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Summary: Longitudinal studies are used in mental health research and services studies. The dominant 
approaches for longitudinal data analysis are the generalized linear mixed-effects models (GLMM) and the 
weighted generalized estimating equations (WGEE). Although both classes of models have been extensively 
published and widely applied, differences between and limitations about these methods are not clearly 
delineated and well documented. Unfortunately, some of the differences and limitations carry significant 
implications for reporting, comparing and interpreting research findings.

In this report, we review both major approaches for longitudinal data analysis and highlight their 
similarities and major differences. We focus on comparison of the two classes of models in terms of model 
assumptions, model parameter interpretation, applicability and limitations, using both real and simulated 
data. We discuss caveats and cautions when applying the two different approaches to real study data.  
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1. Introduction
Longitudinal study designs have become increasingly 
popular in research and practice across all disciplines.  
Such designs capture both between-individual 
differences and within-subject dynamics, providing 
opportunities to study complex biological, psychological 
and behavioral changes over time such as causal 
treatment effects and mechanisms of change [1,2]. Since 
longitudinal study designs create serial correlations over 
repeated assessments from same subjects, traditional 
statistical methods for cross-sectional data analysis 
such as linear and logistic regression do not apply. In 
addition, since longitudinal studies are typically of long 

duration, missing data is common. Specialized models 
and methods must be used to address the two major 
issues.  

The two dominant approaches for longitudinal 
data analysis are the generalized linear mixed-effects 
model (GLMM) and weighted generalized estimating 
equations (WGEE)[1] . Both methods are derived from 
the same class of models for cross-sectional data, the 
generalized linear models (GLM). Because different 
techniques are used to extend the GLM to longitudinal 
data, the GLMM and WGEE are quite different and 
some of the differences carry significant implications for 
their applicability and interpretation of study findings. 
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Despite the existence of an extremely large body of 
literature discussing the development and application of 
the two approaches, practitioners still often face many 
difficult questions when choosing and applying such 
models to real study data.  

For example, which approach is applied given data 
from a study? Do the two approaches yield identical 
estimates and/or inferences? If not, how should one 
approach and interpret such differences? What are the 
pros and cons associated with each approach? Although 
some questions have well-documented answers in the 
literatures, others have only been approached recently 
and still await answers. 

In this report, we first give an overview of the 
approaches and then discuss major differences between 
the two classes of models. Unlike the literature on 
the discussion of the two methods, we focus on their 
practical implications, which we think provide useful 
guidance for practitioners for selecting right approaches 
for their studies and effectively addressing their study 
questions.  

2. Models for Longitudinal Data
Since both the GLMM and WGEE are extensions of the 
GLM, we start with a brief overview of the latter.  

2.1 Generalized Linear Models (GLM)
Consider a sample of n subjects and let Yi (Xi) denote a 
continuous response (a vector of explanatory variables). 
The classic linear model is given by:  

                                                                                              (1) 

where N(μ, σ2) denotes a normal distribution with mean  
μ and σ2 variance. The linear model is widely used in 
research and practice. One major limitation is that it 
only applies to continuous response Yi . The generalized 
linear models (GLM) extend the classic linear model to 
non-continuous response such as binary.  

To express the GLM, we first rewrite the linear 
regression in (1) as 
                                                                                              (2) 

where |i iy x  denotes the conditional distribution of  Yi  
given Xi and ( )|i iE y x  denotes the conditional mean 
of  Yi  given Xi . By replacing the normal in (2) with other 
distributions appropriate for the type of response, we 
obtain the class of GLM: 
                                              
                                                                                             (3) 

where f(μ) denotes some distribution with mean μ and 
g(μ)  is a function of μ. Since g(μ) links the mean to the 
explanatory variables, g(μ) is called the link function.  

The specification of f(μ) and g(μ) depend on 
the type of response Yi. For a binary Yi , f(μ) is the 
Bernoulli distribution and g(μ) is often set as the logit 

function ( ) log
1

g µµ
µ

 
=  − 

.  

The resulting GLM is the logistic regression. For 
a count Yi, a popular choice for f(μ) is the Poisson 
distribution and g(μ) is the log function, g(μ) =log(μ). 
Another choice for f(μ) is the negative binomial.  A major 
limitation of Poisson is that its variance is the same as 
its mean. Count responses arising in many real studies 
often have variances larger than means, a phenomenon 
known as “overdispersion” [1]. The negative binomial is 
similar to the Poisson, but unlike the Poisson, allows for 
overdispersed count responses [1]. 

Inference for GLM can be based on maximum 
likelihood (ML) or estimating equations (EE). The classic 
ML provides most efficient estimates, if the response 
Yi follows the specified distribution such as the normal 
in the linear regression in (1). In many studies, it may 
be difficult to specify the right distribution, in which 
case the ML will yield biased estimates if the specified 
distribution does not match the data distribution. The 
modern alternative EE uses an approach for inference 
that does not require specification of a mathematical 
distribution forYi , thereby providing valid inference for a 
wider class of data distribution.  Since no distribution is 
required under EE, we may also express the GLM in this 
case as: 
                                                                                         (4)                             
or simply 
                                                                                         (5)                                  
or equivalently  
                                                                                         (6)                              

where 1h g−=  is the inverse of g(μ). When specified 
without the distribution component, (4), (5) or (6) are 
also called the semi-parametric GLM. In comparison, (3) 
is called the parametric GLM.  

Example 1.  In a suicide study, we may model number 
of suicide attempts, Yi , a count response, using a 
parametric GLM: 
                                                                                           (7) 

where Xi denotes a set of explanatory variables such 
as age, physical problems and history of depression.  
If concerned about overdispersion, such as indicated 
empirically by a much larger variance as compared to 
the mean, the semi-parametric GLM below may be used 
          

( ) ( )| , log , 1 .i i i i iE y i nµ µ Τ= = ≤ ≤x x β
 

Unlike the parametric model in (7), the semi-parametric 
GLM above provides valid inference regardless of 
presence of over-dispersion.  

( )2, N 0, , 1 ,i i i iy i nε ε σΤ= + ∼ ≤ ≤x β

( ) ( )2| , , | , 1 ,i i i i i i iy N E y i nµ σ µ Τ∼ = ≤ ≤x x = x β

( ) ( )| f , , 1 ,i i i i iy g i nµ µ Τ∼ = ≤ ≤x x β

( ) ( )| , , 1 ,i i i i iE y g i nµ µ Τ= = ≤ ≤x x β

( )( )| , 1 ,i i ig E y i nΤ= ≤ ≤x x β

( ) ( )| , 1 ,i i iE y h i nΤ= ≤ ≤x x β

( ) ( )| Poisson , log , 1 ,i i i i iy i nµ µ Τ∼ = ≤ ≤x x β
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2.2 Extension of GLM to longitudinal data 
1.1.1 Weighted Generalized Estimating Equations 

(WGEE) 
Consider a longitudinal study with T time points and let 
Yit and Xit denote the same response and predictors/
covariates as in the cross-sectional setting, but with t 
indicating their dependence on the time of assessment 
(1<i<n,1<t<T). For each time t , we can apply the GLM in 
(3) to model the regression relationship between Yit and 
Xit at each point 
  ( ) ( ) ( )| f , | , , 1 , 1 .it it it it it it it it ty E y g t T i nµ µ µ Τ∼ = = ≤ ≤ ≤ ≤x x x β                                        
We can then get estimates of βt  for each time point t 
.  However, it is difficult to interpret different βt across 
the different time points.  Moreover, it is technically 
challenging to combine estimates of β t to test 
hypotheses concerning temporal trends because of 
interdependence between such estimates.  

The WGEE addresses the aforementioned difficulties 
by using a single estimate β to model changes over time 
based on multiple assessment times[1,3]. Since the WGEE 
estimates β using a set of equations that do not reply on 
assumed distribution ( )f itµ  in (8), the first part of the 
GLM can be removed and the resulting model becomes 
                                                                                               (8)

By comparing the WGEE above with the model 
in (4), it is seen that the WGEE is an extension of the 
semi-parametric GLM to longitudinal data. The key 
difference between (4) and (8) is that (8) is not simply 
an application of GLM to each of the time points, but 
rather an extension of the model in (4) to provide a 
single parameter vector β for easy interpretation and 
estimate this parameter vector by using data from all 
time points and accounting for correlations between the 
repeated assessments. Like the semi-parametric GLM, 
the WGEE provides valid inference for a wider class of 
data distributions.  

2.3 Generalized Linear Mixed-effects Models (GLMM) 
The GLMM extends the GLM to longitudinal data 
analysis using a completely different approach.  

Consider again a longitudinal study with T time 
points and let Yit and Xit denote the same response and 
predictors/covariates as in the WGEE above.  The GLMM 
is specified by: 
 
                                                                                                  (9)
  
where N(μ, ( ),N Σµ  denotes a multivariate normal with 
mean μ and variance Σ , Zit is a vector of predictors/
covariates (often set equal to Xit ), and g(μ) is the 
appropriate link function for the type of response Yit. 
The vector of latent variables, bi , is called the random 
effects, denoting individual differences from the 

population mean bi , which is known as the fixed effects. 
Although   is typically assumed to follow a multivariate 
normal as in (3), other types of distributions may also be 
considered.  

Unlike the WGEE, the GLMM accommodates 
correlated responses Yit by directly modeling their 
joint distribution. Since multivariate distributions are 
extremely complex except for the multivariate normal, 
latent variables bi are generally employed to model the 
correlated responses. Thus, although Yit is still modeled 
for each time point t, by including the random effect  
bi in the specification of the conditional distribution 
of Yit given bi (Xit and Zit ), the GLMM in (9) allows the 
resulting Yit ’s to be correlated (conditional on Xit and Zit 
only).  This approach allows one to specify multivariate 
distributions using familiar univariate distributions such 
as the Bernoulli (for binary responses) and the Poisson 
(for count responses).  

2.4 Key differences between GLMM and WGEE
Although both WGEE and GLMM are extensions of the 
GLM, the two approaches are quite different because 
of the way the extensions are accomplished.  In this 
section, we discuss such key differences.  

2.4.1 Interpretation of Model Parameters
A fundamental difference between the WGEE and 
GLMM is in interpretation of model parameters. As 
noted earlier, the WGEE is an extension of the semi-
parametric GLM, while the GLMM is an extension of 
the parametric GLM. Although the parameter vector β 
has the same interpretation between the parametric (1) 
and semi-parametric (4) GLM, the parameter vectors  β 
in the WGEE (8) and  β in the GLMM (9) are generally 
different except for the linear regression.  

Example 2.  Consider the model in Example 1, but now 
assume a longitudinal study with T  assessment times.  
Let Yit and Xit denote the longitudinal versions of Yi 
and Xi . Again, if Yit at each point is modeled to follow a 
Poisson, the GLMM has the form:  
 
  
                                                                                              
                                                                                (10) 
On the other hand, the WGEE for a count response has 
the form 
                                                      

 or
                                                                                                                                               

(11)                                 

The two models look quite the same, except for the 
additional random effect in (10). So, to compare the 
two models, we integrate out bi in (10) and calculate 

( ) ( )| , , 1 , 1 .it it it it itE y g t T i nµ µ Τ= = ≤ ≤ ≤ ≤x x β
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the conditional expectation ( )|it itE y x  to obtain (see 
Zhang et al., 2012 for derivation)[4]

 

                

(12) 
This conditional expectation is different from the 
expression in (11) for the WGEE unless
 .  

In some special cases, β and   may be identical 
except for the intercept term. For example, if itz  is 
independent of itx , then
      ( ) ( ) ( )1 1

02 2exp | exp expit b it it it b itE E γΤ Τ   Σ = Σ =   z z x z z   
Thus (12) reduces to 

                                          (13) 

Except for the intercept term,  β and    have the same 
interpretation. The next Example illustrates this special 
case with data from a real study.  
Example 3.  The COMBINE study was a multi-site 
randomized clinical trial with longitudinal follow-
up to compare intervention effects between nine 
pharmacological and/or psychosocial treatments. For 
illustration purposes, we combined all the 9 treatment 
conditions and focused on the two drinking outcomes, 
days of any drinking and days of heavy drinking over the 
past month, at three visits during treatment at weeks 8, 
16 and 26.  

Denote the three visits by 1<t<3. To see whether the 
mean days of any drinking (heavy drinking) varied in the 
three time periods, we created two dummy variables 
indicating weeks 16 and 26 as the fixed effect Xi and a 
random intercept to account for correlations among the 
repeated assessments for the GLMM

Since Z i=1 and X i1t=1 are both constants, they are 
independent. We fit a WGEE with the same predictors 
Xit=(Xi1t,Xi2t,Xi3t)

T as in the fixed effect of GLMM above. 
As indicated in Example 2,    differs from its WGEE 
counterpart β0 by a constant ( )( )( )21

0 2ln exp iE zγ τ=
, whereas       and     retain the same scales as the 
corresponding β1  and β2  in the WGEE model.  

Shown in Table 1 are the estimates of β and   and 
associated standard errors, and test statistics and 
associated p-values for both models.  As expected, 
estimates of      and       were quite close to the 
respective WGEE estimates β1 and β2 , but those of      were much smaller (in magnitude) than their WGEE 
counterparts (0.694 vs. 1.908 for Days of Any Drinking 
and -0.30 vs. 1.307 for Days of Heavy Drinking).  
Since     and      (β1 and β2) represent changes relative to 
the reference level      (β0) from Visit 1 to Visit 2 and from 
Visit 1 to Visit 3 under GLMM (WGEE), the difference 
between the estimated     and β0 implies not only 
different means at visit 1, but also at visits 2 and 3 for 
each drinking outcome.  For example, for the outcome 
of Days of Any Drinking, the WGEE estimates indicate 
a mean of 6. 7, 7.7 and 8.9 days of any drink over the 
three visits, much lower than 1.9, 2. 3 and 2.7 days of 
any drink at the corresponding visits estimated by the 
GLMM. The WGEE estimates are actually identical to 
sample means of this drinking outcome at each visit, but 
the GLMM estimates are not, making the latter difficult 
to interpret.  

Example 4.  In Example 2, now suppose that ity  is 
binary and is modeled by a GLMM for binary response 
as follows 
 
                                            
                                                                                                (14) 

The corresponding WGEE has the form 

1exp | 1
2 it b it itE Τ  Σ =    

z z x

Table 1.  Estimates of reference level at Visit 1 (β 0̃ 
for WGEE and β0 for GLMM) and change 
from reference level at Visit 2 (β1 and β 1̃) 
and at Visit 3 (β2 and β 2̃), along with as-
sociated standard errors, for Days of Any 
Drinking and Days of Heavy Drinking for 
the real COMBINE Study in Example 3.

Comparison of Estimates (Standard Errors ) between 
GEE and GLMM

Visit 1 
(β0 or β ̃0 )

Visit 2 
(β1 or β ̃1 )

Visit 3 
(β2 or β ̃2 )

Model Fit Days of Any Drinking

GEE(β) 1.908 (3.6) 0.144 (2.2) 0.144 (2.8)

GLMM(β ̃) 0.694 (6.2) 0.144 (1.5) 0.144 (1.5)

Days of Heavy Drinking

GEE(β) 1.307 (4.7) 0.224 (3.3) 0.216 (4.1)

GLMM(β ̃) -0.30 (7.3) 0.224 (1.9) 0.216 (1.9)
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                                                                                            (15)

As in Example 2, the two models look the same, except 
for the additional random effect in (14). To compare 
the two, we again need to integrate out bi in (14).  In 
general, it is difficult to obtain a closed-form expression 
for the resulting integral. But, in the special case when Zit 
is a subset of Xit and Zit =Zt , the integral can be expressed 
as (see Zhang, Xia et al., 2011 for derivation)[5] 

                               
                                                                                                (16) 

Thus   is a rescaled β. Even in this special case, it may 
not easy to interpret    , as demonstrated by a real study 
example next.  

Example 5.  In a recent study on smoking cessation, 
276 subjects participated in multi-component program 
adapted to seriously mentally ill patients within an 
outpatient mental health clinic. Out of these subjects, 
99 also participated in a formal evaluation, in which 
interviews were conducted at the point of enrollment 
(baseline) and again at 3, 6 and 12 months. A primary 
outcome of the study is the 7-day point prevalence 
abstinence (defined as no smoking at all in the previous 
7 days). We modeled changes of this longitudinal binary 
abstinence outcome using data from the 99 subjects.  
We applied both longitudinal approaches and used 
three dummy variables to model the rate of 7-day point 
prevalence abstinence at each of the follow-up times for 
the WGEE and also included a random intercept for the 
GLMM model. Thus, the GLMM has the form 

while the WGEE is given by: 
   

      
Shown in Table 2 are the estimates of β and   and 
associated standard errors, and test statistics and 
associated p-values for both models. The estimates 
were quite different between the two models, although 

the ratio           
         

, a constant for all 1<k<3. This is 

not a coincidence, but expected, because of (16) and 
the fact that Ziti in the GLMM model is a subset of Xit. 

Also, since 0 : 0kH β =  under one model implies that 0H  
holds true for the corresponding coefficient under the 
other model, same conclusions were obtained regarding 
statistical significance of the parameters, although the 
p-values under the two models were slightly different. 
The scale difference in the parameters between the 
two models did have serious implications for the 
interpretation of estimates from the GLMM. Shown in 
the last two columns of Table 2 are the rates of 7-day 
point prevalence abstinence over time estimated by 
each of the two models. Since the WGEE becomes the 
logistic regression at each assessment time, it yields 
estimates identical to the observed rates of 7-day point 
prevalence abstinence. Estimates from the GLMM were 
quite different, underestimating the observed rates by 
over 50%. Even in this simplest case where estimates 
of GLMM are a scale shift of their GEE counterparts, 
GLMM estimates are difficult to interpret.  

2.4.2 Computational Issues for GLMM
Inference for the WGEE is based on a set of equations. 
Although it is generally not possible to express 
solutions (estimates) in closed-form, the equations 
are readily solved numerically [1].  Inference for the 
GLMM, however, is much more challenging. Since the 
likelihood function arising from the GLMM is generally 
quite complex, involving multidimensional integrals, 
it is difficult to directly maximize this function except 
for the special linear models case for continuous 
outcomes. Different approaches have been proposed to 
address the computational issues when modeling non-
continuous responses using the GLMM.  

The approach implemented in most major software 
such as SAS and R is integral approximation.  This 
approach first approximates the log-likelihood function 
and then maximizes the approximated function using 
the Newton and Gauss-Hermite quadratures. However, 
studies have shown that the approach does not work 
well as one would expect [6], especially for modeling 
binary responses.  Below, we highlight some key findings 
from these studies.  
Example 6.  Zhang, Lu and Feng et al. (2011) [6] examined 
the computational issues by fitting GLMM for simulated 
binary responses using both SAS and R.  They simulated 
an explanatory variable Xi and the response Yit from the 
GLMM: 
                     

                                                                                          

                                                                        
                                                                                            (17) 
where β0=β1=1 and τ=0.001 and 2. For τ=0.001 , the 
within-subject correlation was very small and thus 
negligible, making theYit’s almost independent. For τ=2 , 
the within-subject correlations was about 0.5.
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They simulated data from the GLMM in (17) with a 
sample size n=500, fit the same model to the simulated 
data using R and SAS, and repeated the process 1,000 
times. Shown in Table 3 are the estimates of parameter 
vector β (under “β0=1” and “β1=1” based on averaging 
over 1,000 estimates from fitting the model to each 
simulated data) and associated standard errors (under 
S.E. 10×  based on sample standard deviations from 
the Monte Carlo 1,000 estimates of β) from fitting SAS 
NLMIXED procedure and R lme4 function. For τ=0.001, 
the estimates were quite similar between the two, but 
for τ=2, the SAS NLMIXED procedure provided more 
accurate estimates. There were more pronounced 
differences in the standard errors between the two, 
with the R lme4 consistently yielding lower standard 
errors than the SAS NILMIXED. Such differences play a 
significant role in hypothesis testing.  

Shown in Table 3 under “Type I error” are the type 
I error rates for testing the hypothesis, 0 1: 1H β =  vs. 

1: 1aH β ≠  based on the Wald statistic from the SAS and 
R procedures. The Wald statistic is                               , 
where      is the standard error for the estimate . The 
type I error rate was calculated as:

   

where 1,0.95q  is the 95th percentile of 
2
1χ  and 

( )m

WT  
denotes the Wald statistic for testing the hypothesis 
based on m th simulated data ( )1 1,000m≤ ≤ .  Since 
the null hypothesis 0 1: 1H β =  is true, the type I error 
rate          should be close to the nominal value α=0.05, 
if the SAS and R procedures provided correct inference. 
Although the SAS NLMIXED did yield type I error rates 
close to the nominal value, R lme4’s estimates were 
inflated, especially for the case with higher within-
subject correlation τ=2.  

In addition to the SAS and R procedures, Zhang, 
Lu and Feng et al. (2011) [6] also considered other 
procedures in SAS and R and found that none provided 
correct estimates. Their conclusion was that the SAS 

NLMIXED procedure provided more accurate estimates 
and type I error rates. However, more recent studies by 
Chen, Knox, Arora et al. (2016) [7] and Chen, Lu, Arora et 
al. (2016)[8] show that this SAS procedure did not provide 
correct estimates either.  

Example 7.  Chen, Knox, Arora et al. (2016) [7] 

considered clustered binary responses arising from 
multi-center studies.  They modeled and simulated 
clustered binary responses from the following GLMM

      ( ) ( )
( )

( )

. .
0 1

0 1

2

exp
| , Bernoulli , ,

1 exp

1Bernoulli , 0, , 1 , 1 .
2

i d
ki k

ki ki k ki ki
ki k

ki k

x
y x

x

x N i n k Kλ

β β λ
λ µ µ

β β λ

λ σ

+ +
∼ =

+ + +

 ∼ ∼ ≤ ≤ ≤ ≤ 
 

             

                                                                                   (18) 
where K  denotes the number of study sites, n  

number of subjects within each site (cluster size), kix  
is a binary variable indicating treatment condition as-
signed to the i th subject within the k th site, and kλ  is 
the random effect accounting for correlations between 
responses kiy  from subjects with the k th site.  They 
considered testing the hypothesis: 

Table 2. Estimates of parameters, standard errors, p-values and rates of 7-day point prevalence abstinence 
at baseline and 3 follow-up visits from the WGEE and GLMM models for the real Smoking 
Cessation Study in Example 5.

Parameters Estimates 
(Standard Errors) p-values Rates of 7-day point 

prevalence abstinence 

WGEE GLMM GEE GLMM GEE GLMM

Baseline (β or β ̃) 4.05 (0.92) 5.47 (1.31) <.001 <.001 0.076 0.021

Month 3 (β0 or β ̃0) 0.87 (0.42) 1.27 (0.56) 0.036 0.026 0.164 0.070

Month 6 (β1or β ̃1) 1.01 (0.42) 1.49 (0.56) 0.016 0.009 0.184 0.086

Month 12 (β2 or β ̃2) 0.55 (0.45) 0.79 (0.57) 0.217 0.173 0.124 0.044

Table 3.  Estimates of parameters, standard errors, 
Type I error rates (for testing null: H0: β1=1 
from SAS NLMIXED and R lme4 procedures 
for two within-subject correlation cases ( 
τ=0.001 and τ=0.0001 ) for the simulation 
study in Example 6.

τ Software

Type I error 
for testing 

null 
H0: β1=1

β0=1 S.E. β1=1 S.E.

0.001
SAS 

NLMIXED 0.046 1.025 0.075 1.029 0.085

R lme4 0.098 1.022 0.067 1.029 0.075

2
SAS 

NLMIXED 0.066 0.992 0.125 0.976 0.166

R lme4 0.256 0.983 0.123 0.912 0.141



Shanghai Archives of Psychiatry, 2016, Vol. 28, No. 5 • 299 •

                                                                         (19) 

where ( )|j ki kip E y x j= =  is the mean response of (or 
proportion of 1kiy = ) for the treatment group. The 
parameters 0β  and 1β  in (18) are related to 0p  and 1p  in 
(19) as follows: 

                     0 1
2 2

15, .
16 3

ki
k

xp c
c λ

β β π
σ

 + = Φ =
 + 

 
Thus given (19) and 2

λσ , we can solve the above for 0β  
and 1β  (numerically).  

Chen, Knox, Arora et al. (2016) [7] considered 2 0λσ =
, 2 0.1λσ =  and 2 1λσ = , with 20K =  clusters and 25n =  
within each cluster.  For each 2

λσ , they obtained 0β  
and 1β  and simulated data from the GLMM in (18) 
under 1: 0.05aH p = . They fit the model (18) to the 
data generated using SAS NLMIXED, tested the null 

0 0: 0.10H p =  and rejected the null if the p-value is larger 
than 0.05α = . The process was repeated 1,000 times 
and power was estimated by the percent of times the 
null was rejected.  

Shown in Table 4 are power estimates under 
“NLMIXED” for the three cases of 2

λσ , along with true 
power values under (“True”) obtained using a different 
approach developed in Chen, Knox, Arora et al. (2016)[7].  
As seen, power estimates from obtained from the SAS 
NLMIXED were quite different from the true power for 
each case of 2

λσ , all underestimating the true power. 
Note that when 2 0λσ = , there is no data cluster and 
power only depends on the total sample size Kn. In this 
case, we can also obtain power estimates by using instead 
the SAS LOGISTIC NLMIXED for non-clustered data.  This 
is indeed the case, since Chen, Knox, Arora et al. (2016) 

[7] reported that they obtained power estimates similar 
to 0.561 when running the Monte Carlo substitution to 
estimate power using the SAS LOGISTIC.  

3. Discussion
In this report, we discussed the two most popular 
regression models for longitudinal data. We focused on 
interpretation and computation of model parameters. 
For parameter interpretation, we discussed differences 
between the GLMM and WGEE when applied to model 

binary and count responses. Since parameters from the 
two longitudinal models are generally quite different, 
we should not expect similar estimates when applying 
the two models to real study data. Moreover, except for 
some special cases, it is generally not possible to find a 
relationship between estimates from the two models. 
Our analysis indicates that GLMM estimates can be 
quite difficult to interpret, while WGEE estimates afford 
straightforward interpretation.  

Another major issue with the GLMM is to obtain 
reliable estimates using existing software. It seems that 
even software giants like SAS cannot provide correct 
estimates when applying GLMM to model binary 
responses. Until the computational problem is resolved, 
one may want to consider applying WGEE when 
modeling longitudinal binary responses.  

We focused on the binary and count response when 
discussing interpretation of model parameters in this 
report. When modeling continuous responses, the two 
longitudinal models have the same interpretation for 
their model parameters and thus the interpretational 
issue does not arise. The computational problem seems 
only relevant to binary responses. For continuous 
responses, the log-likelihood function can be solved 
accurately [1]. For count responses, major software such 
as R and SAS seem to provide quite reliable estimates.  
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Table 4.  Power estimates from SAS NLMIXED 
along with true power values for two data 
clustering cases (σλ

2=0.1 and σλ
2=1) for the 

simulation study in Example 7.

K n
σλ

2=0 σλ
2=0.1 σλ

2=1

True NL-
MIXED True NL-

MIXED True NL-
MIXED

50 10 0.561 0.565 0.546 0.598 0.473

20 25 0.561 0.275 0.561 0.336 0.590 0.455
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