:10.1371/journal.pone.0113324.t007
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Clever-sv needs to re-align the raw reads to reference using a tool called laser

which is time consuming.

Discussion

Overall, we show in this paper that GINDEL is more accurate and applicable than

Genome STRiP, Pindel and Clever-sv for deletion genotype calling in the range of

data we tested. We note that our simulation by no means covers all possible cases.

GINDEL achieves higher genotype accuracy due to two improvements. First,

GINDEL uses more features extracted from sequence reads. For example,

GINDEL uses spanning reads that are not used by Genome STRiP, uses read depth

that is not used by Clever-sv, and uses both discordant and concordant

paired-end reads that are not used by Pindel. For insertion, GINDEL uses reads

that are partially mapped. Since sequence data is usually noisy, using more

information from the reads is important for accurate genotype calling. Second,

GINDEL uses a machine learning approach in combining different features. This

is different from other three tools. For example, Genome STRiP uses a Bayesian

likelihood approach. Note that features (e.g. discordant encompassing pairs and

split-reads) can vary greatly in their nature and determining how to weigh

different features when calling genotypes may not be straightforward. GINDEL

gets around this problem using a machine learning approach. For illustration, we

show an example from the real low coverage 1000 Genomes Project data analyzed

in the Results Section. The deletion is located on chromosome 11 from 16,996,169

to 16,996,593 (shown as yellow dashed lines). Both SVSeq2 and Genome STRiP

find this deletion (also in the 1000 Genomes Project release) in the individual

NA06985. Thus, this individual likely contains at least one deletion allele. Figure 4

shows the IGV [20] view of the reads near the deletion for individual. Reads

marked as A, B, C, D, E, and F are the split-reads (only the mapped segments are

shown). Read pairs marked as 1, 2, 3 and 4 are the discordant encompassing pairs.

We can also see there are fully-mapped spanning reads, and the read depth is

smaller than regions without indels but is still higher than 0. By combining all

these features, GINDEL calls the genotype 1, which is likely to be correct based on

the collected features. In contrast, Genome STRiP calls genotype 0 for this

deletion (even when it finds this deletion in the discovery phase for this

individual). This is because the likelihood computed by Genome STRiP for

genotype 0 is slightly higher than that of genotype 1.

One issue of using GINDEL is that GINDEL needs training data (i.e. sequence

reads with known genotypes). We expect that more validated benchmark data for

indel genotypes may become available in the near future. In the case that no

suitable training data is available, our results show that simulated data can also be

used for training, and then the trained model can be used to call genotypes of real

biological data. One should note that this approach is slightly less accurate than

using real data in training. Thus, training with real data is recommended when

such data is available. One advantage of separating training from genotype calling
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is that GINDEL can call single individual’s genotypes using a trained model, while

Genome STRiP does not work for single individual but requires multiple

individuals’ sequence reads even when only one individual’s genotypes are to be

called.

The approach used by GINDEL can in principle be extended to call genotypes

of other types of structural variations. For example, with modification, GINDEL

may be able to call genotypes of indels that are shorter than 50 bp. We may still be

able to rely on multiple features extracted from sequence reads. For shorter indels,

different features may be needed. In particular, encompassing discordant pairs

may be less effective for shorter indels.

Supporting Information

Material S1. These files provide supplementary materials.

doi:10.1371/journal.pone.0113324.s001 (PDF)

Author Contributions

Conceived and designed the experiments: YW CC. Performed the experiments:

CC. Analyzed the data: CC. Contributed reagents/materials/analysis tools: CC JZ.

Wrote the paper: CC JZ YW.

Figure 4. Sequence reads near a 425 bp deletion (marked as yellow dashed line) on chromosome 11. GINDEL calls the genotype 1 (which is more
likely to be correct) while Genome STRiP calls 0. A,B,C,D,E,F: the mapped parts of six split-reads. 1, 2, 3, 4: four discordant read pairs on the left and right
sides.

doi:10.1371/journal.pone.0113324.g004
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