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Abstract

A key ingredient to modern data analysis is probability density estimation. However, it is well known that the curse of
dimensionality prevents a proper estimation of densities in high dimensions. The problem is typically circumvented by
using a fixed set of assumptions about the data, e.g., by assuming partial independence of features, data on a manifold or a
customized kernel. These fixed assumptions limit the applicability of a method. In this paper we propose a framework that
uses a flexible set of assumptions instead. It allows to tailor a model to various problems by means of 1d-decompositions.
The approach achieves a fast runtime and is not limited by the curse of dimensionality as all estimations are performed in
1d-space. The wide range of applications is demonstrated at two very different real world examples. The first is a data
mining software that allows the fully automatic discovery of patterns. The software is publicly available for evaluation. As a
second example an image segmentation method is realized. It achieves state of the art performance on a benchmark
dataset although it uses only a fraction of the training data and very simple features.

Citation: Stanski A, Hellwich O (2012) A Projection and Density Estimation Method for Knowledge Discovery. PLoS ONE 7(10): e44495. doi:10.1371/
journal.pone.0044495

Editor: Ioannis P. Androulakis, Rutgers University, United States of America

Received March 30, 2012; Accepted August 3, 2012; Published October 1, 2012

Copyright: � 2012 Stanski, Hellwich. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: No external funding was received for this paper.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: stanski@mailbox.tu-berlin.de

Introduction

Probability density estimation is arguably the most funda-

mental approach of learning from data. Theoretically, a

density estimation could be used to answer the major questions

arising in problems like regression, ranking, classification,

clustering, feature selection, or outlier detection. For example,

classification is reduced to asking for the highest probability of

all classes and outlier detection translates to the questions for

data points with low density. The answers could be given with

ease based on an evaluation of a precise density estimation at

various locations.

Unfortunately, in practice a density estimation, which is equally

universal and precise, is out of reach due to the curse of

dimensionality, see [1]. For a finite data set one is forced to include

assumptions to estimate a precise density. However, by incorpo-

rating assumptions about the data, the estimator is no longer

universal. An apparent example are parametric estimators. They

use the assumption of a functional form of the density to simplify

the estimation. Likewise, practical non-parametric estimators

require assumptions about the data. This is illustrated with two

examples in the following.

Vincent et al. [2] propose a modified kernel density estimator

for manifolds. The underlying assumption is that a local fitting of

kernels to their neighboring data points improves precision. On

data, which is embedded in manifolds and therefore has a distinct

local structure, an increased performance is demonstrated. A more

application-specific example is given by Miller et al. [3]. Their

goal is to estimate a density in a computer vision context. They

calculate the probability of the appearance of an image with

different transformations. This requires the estimation of a four-

dimensional density of affine transformations. Their solution

assumes that a newly proposed invariant distance function

simplifies this task. Experimental results confirm the superiority

over the simple Euclidian distance. Both methods are typical

examples of how to overcome the curse of dimensionality: they use

a fixed set of assumptions, namely a local kernel fitting and a

specific distance function.

This paper contributes by following an alternative path to

precise density estimation. Instead of a fixed set of assumptions we

propose a framework that allows a flexible choice of assumptions.

It supports the adjustment of assumptions to the specific task at

hand, creating a tailor-made model. This is done by means of 1d-

decomposition, which is the decomposition into one or multiple

1d-distributions. If a problem can be modeled as a 1d-decompo-

sition, the framework allows a precise as well as fast computation

of densities.

The outline of the remainder of this paper is as follows. The

proposed method, called constructive probabilistic learning, is

described in the methods section. Its application is demonstrated

with a synthetic example in the subsequent section. The paper

continues with two real-world examples that illustrate the wide

range of possible applications for automatic data mining and

image segmentation. Finally, the last section provides our

conclusions.

Methods

A probability density function p describes a distribution in a d-

dimensional continuous space. It allows to calculate the probability

P that a point x [ Rd , drawn from the distribution, occurs in

volume V (see e.g. [4]):
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P x[Vð Þ~
ðV

p xð Þdx ð1Þ

Calculating p without further assumptions would require an

infinite amount of data. In practice however, only a limited

number of points X~ x1 . . . xnf g is given. Therefore, only an

estimation p̂p of the probability density function can be achieved. A

well-defined solution is impossible, because X could have been

drawn from any nonzero p. Accordingly, no nonzero estimation p̂p

can be ruled out, although some are very unlikely.

Constructive probabilistic learning, or Cepel, is a method to

perform this estimation. It is based on the idea of calculating

all estimations in one dimension instead of in the original

multidimensional space. For this purpose, the data is projected

to 1d-spaces, in which a density estimation with high precision

is possible. A Cepel model combines those densities back to an

estimation in the original d-dimensional space. By deciding

which projections to use and how to combine them, various

assumptions about the data can be included. A Cepel model M

estimates a d-dimensional probability density p̂p xð Þ by combin-

ing the estimations of multiple 1d-projections created by

functions Q1...r. The Cepel model is defined by:

Figure 1. Basic idea of proposed method. The basic idea of the Cepel method using the example of a single linear projection.
doi:10.1371/journal.pone.0044495.g001

Figure 2. Two characteristics of basic idea. Projections can be non-linear and multiple projections can be combined.
doi:10.1371/journal.pone.0044495.g002
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p̂p xð Þ~M p̂p1 Q1 xð Þð Þ . . . p̂pr Qr xð Þð Þ½ �with Q1...r : Rd?R, r[Nz ð2Þ

Figure 1 gives a simplified illustration of the idea in four

diagrams: 1) The first shows the d-dimensional data X whose

density is to be estimated. 2) Each data point is projected to one

dimension (red arrow) by function Q1 resulting in a 1d-distribution

of the data. Assumptions about the data must be made to choose

an appropriate projection function. 3) The probability density p̂p1

of this 1d-projected distribution is estimated. 4) This 1d-estimation

is projected back into the original space. Here it can be normalized

if required for the task at hand (assuming that the space is

bounded). The result is a probability density estimation for each

point in d-dimensional space of input data.

The Cepel method is more general than this simple illustration

regarding two aspects, see figure 2. Firstly, projections are not

restricted to linear functions. Any function that calculates a scalar

value from a multidimensional vector is applicable. Secondly,

multiple 1d-projections can be performed yielding various 1d-

density estimations. They are combined to a d-dimensional

estimation using, e.g., a multiplicative, a conditional or a

maximum operator. Examples of efficient ways of combination

are given in the remainder of this paper.

A crucial question is how to choose the projective function. Two

approaches are possible. Either valid assumptions about the data

are known that allow a 1d-decomposition. For this, the user has to

understand exactly which features of the data are relevant for

characterizing its distribution. This requires experience but allows

to model a complex problem with highest precision. This direct

Figure 3. Example of density estimation of clustered data. The density of data with known properties is estimated in three steps. Only the first
two dimensions of the multidimensional data are shown.
doi:10.1371/journal.pone.0044495.g003

Figure 4. Evaluation of precision of estimation. Comparison of
estimation with Parzen window and Cepel on clustered data as shown
in figure 3.
doi:10.1371/journal.pone.0044495.g004
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modeling approach is exemplified in the introductory example and

image segmentation section.

Alternatively, we use projective functions that are frequently

applicable independent of the source of data. For example,

linearity or logarithmic distributions appear commonly in nature.

By applying various of these projective functions and selecting the

most precise, we obtain a fully automatic modeling procedure.

This approach is realized in the automatic data mining section.

If the data was successfully decomposed into 1d-projections, no

further assumptions are required to calculate a consistent density.

As all estimations are performed in one dimension, the approach

can handle very limited data with high precision. It is thereby not

affected by the curse of dimensionality. It works equally efficient

with very large scale data sets, because density estimation in one

dimension provides many means for optimization. The method

used for 1d-estimation is described in Section 1 of Appendix S1. It

consists of an adaptive kernel density estimator whose bandwidth

is selected with a likelihood criterion. A summary of strategies to

reduce runtime is given in Section 2 of Appendix S1.

Results

Introductory Example
The following example illustrates how assumptions about a task

are used to select appropriate projections and how to combine the

1d-density estimations based on them. The task is to estimate the

density of data with some specific properties: the data is clustered,

high-dimensional, and distorted by uniform noise. This knowledge

about the problem is utilized to construct a tailor-made model

based on 1d-projections. Figure 3 outlines the approach in three

steps.

The goal of the first step, illustrated in diagram 1 of figure 3, is

to find candidates for cluster centers. This is achieved by

projecting the data onto each axis, performing a 1d-density

estimation and calculating its maxima. The data points whose

projected values are closest to a maximum are picked as a possible

cluster center. In this example, three maxima are found on each

axis. The 1d-spaces on which data is projected are marked with

red arrows. The closest data points are denoted by a dashed

arrows. Notice that these candidate points are just rough

estimations, not optimal cluster centers. Some are not even inside

of a clustered region like the rightmost point.

In the second step the candidates are used to simplify the density

estimation. This is done with a radial projection for each candidate

(as exemplified on the left of figure 2). To create a radial

projection, the distances between a candidate and all data points

are calculated. This leads to a 1d-distribution of distances for every

candidate. The densities of these 1d-distributions are estimated

and projected back into the original space. The result is a density

estimation around each candidate as shown in diagram 2 b of

figure 3. It can be seen that densities are only high (light blue) if a

candidate is indeed a cluster center. For example, the rightmost

candidate in diagram 2a is not inside a cluster. Thus, the

corresponding radial estimation (last image in 2 b) does not

contain a concentration of probability density. All other radial

estimations show a high density in their center, because they

originate in a cluster.

The last step describes the combination of the radial estimations

into a density estimation of the whole space. It starts with the

single radial estimation that is most likely. The next best of the

remaining estimations is added iteratively and so forth. The

selection ends when the increase of likelihood after adding another

radial estimation stays below a threshold. In the example this

process selected three radial estimations. The resulting final

estimation is shown in diagram 3 of figure 3. We use the

normalized leave-one-out likelihood as the selection criterion, see

Section 3 of Appendix S1. The combination of multiple radial

estimations into a single density is done by a mean operator

(average of summation). The resulting Cepel model is:

Table 1. Equations of some of the models used.

Name Equation

Single Axis
p̂p xð Þ~p̂p1

0

1

� �
:x

� �
with vector x~

x1

x2

� �

Naive Bayes
p̂p xð Þ~p̂p1

1
0

� �
:x

� �
p̂p2

0
1

� �
:x

� �

Regression
p̂p xð Þ~p̂p1

{a

1

� �
:x{b

� �
with regression line x2~ax1zb

Radial p̂p xð Þ~p̂p1 x{cð Þ: x{cð Þð Þ with center c

Eigenvectors p̂p xð Þ~p̂p1 v1
:xð Þp̂p2 v2

:xð Þ with eigenvectors v1 and v2

Logarithmic
p̂p xð Þ~p̂p1

{a

1

� �
: x1

log x1

� �
{b

� �
with regression

x2~ exp ax1zbð Þ

Equations of various standard methods converted to density estimations based
on 1d-decompositions.
doi:10.1371/journal.pone.0044495.t001

Figure 5. Automatic data mining approach. Automatic data mining by evaluating various 1d-decompositions and selecting the most likely. The
decompositions correspond to the equations in table 1.
doi:10.1371/journal.pone.0044495.g005
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p̂p xð Þ ~
1

r

Xr

j~1

p̂pj Qj xið Þ
� �

with Qj xið Þ~
Xd

k~1

xi,k{cj,k

� 	2

 !d
2

ð3Þ

p̂p xð Þ: d-dimensional density estimation

p̂pj Qj xð Þ
� �

: Density estimation of a one-dimensional projection

Q1...r: Radial projections around cluster centers c1...r

The example in figure 3 can be explained in more detail with

equation (3). The selection prefers 1d-estimations located in new

cluster centers, because they assign a high density to the points

inside the cluster. Thereby the likelihood is increased significantly.

This is not the case if a radial estimation is added that describes a

cluster already included. It will increase the likelihood inside the

cluster (approximately doubling it), but at the cost of decreasing

the density everywhere else. In total the likelihood does not change

considerably. This is the case after three iterations in fig. 3. The

likelihood does not increase beyond the threshold by adding more

estimations and therefore the process is terminated.

This approach achieves superior results if the included

assumptions about the problem are valid. In this case, the

precision is nearly unaffected by the number of dimensions as all

estimations are performed in a 1d-space. However, the estimation

will be poor if the assumptions are violated, e.g. if clusters do not

have a round shape, or if they are occluded in all projections and

therefore their centers cannot be found.

Figure 6. Screenshots of Cepel Inspect. Various publicly available data sets (from [7–8]) are analyzed with the software. The analysis creates a
varying number of charts depending on the number of columns in the data and their explanatory power.
doi:10.1371/journal.pone.0044495.g006

Figure 7. Example of a result created in the analysis. Upper
diagram: the difference of the signal between the left and right half is
easily missed. Lower diagram: the same data displayed as distributions.
The blue curve is calculated from the left part of the signal; the right
half is displayed in green. The difference between both distributions is
considerable and can be detected automatically.
doi:10.1371/journal.pone.0044495.g007
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A quantitative evaluation of the approach is given in figure 4. It

compares the proposed method with a multidimensional Parzen

window estimation [5]. The figure shows the normalized and

scaled likelihood when the number of dimensions is increased from

two to twelve. (Likelihood is scaled between zero and one. It is also

normalized to compensate for the increase of support of additional

dimensions, as described in Section 3 of Appendix S1.) Each

additional dimension contains data with three clusters, like shown

in figure 3. The bandwidth of Parzen window and the threshold of

the proposed method are set using hold-out data. The figure

illustrates that both methods improve at first, because each

additional dimension contains independent information. With

more than five dimensions the curse of dimensionality gets

stronger and reduces the quality of the Parzen estimation

significantly as expected. The reason is that Parzen window does

not make additional assumptions about the data. The proposed

method increases its precision continuously with additional

dimensions of input space.

Automatic Data Mining
Data mining is the process of discovering the most interesting

characteristics of a large data set in order to understand it. Most

data mining algorithms are semi-automatic, meaning that the user

needs to pick a model and adjust parameters. This approach

becomes less feasible as the size and complexity of data sets

increase. This has lead to the recent trend towards fully automatic

data mining, most prominently seen in Wolfram Alpha Pro (an

online service by the creators of the software Mathematica, see

[6]).

The goal of automatic data mining is to compile a report that

summarizes the data without the requirement for user interaction.

Therefore, the algorithms must be able to handle all kinds of data,

like time series, n-dimensional samples, geographic information,

log files and any kind of sensor data or measurements. Due to this

generality, the methods are not able to yield the task-specific

results of a specialized analysis. The advantage of automatic data

mining is that it can give a quick overview of the data. It reveals

relations that are unexpected and therefore might be missed by a

specialized analysis.

In this paper, data mining is seen as a problem of density

estimation. This is possible because various standard methods like

linear regression, logarithmic or eigenvector analysis can be

converted to 1d-decompositions. For example, a linear regression

can be used for density estimation by projecting the data to its

distance to the regression line. The corresponding equations for

the linear regression and some other methods are given in table 1.

One advantage is that different methods become directly

comparable, e.g. the results of Naive Bayes and a radial model

can be compared. The criterion used for comparison is the

likelihood of each model. The likelihood is a consistent criterion.

Therefore, it is mathematically ensured that the correct model is

selected if sufficient data is available. For example, the likelihood

of the linear regression model will be maximal if the data contains

a linear relation with additive noise. Again, the normalized leave-

one-out likelihood is used, due to the reasons given in Section 3 of

Appendix S1.

During the analysis, various decompositions are applied to a

given data set. The most likely decomposition is selected and

shown to the user. As each decomposition represents a certain

linear or nonlinear correlation, this process is equivalent to

selecting the predominant relations. Figure 5 illustrates the idea of

calculating various models and selecting the best.

This approach is implemented in a software which we dub Cepel

Inspect. It searches for 1d-decompositions of a data set and displays

the most likely results in multiple diagrams. Currently, the analysis is

limited to distributions of single features and relations between all

possible pairs of features. Besides the continuous density estimation

described, the software can handle discrete data as well. The whole

approach is fully automatic and does not require any parameter

setting or configuration. Therefore, it has proven useful for a quick

initial analysis of unknown data. Figure 6 shows screenshots of the

software. It is available online for evaluation [7].

Figure 8. Another example from the analysis. The diagonal line indicates the linear relation that was automatically extracted from the data.
doi:10.1371/journal.pone.0044495.g008
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Two examples of relations that can be revealed with this

approach are given in the following. (Both examples can be

reproduced easily by downloading the software and dragging the

data file onto the program window. The two data sets used are

‘‘monitoring.csv’’ from [7] and ‘‘liver-disorders.csv’’ from [8].)

Figure 7 shows an interesting correlation found in data from an oil

refinery. The relation connects a continuously measured value

(pressure in a pump) with a signal that is harder to measure but of

high importance (normal/substandard performance of the pump).

This insight has proven to be useful as it allows the cost-efficient

identification of a pump with substandard performance, based on

the measurement of its pressure.

The upper diagram displays an excerpt of the original time

series. In its left half the performance of the pump is normal; on

the right side it changed to substandard. By just looking at this

diagram it could be concluded wrongly that both sides look similar

and therefore there is no relation between pressure and

performance. The lower diagram of figure 7 displays the same

data, but this time as a distribution. The green curve shows that

the pressure of pumps with substandard performance is often high

or low (two maxima). In contrast, the blue curve indicates that

pressure of normal pumps is mostly average (a single maximum).

The difference between the curves is a clear indicator of a relation

between pressure and performance.

The second example from an analysis is given in figure 8. Its an

excerpt from a medical data set created to find a relation between

liver disorders and five blood tests connected to alcohol

consumption. Aside of finding the expected relation, the software

also reveals correlations between different blood tests. The one

shown in figure 8 is a linear relation between two blood tests

(aspartate transaminase and gamma-glutamyl transferase). It could

prove useful as it allows to skip one of the blood tests if the relation

is strong enough to infer it from the second measurement. In the

diagram the linear relation is indicated by the diagonal line which

is the first eigenvector. The used 1d-decomposition projects the

data onto both eigenvectors and multiplies the densities (as

illustrated on the right of figure 2). The resulting density estimation

is shown in light blue.

These examples demonstrate that density estimation by 1d-

decomposition can be applied to practical data. The approach

allows the extraction of valuable information in a fully automatic

manner.

Image Segmentation
A very different task that can also be interpreted as density

estimation is image segmentation. It is the well-studied problem

(see e.g. [9–10]) of dividing an image into visually homogenous

regions. When interpreted as density estimation it translates to the

question: how probable is it that two regions of arbitrary size and

shape should be merged? A reliable answer to this question can be

used to create a precise image segmentation. Mathematically, the

answer is equivalent to estimating the posterior probability

P̂P mergeDxð Þ. In the following, we use a vector x that consists of

four features, as described in table 2. They are either used to

estimate P̂P mergeDxð Þ directly or for the intermediate probability

P̂P reliablexDsizeð Þ.
The idea of the method is to divide the problem into two parts:

1) Estimation of P̂P mergeDxð Þ from the features brightness, texture

and arrangement. This is done with a Naive Bayes model. 2)

Increase the stability of this estimation with an intermediate

probability P̂P reliablexDsizeð Þ.
The first step is illustrated in the left diagram of figure 9. The

chart shows a 2d-space spanned by two (out of a total of three)

features. The space is filled with data points that are calculated

from random pairs of regions. If the regions are part of the same

segment, the point is green; otherwise it is red. The curves above

and on the left of the 2d-space are posterior probabilities of the

data. They are created by projecting all red and green points on

each axis. Then their densities are calculated using the proposed

kernel estimator, resulting in two likelihood functions for each axis.

The posterior is determined by combining both with Bayes

theorem (see e.g. [11]). The prior probability required is calculated

from the data, too.

Each posterior gives a partial description of the distribution of

the data. Therefore, it helps to answer the stated question of how

likely two regions are merged. For example, the feature on the

horizontal axis is the difference of brightness of each region. When

it is small, the probability of two regions belonging to the same

segment is high, i.e. regions with similar brightness are more likely

to belong together. The probability decreases with a larger

difference of brightness. The same is true for the feature texture on

the vertical axis, but this time the curve is flatter, meaning that

texture is not as descriptive.

To calculate a final probability the information of features must

be combined. In this case the features are chosen to be

independent by design, i.e. it is assumed that the features

brightness, texture and arrangement are independent. Therefore,

their multiplication is optimal for calculating a combined

probability, which means that the Naive Bayes approach is

reasonable.

The second step of the method stems from a problem with this

calculation. Sometimes features cannot be determined reliably. An

example is texture, which cannot be accurately extracted from

very small regions. Using such unreliable features would result in a

distortion of the estimated probability. Therefore, another 1d-

decomposition is performed for each of the three features. The

Table 2. Overview of features used in segmentation.

Feature Posterior Description

Brightness P̂P mergeDxð Þ The difference of average grey values of two regions.

Texture P̂P mergeDxð Þ The difference of variance of grey values of two regions is used as a simple measure of texture. For example, a texture value of zero
means that the variance of two regions is equal.

Arrangement P̂P mergeDxð Þ The arrangement of two regions relative to each other, calculated as a percentage depending on the number of pixels on their
borders. It is calculated by dividing the number of pixels on outside borders (that touch only one of the two regions) by all pixels at
borders (including pixels between the regions). For example, two nested regions have an arrangement value of zero percent.

Size P̂P reliable xDsizeð Þ The size of a region, measured by the number of pixels it contains.

The features are required to calculate one of the posterior probabilities for ‘merge’ or ‘reliable’.
doi:10.1371/journal.pone.0044495.t002
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right side of figure 9 illustrates this decomposition by the example

of texture. The goal is to estimate the reliability of texture

depending on the size of the region it is calculated from, which is

P̂P reliabletextureDsizeð Þ. The posterior shows that texture is

unreliable for regions with fewer than eight pixels, i.e. here the

posterior is below 0.5. This estimation of reliability is calculated for

each feature. It is used to include only reliable features into the

calculation of P̂P mergeDxð Þ. For example, if a region consists of

seven pixels, only the posterior of brightness and shape are

multiplied to calculate the final probability. For regions with three

or less pixels, only brightness is used to estimate if it should be

merged.

Combining both 1d-decompositions of figure 9 allows to

estimate the probability that two regions are part of the same

segment with high precision. The data required for estimation is

created by analyzing random pairs of regions from images, for

which a ground truth segmentation is known. The Berkeley image

segmentation data set [12] is used for that. The whole

segmentation model can be summarized in the following equations

(with x1...3 being the features brightness, texture and shape):

P̂P merge x1...3jð Þ~

p̂p x1...3 mergejð ÞP̂P mergeð Þ
p̂p x1...3 mergejð ÞP̂P mergeð Þzp̂p x1...3 mergejð ÞP̂P mergeð Þ

ð4Þ

with Naive Bayes p̂p x1...3 mergejð Þ~ P
3

i~1
p̂p xi mergejð Þ and

accordingly for merge

ð5Þ

Figure 9. Decomposition of merging probability. The probability that two regions are merged is decomposed into 1d-distributions of feature
values (left) and the reliability of each feature depending on size of the regions (right). The left diagram shows two out of three features; on the right,
texture is used as one example out of the three features.
doi:10.1371/journal.pone.0044495.g009

Figure 10. Visualization of the image segmentation process.
Three out of about one hundred intermediate images are shown. In the
first one on the left, every pixel is treated as a separate region; the last
shows the final segmentation.
doi:10.1371/journal.pone.0044495.g010

Table 3. Overview of segmentation results.

Rank Score Algorithm

0 0,79 Humans

1 0,68 Global Probability of Boundary [14]

2 0,66 xren [15]

3 0,65 Our method

4 0,64 Boosted Edge Learning [16]

… … …

12 0,41 Random

Results of various algorithms on the Berkeley segmentation dataset grayscale.
doi:10.1371/journal.pone.0044495.t003
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Figure 11. Comparison of segmentations of a filigree structure. Results of Maire et al. and the proposed method are compared at the
example of a filigree structure. One threshold is highlighted in red for clarity.
doi:10.1371/journal.pone.0044495.g011

Figure 12. Comparison of a difficult patch. A second example of an image with a patch that is hard to segment.
doi:10.1371/journal.pone.0044495.g012
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including each xi only if P̂P reliablexi Dsizeð Þw0:5 ð6Þ

In the next step, the final probability P̂P mergeDxð Þ is used to

perform the segmentation. This process is visualized in figure 10. It

starts with an image, in which each pixel is treated as a separate

region. The probability of all pairs of adjacent regions is calculated,

resulting in (about) four probability values per pixel. Then an

iterative merging begins. In each iteration the two regions with the

highest probability are merged, creating a new region. The newly

formed region has new features. Therefore, the probabilities of

merging it with its neighbors are recalculated. The process

terminates if all remaining regions are more likely to stay separate

than to be merged. The following four steps summarize the process:

1. Calculate probabilities of merging each pair of adjacent

regions.

2. Merge most likely pair of regions.

3. Recalculate probability of merged region.

4. Continue with step 2, until every probability is below 0.5.

The segmentation method was evaluated on 100 test images of

the Berkeley benchmark data set. The approach achieved a score

of 0.65, which is the third-best result published on the Berkeley

website, see table 3. (We use the maximal F-measure as a scoring

function. This is the standard score used in the Berkeley

benchmark. It is calculated by comparing the boundary pixels of

a method with the boundary defined by humans. This is done for

different thresholds. The threshold, for which the result is

maximal, is reported as the score, see [13].) In contrast to the

two better performing methods (described in [14–15]), the features

used are much simpler. Furthermore, only five out of 200 training

images had to be used for estimation of the densities. Additional

training does not increase precision considerably.

On average the proposed approach is less precise than two other

methods. However, in some areas it has interesting advantages

over the other segmentation approaches. Two examples are given

in figure 11 and 12. (The images do not show the final

segmentation as in figure 10 but the posterior probability of a

boundary, i.e. the probability that two regions are not merged.

This visualization shows more details and is the only form in which

the results of Maire et al. are publicly available. The posterior is

represented by gray values. Additionally, one threshold on the

posterior is highlighted in red for clarity. The threshold is chosen

manually so that the different methods are most comparable.) In

the first figure a branch is highlighted as an example of a fine

structure. Typical segmentation methods infer a boundary at a

location from the pixels of two half discs around it, see [14]. For

small structures like the branch, the half discs are too large to allow

a precise segmentation, i.e. it is not possible that the branch is

covered by one half disc while the other half contains background

only. This results in an imprecision of the method of Maire et al.

The algorithm is not able to segment the branch correctly, as

shown in the highlighted image patch. In contrast, the proposed

approach can extract very filigree structures, because it does not

require a rigid area for calculation of features. Therefore, the

branch is segmented with high precision.

Figure 12 focuses on the segmentation around the leg of an

elephant. Finding a border here is difficult when taking only the

local neighborhood into account. Therefore, the method of Maire

et al. does not find a continuous border below the leg. The

proposed approach succeeds in this case, because of the order in

which it merges regions. It combines pairs of regions with high

probability first, meaning that homogenous areas are merged

before complex regions. Difficult parts like the leg are segmented

late in the process when features can be calculated from larger

regions with higher precision. In this example, the whole leg and

large parts of the ground are segments before deciding that the

features of both regions are quite dissimilar. Postponing hard

decisions until more information from other areas is available is

advantageous and increases the overall precision of segmentation.

Discussion

In this paper, we have introduced a new framework for density

estimation. It is based on 1d-decomposition – the projection of

data onto 1d-spaces, in which densities are estimated and

combined back to a multidimensional model. The framework

allows a fully automatic and fast computation of 1d-estimations

because 1d-spaces have unique properties for optimization.

Three examples demonstrate the wide range of applications for

which a 1d-decomposition is possible. They show how 1d-

projections can be used to incorporate assumptions and thereby

increase the precision of estimation. The clustering and image

segmentation example focus on adjusting the framework to specific

prior knowledge about a task. The automatic data mining

application illustrates the capacity of the method to function

without task-specific knowledge. This is achieved by testing for

generic relations that appear commonly in data, like clusters of

points and independence or linearity of features.

We would like to encourage the reader to test the application by

oneself. The software can be downloaded at www.cepel.de

together with some data sets. Reproducing the results as shown

e.g. in figures 6 and 7 requires only a few moments.

One line of future work will concentrate on extending the image

segmentation. Its precision would benefit greatly from more

advanced texture features and color information. The flexibility of

the framework ensures that this additional information could be

included efficiently. The increase of precision opens up another

application: the model could be used not only to create segments

but also to describe them. This allows to recognize segments in

different images. Thereby, the method could function as a novel

kind of interest point descriptors for segments.

The data mining application could be extended by including

additional models. In particular, they could cover non-linear

correlations between more than two features. Even very complex

relations can be discovered this way. For example, there is no reason

why the model used for image segmentation could not be found

automatically. The limiting factor is the requirement of a

decomposition into 1d-distributions. However, as shown in this

paper, for a diverse set of problems a 1d-decomposition is possible.

Therefore, we expect many more areas of application in the future.

Supporting Information

Appendix S1 The appendix consists of three sections
covering: 1d-density estimation, runtime remarks, and
model selection.
(DOC)
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