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Modern methods for longitudinal data analysis, capabilities,

caveats and cautions

Lin GE*, Justin X. TU?, Hui ZHANG?, Hongyue WANG", Hua HE*, Douglas GUNZLER®

Summary: Longitudinal studies are used in mental health research and services studies. The dominant
approaches for longitudinal data analysis are the generalized linear mixed-effects models (GLMM) and the
weighted generalized estimating equations (WGEE). Although both classes of models have been extensively
published and widely applied, differences between and limitations about these methods are not clearly
delineated and well documented. Unfortunately, some of the differences and limitations carry significant
implications for reporting, comparing and interpreting research findings.

In this report, we review both major approaches for longitudinal data analysis and highlight their
similarities and major differences. We focus on comparison of the two classes of models in terms of model
assumptions, model parameter interpretation, applicability and limitations, using both real and simulated
data. We discuss caveats and cautions when applying the two different approaches to real study data.
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1. Introduction

Longitudinal study designs have become increasingly
popular in research and practice across all disciplines.
Such designs capture both between-individual
differences and within-subject dynamics, providing
opportunities to study complex biological, psychological
and behavioral changes over time such as causal
treatment effects and mechanisms of change ™. Since
longitudinal study designs create serial correlations over
repeated assessments from same subjects, traditional
statistical methods for cross-sectional data analysis
such as linear and logistic regression do not apply. In
addition, since longitudinal studies are typically of long

duration, missing data is common. Specialized models
and methods must be used to address the two major
issues.

The two dominant approaches for longitudinal
data analysis are the generalized linear mixed-effects
model (GLMM) and weighted generalized estimating
equations (WGEE)"" . Both methods are derived from
the same class of models for cross-sectional data, the
generalized linear models (GLM). Because different
techniques are used to extend the GLM to longitudinal
data, the GLMM and WGEE are quite different and
some of the differences carry significant implications for
their applicability and interpretation of study findings.
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Despite the existence of an extremely large body of
literature discussing the development and application of
the two approaches, practitioners still often face many
difficult questions when choosing and applying such
models to real study data.

For example, which approach is applied given data
from a study? Do the two approaches yield identical
estimates and/or inferences? If not, how should one
approach and interpret such differences? What are the
pros and cons associated with each approach? Although
some questions have well-documented answers in the
literatures, others have only been approached recently
and still await answers.

In this report, we first give an overview of the
approaches and then discuss major differences between
the two classes of models. Unlike the literature on
the discussion of the two methods, we focus on their
practical implications, which we think provide useful
guidance for practitioners for selecting right approaches
for their studies and effectively addressing their study
questions.

2. Models for Longitudinal Data

Since both the GLMM and WGEE are extensions of the
GLM, we start with a brief overview of the latter.

2.1 Generalized Linear Models (GLM)

Consider a sample of n subjects and let Y, (X,) denote a
continuous response (a vector of explanatory variables).
The classic linear model is given by:

V. =X,B+¢, 8,.~N(0,0'2), 1<i<n, (1)

where N(p, 6°) denotes a normal distribution with mean
i and o’ variance. The linear model is widely used in

research and practice. One major limitation is that it
only applies to continuous response Y;. The generalized
linear models (GLM) extend the classic linear model to
non-continuous response such as binary.

To express the GLM, we first rewrite the linear
regression in (1) as

Vi |Xi~N(lui’O-2)’ H; :E(y; |Xi)=XiTﬁa ISiSn,(Z)

where }; |Xl» denotes the conditional distribution of Y,
given X,and E(y, |xi2 denotes the conditional mean
of Y, given X,. By replacing the normal in (2) with other
distributions appropriate for the type of response, we
obtain the class of GLM:

yiIx~f(w), g(w)=x/B, 1<i<n, (3)

where f(1) denotes some distribution with mean p and
g(u) is a function of W. Since g(u) links the mean to the
explanatory variables, g(u) is called the link function.
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The specification of f(u) and g(u) depend on
the type of response Y,. For a binary Y,, f(u) is the
Bernoulli distribution and g(u) is often set as the logit

function g(u) :log(LJ.
1-up

The resulting GLM is the logistic regression. For
a count Y, a popular choice for f(u) is the Poisson
distribution and g(u) is the log function, g(u) =log(u).
Another choice for f(u) is the negative binomial. A major
limitation of Poisson is that its variance is the same as
its mean. Count responses arising in many real studies
often have variances larger than means, a phenomenon
known as “overdispersion” ™" The negative binomial is
similar to the Poisson, but unlike the Poisson, allows for
overdispersed count responses

Inference for GLM can be based on maximum
likelihood (ML) or estimating equations (EE). The classic
ML provides most efficient estimates, if the response
Y, follows the specified distribution such as the normal
in the linear regression in (1). In many studies, it may
be difficult to specify the right distribution, in which
case the ML will yield biased estimates if the specified
distribution does not match the data distribution. The
modern alternative EE uses an approach for inference
that does not require specification of a mathematical
distribution forY;, thereby providing valid inference for a
wider class of data distribution. Since no distribution is
required under EE, we may also express the GLM in this
case as:

/ui:E(yi|Xi)’ g(ﬂi):XiTﬁﬂ I<i<n, (4)
or simply

g(E(yi‘X,’)):X;rB, 1<i<n, (5)
or equivalently
E(yi|xi):h(x,-TB), 1<i<n, (6)

whereh:g_1 is the inverse of g(in). When specified
without the distribution component, (4), (5) or (6) are
also called the semi-parametric GLM. In comparison, (3)
is called the parametric GLM.

Example 1. In a suicide study, we may model number
of suicide attempts, Y, , a count response, using a
parametric GLM:

v, |x,~Poisson (), log(x)=x/B, 1<i<n, (7)

where X; denotes a set of explanatory variables such
as age, physical problems and history of depression.
If concerned about overdispersion, such as indicated
empirically by a much larger variance as compared to
the mean, the semi-parametric GLM below may be used

w=E(yx,), log(w)=x/B, 1<i<n.
Unlike the parametric model in (7), the semi-parametric
GLM above provides valid inference regardless of

presence of over-dispersion.
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2.2 Extension of GLM to longitudinal data

1.1.1 Weighted Generalized Estimating Equations
(WGEE)

Consider a longitudinal study with T time points and let
Y, and X, denote the same response and predictors/
covariates as in the cross-sectional setting, but with t
indicating their dependence on the time of assessment
(1<i<n,1<t<T). For each time t , we can apply the GLM in
(3) to model the regression relationship between Y, and
X, at each point

Vol X~ (), w4, =E(y,1x,), g(u,)=x;B,, 1<t<T, 1<i<n.

We can then get estimates of B, for each time point t
. However, it is difficult to interpret different B, across
the different time points. Moreover, it is technically
challenging to combine estimates of B, to test
hypotheses concerning temporal trends because of
interdependence between such estimates.

The WGEE addresses the aforementioned difficulties
by using a single estimate 3 to model changes over time
based on multiple assessment times'™?. Since the WGEE
estimates B using a set of equations that do not reply on
assumed distribution f(z,) in (8), the first part of the
GLM can be removed and the resulting model becomes

w=E(y,|x,), g(u,)=x;p, 1<t<T, 1<i<n. (8)

By comparing the WGEE above with the model
in (4), it is seen that the WGEE is an extension of the
semi-parametric GLM to longitudinal data. The key
difference between (4) and (8) is that (8) is not simply
an application of GLM to each of the time points, but
rather an extension of the model in (4) to provide a
single parameter vector B for easy interpretation and
estimate this parameter vector by using data from all
time points and accounting for correlations between the
repeated assessments. Like the semi-parametric GLM,
the WGEE provides valid inference for a wider class of
data distributions.

2.3 Generalized Linear Mixed-effects Models (GLMM)

The GLMM extends the GLM to longitudinal data
analysis using a completely different approach.

Consider again a longitudinal study with T time
points and let Y, and X, denote the same response and
predictors/covariates as in the WGEE above. The GLMM
is specified by:

Vi |X:’f‘zfr"bf - f(f”r’r)'
g(i,)=xtp+zib,. b ~N(0.5,). 1<i<n 1<r<T. )

where N(u,N(p,,Z) denotes a multivariate normal with
mean W and variance ), Z, is a vector of predictors/
covariates (often set equal to X, ), and g(u) is the
appropriate link function for the type of response Y,.
The vector of latent variables, b, is called the random
effects, denoting individual differences from the
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population mean b, , which is known as the fixed effects.
Although Bis typically assumed to follow a multivariate
normal as'in (3), other types of distributions may also be
considered.

Unlike the WGEE, the GLMM accommodates
correlated responses Y, by directly modeling their
joint distribution. Since multivariate distributions are
extremely complex except for the multivariate normal,
latent variables b; are generally employed to model the
correlated responses. Thus, although Y, is still modeled
for each time point t, by including the random effect
b, in the specification of the conditional distribution
of Y, given b; (X, and Z, ), the GLMM in (9) allows the
resulting Y, ’s to be correlated (conditional on X, and Z,
only). This approach allows one to specify multivariate
distributions using familiar univariate distributions such
as the Bernoulli (for binary responses) and the Poisson
(for count responses).

2.4 Key differences between GLMM and WGEE

Although both WGEE and GLMM are extensions of the
GLM, the two approaches are quite different because
of the way the extensions are accomplished. In this
section, we discuss such key differences.

2.4.1 Interpretation of Model Parameters

A fundamental difference between the WGEE and
GLMM is in interpretation of model parameters. As
noted earlier, the WGEE is an extension of the semi-
parametric GLM, while the GLMM is an extension of
the parametric GLM. Although the parameter vector
has the same interpretation between the parametric (1)
and semi-parametric (4) GLM, the parameter vectors B
in the WGEE (8) and B in the GLMM (9) are generally

different except for the linear regression.

Example 2. Consider the model in Example 1, but now
assume a longitudinal study with T assessment times.
Let Y, and X, denote the longitudinal versions of Y,

and X;. Again, if Y, at each point is modeled to follow a
Poisson, the GLMM has the form:

Vi |X;.2,.b; ~P0isson(;¢'n),
log(;n) :X;rrﬁJrz;rrbn b, ~N(0.%,).
1<i<n, 1<t<T. (10)

On the other hand, the WGEE for a count response has
the form

log (E (J"f; |x, )) =X§ﬁ, or
E(yﬂx”zexp(xiﬁ), 1<i<n, 1<t<7T.(11)
The two models look quite the same, except for the

additional random effect in (10). So, to compare the
two models, we integrate out b,in (10) and calculate



© 296

the conditional expectation E(yit |Xit) to obtain (see
Zhang et al., 2012 for derivation)w

E(y,|x,)= [exp( 73,2, J|xﬁ]exp(x;"_],

1=i=n 1=f=T. (12)

This conditional expectation is different from the
expression in (11) for the WGEE unless

E{exp(%ngbznj | xit}z 1

In some special cases, B and ﬁmay be identical
except for the intercept term. For example, if Z. is
independent of X, , then

E[exp(zz”Z z, )|xl.,]=E[exp(2z”Z z, )]:exp(yo)
Thus (12) reduces to

E(y,|x,)=exp(7,+Xip). 1<i=n. 1<¢<T. (13)
Except for the intercept term, B and fl have the same
interpretation. The next Example illustrates this special

case with data from a real study.

Example 3. The COMBINE study was a multi-site
randomized clinical trial with longitudinal follow-
up to compare intervention effects between nine
pharmacological and/or psychosocial treatments. For
illustration purposes, we combined all the 9 treatment
conditions and focused on the two drinking outcomes,
days of any drinking and days of heavy drinking over the
past month, at three visits during treatment at weeks 8,
16 and 26.

Denote the three visits by 1<t<3. To see whether the
mean days of any drinking (heavy drinking) varied in the
three time periods, we created two dummy variables
indicating weeks 16 and 26 as the fixed effect X; and a
random intercept to account for correlations among the
repeated assessments for the GLMM

Vi | X;.b; ~ Poisson (Ju[.r ) .

log(;ﬂ): xilrEU +xi2r51 +xf3u§2 +::'bi~ b:‘ ~ N(O~T2)a

) 1 ift=k

Yo =1 X = . . s

i " 1o if otherwise

k=23, ;=1 l<i<n 1£:<3.

Since Z=1 and X;;;=1 are both constants, they are
independent. We fit a WGEE with the same predictors
Xi=(Xi1u X Xiz:)" @s in the fixed effect of GLMM above.
As indicated in Example 2,“0 differs from its WGEE
counterpart B, by a constant 7, =In E(exp(%zﬂ'z)g)
, Whereas El and ;5’9 retain the same scales as the
corresponding 3, and B, in the WGEE model.
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Shown in Table 1 are the estimates of § and ﬁand
associated standard errors, and test statistics and
associated p-values for both models. As expected,

estimates of ﬁl and ﬁ} were quite close to the

respective WGEE estimates B, and 3, , but those of
were much smaller (in magnitude) than their WGEE
counterparts (0.694 vs. 1.908 for Days of Any Drinking
and -0.30 vs. 1.307 for Days of Heavy Drinking).

Since Z;l and ;ﬁ'? (B, and B,) represent changes relative to
the reference level B, (B,) from Visit 1 to Visit 2 and from
Visit 1 to Visit 3 under GLMM (WGEE), the difference
between the estimated BO and B,implies not only

different means at visit 1, but also at visits 2 and 3 for
each drinking outcome. For example, for the outcome
of Days of Any Drinking, the WGEE estimates indicate
a mean of 6. 7, 7.7 and 8.9 days of any drink over the
three visits, much lower than 1.9, 2. 3 and 2.7 days of
any drink at the corresponding visits estimated by the
GLMM. The WGEE estimates are actually identical to
sample means of this drinking outcome at each visit, but
the GLMM estimates are not, making the latter difficult
to interpret.

Comparison of Estimates (Standard Errors ) between

GEE and GLMM
Visit 1 Visit 2 Visit 3
(BoorB,) (Byorf,) (B,orB,)
Model Fit Days of Any Drinking
GEE(B) 1.908 (3.6) 0.144(2.2) 0.144 (2.8)
GLMM(B") 0.694 (6.2) 0.144(1.5) 0.144 (1.5)

Days of Heavy Drinking
0.224 (3.3) 0.216 (4.1)
0.224 (1.9) 0.216 (1.9)

GEE(B) 1.307 (4.7)
GLMM(B") -0.30(7.3)

Example 4. In Example 2, now suppose that Vi is
binary and is modeled by a GLMM for binary response
as follows

Vi | Xg-Zy. by~ Be:mculh[‘uﬂ },
logn:(,HJ xp+zib, ~N(0.5,), 1<i<n 1<¢=<T. (14)
The corresponding WGEE has the form
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logit(E (¥ |x;)) =x;B. or

T,
M l=i<n, 1=¢t=T. (15)
1+exp(x_,.r:ﬁ]

As in Example 2, the two models look the same, except
for the additional random effect in (14). To compare
the two, we again need to integrate out b;in (14). In
general, it is difficult to obtain a closed-form expression
for the resulting integral. But, in the special case when Z,
is a subset of X, and Z,=Z,, the integral can be expressed
as (see Zhang, Xia et al., 2011 for derivation)™

E(yy|x4)=

< 1= _ 15w

logit[E[;tﬁ xﬂﬂm{Hc'zzﬂTEbzﬂ} x;B. C_IG\E- (16)

Thus #o is a rescaled B. Even in this special case, it may
not easy to interpret ﬁ, as demonstrated by a real study
example next.

Example 5. In a recent study on smoking cessation,
276 subjects participated in multi-component program
adapted to seriously mentally ill patients within an
outpatient mental health clinic. Out of these subjects,
99 also participated in a formal evaluation, in which
interviews were conducted at the point of enroliment
(baseline) and again at 3, 6 and 12 months. A primary
outcome of the study is the 7-day point prevalence
abstinence (defined as no smoking at all in the previous
7 days). We modeled changes of this longitudinal binary
abstinence outcome using data from the 99 subjects.

We applied both longitudinal approaches and used
three dummy variables to model the rate of 7-day point
prevalence abstinence at each of the follow-up times for
the WGEE and also included a random intercept for the
GLMM model. Thus, the GLMM has the form

Vi | x4. 5, ~ Bernoulli (ﬂ]
log{ﬁ;:l = x_-|_r_|§|j +I."2:J§| + 1’53:5] + x_l_4r Bi + sz-l_, bl. - iv{o,;’]}_,

1 fe=k
X = 1’ X = - .=
0  if otherwise

k=234 z=1 1<i<n 1<r<4

while the WGEE is given by:

logit[E [J"_r'r |x; }] = X+ X0 + X3 By + X35
x,=L xﬁ:{:) H=k §o234 1giga 12024,

1f otherwise B
Shown in Table 2 are the estimates of B and pand
associated standard errors, and test statistics and
associated p-values for both models. The estimates
were quite different between the two models, although

the ratio ﬂ;_* =0.7
k

not a coincidence, but expected, because of (16) and

the fact that Z,; in the GLMM model is a subset of X,.

, a constant for all 1<k<3. This is
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Also, since H, : f, =0 under one model implies that 4,
holds true for the corresponding coefficient under the
other model, same conclusions were obtained regarding
statistical significance of the parameters, although the
p-values under the two models were slightly different.

The scale difference in the parameters between the
two models did have serious implications for the
interpretation of estimates from the GLMM. Shown in
the last two columns of Table 2 are the rates of 7-day
point prevalence abstinence over time estimated by
each of the two models. Since the WGEE becomes the
logistic regression at each assessment time, it yields
estimates identical to the observed rates of 7-day point
prevalence abstinence. Estimates from the GLMM were
quite different, underestimating the observed rates by
over 50%. Even in this simplest case where estimates
of GLMM are a scale shift of their GEE counterparts,
GLMM estimates are difficult to interpret.

2.4.2 Computational Issues for GLMM

Inference for the WGEE is based on a set of equations.
Although it is generally not possible to express
solutions (estimates) in closed-form, the equations
are readily solved numerically ™. Inference for the
GLMM, however, is much more challenging. Since the
likelihood function arising from the GLMM is generally
quite complex, involving multidimensional integrals,
it is difficult to directly maximize this function except
for the special linear models case for continuous
outcomes. Different approaches have been proposed to
address the computational issues when modeling non-
continuous responses using the GLMM.

The approach implemented in most major software
such as SAS and R is integral approximation. This
approach first approximates the log-likelihood function
and then maximizes the approximated function using
the Newton and Gauss-Hermite quadratures. However,
studies have shown that the approach does not work
well as one would expect , especially for modeling
binary responses. Below, we highlight some key findings
from these studies.

Example 6. Zhang, Lu and Feng et al. (2011)"® examined

the computational issues by fitting GLMM for simulated
binary responses using both SAS and R. They simulated
an explanatory variable X; and the response Y, from the
GLMM:

¥, |x.b, ~Bemoulli(, ),

[ L]

logit(u, )= B, +by +x,( 6, +b,).

b, 0} ,( 1 025
b= Mo lons 1 . X, ~N(01), =123,
s ST (17)

where B,=B;=1 and t=0.001 and 2. For t1=0.001, the
within-subject correlation was very small and thus

negligible, making theY,’s almost independent. For t=2,
the within-subject correlations was about 0.5.
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perameters (Staflsdﬁar:‘da:;:o rs) p-values p?g\:: Ise‘:::?e -: lf:ﬁ':\:i::e
WGEE GLMM GEE GLMM GEE GLMM
Baseline (B or ) 4.05 (0.92) 5.47 (1.31) <.001 <.001 0.076 0.021
Month 3 (B, or ) 0.87(0.42) 1.27 (0.56) 0.036 0.026 0.164 0.070
Month 6 (B,0r f8",) 1.01 (0.42) 1.49 (0.56) 0.016 0.009 0.184 0.086
Month 12 (B, or §7,) 0.55 (0.45) 0.79 (0.57) 0.217 0.173 0.124 0.044

They simulated data from the GLMM in (17) with a
sample size n=500, fit the same model to the simulated
data using R and SAS, and repeated the process 1,000
times. Shown in Table 3 are the estimates of parameter
vector B (under “B,=1" and “B,=1" based on averaging
over 1,000 estimates from fitting the model to each
simulated data) and associated standard errors (under
S.E.x10 based on sample standard deviations from
the Monte Carlo 1,000 estimates of B) from fitting SAS
NLMIXED procedure and R Ime4 function. For t=0.001,
the estimates were quite similar between the two, but
for t=2, the SAS NLMIXED procedure provided more
accurate estimates. There were more pronounced
differences in the standard errors between the two,
with the R Ime4 consistently yielding lower standard
errors than the SAS NILMIXED. Such differences play a
significant role in hypothesis testing.

Shown in Table 3 under “Type | error” are the type
| error rates for testing the hypothesis, H, : f=1 vs.
H, : B #1 based on the Wald statistic from the SAS and

~2 \7l o~ 2

R procedures. The Wald statistic is 7, = n(dﬁl) (ﬂl —1)
~2

where o 5 is the standard error for the estimate . The

type | error rate was calculated as:

m=1

1 1000
o =—— 1
1000 Z {Té'm)z%,n.gs}

where 4095 is the 95th percentile of I and 7"
denotes the Wald statistic for testing the hypothesis
based on mth simulated data (1<m<1,000). Since
the null hypothesis H, : § =1 is true, the type | error
rate ¢ should be close to the nominal value a=0.05,

if the SAS and R procedures provided correct inference.
Although the SAS NLMIXED did yield type | error rates
close to the nominal value, R Ime4’s estimates were
inflated, especially for the case with higher within-
subject correlation 1=2.

In addition to the SAS and R procedures, Zhang,
Lu and Feng et al. (2011) ' also considered other
procedures in SAS and R and found that none provided
correct estimates. Their conclusion was that the SAS

NLMIXED procedure provided more accurate estimates
and type | error rates. However, more recent studies by
Chen, Knox, Arora et al. (2016) "' and Chen, Lu, Arora et
al. (2016)® show that this SAS procedure did not provide
correct estimates either.

Type | error
T Software f°'rt‘is"ﬁ"g B=1 SE PB=1 S.E.
Hy: B,=1

SAS 0.046  1.025 0.075 1.029 0.085

0.001 NLMIXED
Rime4 0098 1.022 0.067 1.029 0.075
S 0.066 0.992 0.125 0.976 0.166

5 NLMIXED
Rime4 0256 0.983 0.123 0.912 0.141

Example 7. Chen, Knox, Arora et al. (2016) "
considered clustered binary responses arising from
multi-center studies. They modeled and simulated
clustered binary responses from the following GLMM

eXp(ﬂo + Bixy +ﬂ’k)
L+exp(B,+Bx, +4)

xk,.~BemouuiG), A ~N(0,07), 1<i<n, 1<k<K.
(18)

where K denotes the number of study sites, j
number of subjects within each site (cluster size), X;
is a binary variable indicating treatment condition as-
signed to the i th subject within the f th site, and /lk is
the random effect accounting for correlations between
responses ), from subjects with the fth site. They
considered testing the hypothesis:

id.
Vi | X ~ Bemoulli(ﬂki)a My =
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Hy,: p,=0.10 vs. H, : p =0.05, (19)
where p;= E(yylx,= ) is the mean response JV; (or
proportion of y, =1) for the treatment group. The
parameters f}, and B, in(18) arerelated to Py and p; in
(29) as follows:

pk:®[ﬂ0+ﬂ1xki]’ c= 157

Jeé+o? 163’

Thus given (19) and Gﬁ, we can solve the above for ﬂo
and g, (numerically).

Chen Knox, Arora et al. (2016) " considered 0'; 0
, 0 =0.1 and 0 =1, with K = 20 clusters and n =25
within each cluster. For each o;, they obtained Jis
and f and simulated data from the GLMM in (18)
under H, : p,=0.05. They fit the model (18) to the
data generated using SAS NLMIXED, tested the null
H, : p,=0.10 and rejected the null if the p-value is larger
than a =0.05. The process was repeated 1,000 times
and power was estimated by the percent of times the
null was rejected.

Shown in Table 4 are power estimates under
“NLMIXED” for the three cases of 0} , along with true
power values under (“True”) obtained using a different
approach developed in Chen, Knox, Arora et al. (2016)".,
As seen, power estimates from obtained from the SAS
NLMIXED were quite different from the true power for
each case of a aII underestimating the true power.
Note that when o, =0, there is no data cluster and
power only depends on the total sample size Kn. In this
case, we can also obtain power estimates by using instead
the SAS LOGISTIC NLMIXED for non-clustered data. This
is indeed the case, since Chen, Knox, Arora et al. (2016)
"' reported that they obtained power estimates similar
to 0.561 when running the Monte Carlo substitution to
estimate power using the SAS LOGISTIC.

Table 4. Power estimates from SAS NLMIXED
along with true power values for two data
clustering cases (0,2=0.1 and c,?=1) for the
simulation study in Example 7.

0,2=0 c,2=0.1 c,>=1
«n True e True N qrge N
MIXED MIXED MIXED
50 10 0.561 0.565 0.546 0.598 0.473

20 25 0.561 0.275 0.561 0.336 0.590 0.455

3. Discussion

In this report, we discussed the two most popular
regression models for longitudinal data. We focused on
interpretation and computation of model parameters.
For parameter interpretation, we discussed differences
between the GLMM and WGEE when applied to model
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binary and count responses. Since parameters from the
two longitudinal models are generally quite different,
we should not expect similar estimates when applying
the two models to real study data. Moreover, except for
some special cases, it is generally not possible to find a
relationship between estimates from the two models.
Our analysis indicates that GLMM estimates can be
quite difficult to interpret, while WGEE estimates afford
straightforward interpretation.

Another major issue with the GLMM is to obtain
reliable estimates using existing software. It seems that
even software giants like SAS cannot provide correct
estimates when applying GLMM to model binary
responses. Until the computational problem is resolved,
one may want to consider applying WGEE when
modeling longitudinal binary responses.

We focused on the binary and count response when
discussing interpretation of model parameters in this
report. When modeling continuous responses, the two
longitudinal models have the same interpretation for
their model parameters and thus the interpretational
issue does not arise. The computational problem seems
only relevant to binary responses. For continuous
responses, the log-likelihood function can be solved
accurately ™. For count responses, major software such
as R and SAS seem to provide quite reliable estimates.
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