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Simple Summary: Health-related quality of life (HRQOL) is associated with cancer prognosis as
well as with age, sex, race, and lifestyle factors, including diet and physical activity. To investigate
the hypothesis that HRQOL has genetic underpinnings in patients with cancer, we performed a
genome-wide association study to evaluate genetic variants (single nucleotide polymorphisms, SNPs)
associated with mental and physical QOL as measured by the PROMIS assessment tool in breast
cancer survivors participating in a longitudinal cohort study, the Mayo Clinic Breast Disease Registry
(MCBDR). Age and financial concerns were associated with worse physical and mental health, and
previous receipt of chemotherapy was associated with worse mental health. SNPs in SCN10A,
LMX1B, SGCD, PARP12, and SEMA5A were associated with physical and mental QOL, but none at
the genome-wide significance thresholds of p < 5 × 10−8.

Abstract: Health-related quality of life (HRQOL) is an important prognostic patient-reported outcome
in oncology. Because prior studies suggest that HRQOL is, in part, heritable, we performed a GWAS
to elucidate genetic factors associated with HRQOL in breast cancer survivors. Physical and mental
HRQOL were measured via paper surveys that included the PROMIS-10 physical and mental
health domain scales in 1442 breast cancer survivors participating in the Mayo Clinic Breast Disease
Registry (MCBDR). In multivariable regression analyses, age and financial concerns were significantly
associated with global physical health (age: p = 1.6 × 10−23; financial concerns: p = 4.8 × 10−40) and
mental health (age: p = 3.5 × 10−7; financial concerns: p = 2.0 × 10−69). Chemotherapy was associated
with worse global mental health (p = 0.01). In the GWAS, none of the SNPs reached the genome-wide
association significance threshold of 5 × 10−8 for associations with either global physical or global
mental health, however, a cluster of SNPs in SCN10A, particularly rs112718371, appeared to be linked
to worse global physical health (p = 5.21 × 10−8). Additionally, SNPs in LMX1B, SGCD, PARP12
and SEMA5A were also moderately associated with worse physical and mental health (p < 10−6).
These biologically plausible candidate SNPs warrant further study as possible predictors of HRQOL.

Keywords: health-related quality of life; genome-wide association study; global physical and men-
tal health

1. Introduction

Health-related quality of life (HRQOL) is a multifactorial concept of a person’s self-
perception of physical, psychological, and social functioning, often subdivided into sev-
eral domains, including physical health, emotional health, cognitive functioning, fatigue,
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and pain [1,2] HRQOL correlates with survival in patients with cancer, and is influenced by
demographic characteristics, such as age, sex, and race. Lifestyle factors, including diet and
physical activity, are also associated with HRQOL [3–6]. Quality of life in cancer patients
is dynamic and is influenced not only by symptoms of the disease and adverse effects of
the treatment but by psychological, social, and spiritual factors as well [7]. Additionally,
cancer-related financial hardship has been associated with poor HRQOL [8,9].

Multiple biological pathways play a role in HRQOL [2], including via an impact of the
dopaminergic pathway on emotional functioning and via an impact of the inflammation
pathway on multiple domains of HRQOL. Specifically, links between the inflammatory
pathway and both fatigue and pain are well-established [2–6,10].

Genetic variation may underlie individual differences in HRQOL, which are substan-
tial even for patients receiving identical medical care for very similar health problems.
There have been reports regarding the relationship between genetic polymorphisms and
pain [11–14], and family and twin studies have identified 30–50% heritability for sub-
jective well-being, depression, and anxiety, and 22–42% heritability for HRQOL [15–17].
Genetic underpinnings of inflammatory pathways may be important, with a number of
single nucleotide polymorphisms (SNPs) in cytokine genes and the glutathione metabolic
pathway found to be associated with QOL in different populations [2,18–20]. Although the
exact mechanisms by which genetic variants in inflammatory genes contribute to individual
variation in QOL are yet to be elucidated, inflammation may increase the severity of symp-
toms experienced in diseases, such as cancer, impacting functional status and QOL [2,21].
Genetic variants in inflammatory, dopaminergic, serotonergic, and neurotrophic signaling,
as well as neuroactive ligand-receptor interaction pathways, have been associated with
overall HRQOL, and oxytocin-related genes and genes involved in the serotonergic and
dopaminergic pathways appear to play a role in social functioning [1,2,15,18–20].

Candidate gene studies in lung cancer have reported that some SNPs in interleukin
genes IL1β, IL1RN, and IL10 are associated with fatigue (a common driver of impaired
HRQOL in patients with cancer) [2,18]. Other SNPs in inflammation pathway genes, such
as PTGS2 and LTA, have also been associated with pain and QOL [22–25]. In addition,
SNPs rs3858300, rs10741191, and rs3852507 in MGMT (a DNA repair pathway gene) have
been associated with overall QOL in patients with lung cancer, and SNPs rs2756109 in
ABCC2 and rs9524885 in ABCC4 (glutathione metabolic pathway) have been associated
with pain [20]. An SNP in p38 MAPK signaling pathway gene, MEF2B rs2040562, has also
been reported as a genetic determinant of HRQOL in patients with lung cancer [26].
Building on the findings of these candidate gene studies, a genome-wide study in 5142
Swedish women [17] did not find any SNPs significantly associated with QOL (Bonferroni-
corrected significance threshold 2.86 × 10−7) but observed SNPs with moderate association,
including rs17599095 in FSTL5 with social functioning and rs813299 in TRPM1 with global
health/QOL. In this current study, we aimed to perform a comprehensive GWAS to explore
the relationship between genetic variations and HRQOL domains in a large cohort of breast
cancer survivors.

2. Results
2.1. Patient Characteristics

The characteristics of the participants in this HRQOL study are shown in Table 1.
At the time of this study, 8317 patients had consented to the Mayo Clinic Breast Disease
Registry (MCBDR), as depicted in Figure 1. After exclusion of subjects without available
genotyping data (n = 4901), those who did not return a follow-up questionnaire (n = 1129),
and those who had prior cancer diagnosis (n = 352), a DCIS diagnosis (n = 329) or a
metastatic disease diagnosis (n = 38), a total of 1568 patients remained. Nine had not
responded to questions inquiring about financial concerns, and 117 had not completed the
PROMIS-10 instrument, therefore, 126 additional patients were excluded from our analysis.
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Table 1. Patient characteristics (n = 1442).

Demographic Factors n (%)

Race
Non-white, unknown, or undisclosed 56 (3.9%)

White 1386 (96.1%)

Age at diagnosis in years

Mean (SD) 53.4 (11.5)

Median (Q1, Q3) 51.5 (45.6, 62.4)

Range 22.7–90.0

Age at time of QOL assessment in years

Mean (SD) 61.6 (12.8)

Median (Q1, Q3) 61.0 (52.5, 71.4)

Range 26.2–95.5

Years between cancer diagnosis and QOL
assessment

Mean (SD) 8.2 (3.8)

Median (Q1, Q3) 8.3 (5.0, 10.9)

Range 0.9–16.7

Gender
Male 3 (0.2%)

Female 1439 (99.8%)

Financial concerns rating
(patient-reported)

Mean (SD) 2.1 (2.7)

Median (Q1, Q3) 1.0 (0.0, 3.0)

Range 0.0–10.0

Treatment received any time before QOL
assessment
(Yes/No)

Mastectomy 782 (54.2%)/660 (45.8%)

Axillary lymph node dissection (ALND) 530 (36.8%)/912 (63.2%)

Chemotherapy 608 (42.2%)/834 (57.8%)

Radiation 689 (47.8%)/753 (52.2%)

Endocrine therapy 997 (69.1%)/445 (30.9%)
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A final number of 1442 white patients, three of whom were men, were included in
this HRQOL GWAS analysis. Their mean age was 53.4 years (standard deviation 11.5) at
the time of cancer diagnosis and 61.6 (12.8) years at the time of QOL assessment.

Approximately 54% of the patients had undergone mastectomy, and 69% had received
endocrine therapy. Nearly half had undergone radiation (47.8%), and 42% had received
chemotherapy, as shown in Table 1.

In multivariable linear regression models, age was significantly associated with both
global physical (p = 1.6 × 10−23) and global mental (p = 3.5 × 10−7) health (Table 2).
A non-linear relationship between age and the PROMIS-10 measures was apparent, hence,
a quadratic term for age was included in the models. The model estimates for the quadratic
relationship were such that increasing age was associated with better global physical
health until age 46, after which, increasing age was associated with worse physical health.
Compared to mean global physical health at age 46, the means at ages 30, 50, 70, and 90
were estimated to be lower by 2.7, 0.1, 5.7, and 19.5, respectively, adjusting for other
covariates. A similar observation was seen for global mental health except that the peak
for mental health was at age 57 instead of 46. Compared to mean global mental health
at age 57, the means at ages 30, 50, 70, and 90 were estimated to be lower by 8.5, 0.6, 1.9,
and 12.3 points, respectively. Greater financial concern was significantly associated with
worse global physical (p = 4.8 × 10−40) and mental (p = 2.0 × 10−69) health, with the mean
global physical (mental) health worse by 5.8 (7.7), 13.7 (20.9), and 16.7 (31.1) points for
those with financial concerns of 2, 6, and 10, respectively, compared to those with financial
concerns of 0 (where 0 = no financial concern). Chemotherapy treatment was associated
only with worse global mental health (p = 0.01), not global physical health.

Table 2. Multivariable regression analysis: Factors related to HRQOL in the MCBDR.

HRQOL
(PROMIS-10 Measure) Covariate

Coefficient b p-Value
Estimate SE a p-Value

Global Physical Health

Genotyped with iCOGS 0.63 0.83 0.45 -

Age c z-score −4.00 0.45 2.0 × 10−18

1.6 × 10−23

Age z-score, squared −1.67 0.32 3.0 × 10−7

Financial concerns z-score −6.93 0.64 6.0 × 10−26

4.8 × 10−40

Financial concerns z-score, squared 1.12 0.37 0.002

Chemotherapy treatment −0.59 0.83 0.48 -

Global Mental Health

Genotyped with iCOGS −0.05 0.99 0.96 -

Age z-score −1.27 0.54 0.02
3.5 × 10−7

Age z-score, squared −1.88 0.39 1.0 × 10−6

Financial concerns z-score −9.83 0.77 2.0 × 10−35

2.0 × 10−69

Financial concerns z-score, squared 0.67 0.44 0.13

Chemotherapy treatment −2.47 1.00 0.01 -
a Regression results are shown after selecting covariates based on p < 0.1, b Overall p-value from a Wald test, c Age and financial concerns
were transformed to z-scores (by subtracting the sample mean and dividing by the sample standard deviation) to avoid high correlation
between the linear and quadratic terms, SE: standard error.

2.2. GWAS Results

Manhattan plots showing the p-values for associations of SNPs with PROMIS-10 global
physical health and global mental health and adjusting for the covariates described in
Table 2 are shown in Figure 2A,B respectively, and the Q-Q plots are shown in Figure 3A,B
for global physical and mental health respectively.
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health in MCBDR cohort.

The Q-Q plots show that the observed p-values fit the null expected values throughout
most of the range of p-values, suggesting that population stratification was not a concern.

There was no SNP in this study that achieved genome-wide significance (p < 5 × 10−8)
for an association with either global physical or global mental health (Figure 2A,B). The
SNPs with p-value < 10−6 are shown in Table 3, and among them, the one with the
strongest association with global physical health was rs112718371 in SCN10A, located on
chromosome 3p22.2 (p = 5.21 × 10−8). Nine SNPs on chromosome 14 were also associated
with worse global physical health (p-values between 2.38 × 10−7 and 5.57 × 10−7). Eight
of them are highly correlated (LD: r2 = 0.87–1.0, D’= 1.0) and one (rs7144304) was weakly
correlated with the group (LD: r2= 0.43–0.49, D’= 0.74–0.85) (Table 3). These nine SNPs lie
downstream of EXOC5, (Exocyst Complex Component 5), a gene that encodes a multiple
protein complex essential for the biogenesis of epithelial cell surface polarity (https://
www.ncbi.nlm.nih.gov/ (accessed on 31 December 2020)) and contains an SNP that has
been associated with increased alcohol consumption [27].

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Figure 3. (a) Q-Q plot for genome-wide associations with PROMIS-10 global physical health in
MCBDR cohort. (b) Q-Q plot for genome-wide associations with PROMIS-10 global physical health
in MCBDR cohort.

Global mental health was also associated with several SNPs with p-values < 10−6

(Table 3). The SNP with the strongest association, rs73813229 (p = 2.84 × 10−7), is located
in SGCD on chromosome 5q33.2-q33.3. It is highly correlated with ten other SNPs in SGCD
(LD: r2 = 0.81–1.0, D’ = 0.94–1.0) and, together with four SNPs in SEMA5A, also located
on chromosome 5p15.31 (LD: r2 and D’ = 1.0), was found to be associated with worse
global mental health in the study. SEMA5A is downstream of SGCD, and the two genes are
separated by approximately 146 mega bases.

Three other SNPs associated with worse global mental health were rs71497626, located
in LMX1B on chromosome 9q33.3, (p = 3.17 × 10−7), rs1544460, located in PARP12 on
chromosome 7q34 (p = 4.28 × 10−7), and rs9899933, located in an intergenic region on
chromosome 17 (p= 7.99 × 10−7) (Table 3).
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Table 3. SNPs with p-values < 10−6 for associations with PROMIS-10 global physical and mental health.

QOL
Domain Gene SNP rsID Chr BP Ref

Allele
Alt

Allele

Alt
Allele
Freq

Coefficient
(β)

Estimate
SE p-Value

Global
Physical
Health

SCN10A rs112718371 3 38750460 C T 0.011 −17.79 3.25 5.21 × 10−8

-

rs79198292 14 57649431 G A 0.022 −10.46 2.01 2.38 × 10−7

rs1954548 14 57644518 G A 0.023 −10.33 1.99 2.62 × 10−7

rs1954547 14 57644605 C T 0.023 −10.27 1.99 2.91 × 10−7

rs2211582 14 57643873 C T 0.022 −10.40 2.02 2.97 × 10−7

rs73300594 14 57641616 C T 0.023 −10.31 2.01 3.50 × 10−7

rs60372931 14 57642708 A G 0.023 −10.29 2.01 3.56 × 10−7

rs7159115 14 57645169 A G 0.023 −10.09 1.99 4.58 × 10−7

rs11848373 14 57649554 G A 0.024 −9.86 1.96 5.51 × 10−7

rs7144304 14 57655035 A T 0.034 −8.08 1.61 5.57 × 10−7

Global
Mental
Health

SGCD
rs73813229 5 155504517 T C 0.185 −5.10 0.99 2.84 × 10−7

rs73298688 5 155508728 C T 0.184 −5.10 0.99 2.99 × 10−7

LMX1B rs71497626 9 129405863 G A 0.011 −17.16 3.34 3.17 × 10−7

SGCD

rs113472609 5 155501582 T C 0.186 −5.07 0.99 3.17 × 10−7

rs80138336 5 155501438 A G 0.185 −5.06 0.99 3.27 × 10−7

rs73813228 5 155501356 A G 0.185 −5.06 0.99 3.29 × 10−7

rs4704970 5 155500992 G A 0.185 −5.05 0.99 3.42 × 10−7

rs73813227 5 155500542 T C 0.185 −5.04 0.99 3.59 × 10−7

PARP12 rs1544460 7 139731709 G A 0.430 −3.41 0.67 4.28 × 10−7

SGCD rs10476276 5 155500647 A G 0.188 −4.96 0.98 4.50 × 10−7

SEMA5A
rs76677754 5 9084176 C T 0.021 −14.26 2.81 4.58 × 10−7

rs11741186 5 9044674 G A 0.020 −13.26 2.65 6.13 × 10−7

SGCD rs73812917 5 155464275 G A 0.186 −4.84 0.97 6.15 × 10−7

SEMA5A rs78456783 5 9037340 A C 0.020 −13.21 2.65 6.76 × 10−7

- rs9899933 17 48032244 A G 0.060 −8.35 1.69 7.99 × 10−7

SGCD rs75174473 5 155462439 A G 0.203 −4.61 0.93 8.84 × 10−7

SEMA5A rs11741172 5 9044647 G A 0.020 −13.24 2.68 9.02 × 10−7

SGCD rs58327079 5 155463960 T C 0.203 −4.60 0.93 9.93 × 10−7

LMX1B: LIM homeobox transcription factor 1 beta, Location: Chromosome 9q33.3; PARP12: Poly(ADP-ribose) polymerase family member
12, Location: Chromosome 7q34; SCN10A: Sodium voltage-gated channel alpha subunit 10, Location: Chromosome 3p22.2; SEMA5A:
Semaphorin 5A, Location: Chromosome 5p15.31; SGCD: Sarcoglycan delta, Location: Chromosome 5q33.2-q33.3; freq: Frequency;
SE: standard error.

3. Discussion

HRQOL, an individual’s perception of his or her well-being (including physical,
psychological, social, and spiritual components), depends on the symptoms of a person’s
disease and his or her adverse effects of treatment, and also on innate tendencies to
experience more or less discomfort and/or dissatisfaction with those symptoms and side
effects [7]. Cancer is often associated with poor health outcomes and morbidity, and can
negatively impact quality of life even long after treatment finishes [1,17]. Genetic variations
may also play a role, predisposing certain patients to worse HRQOL during and after
cancer therapy [18,23,28–32].
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In this study of mostly white survivors of stage 1–3 breast cancer, age was associated
with better physical and mental HRQOL among younger patients (age <46 for physical
health, <57 for mental health) and worse HRQOL among older patients. The association of
aging with a decline in physical health is well documented, yet other studies evaluating
breast cancer survivors have been inconsistent in showing an impact of age on mental and
physical HRQOL [33–37]. Greater financial concerns were associated with worse physical
and mental HRQOL, similar to other reports [8,9]. Prior receipt of chemotherapy also was
associated with worse mental HRQOL despite a median time of 8.3 years (1st quantile, 5.0;
3rd quantile, 10.9) between diagnosis and survey completion. This is interesting because
one might expect that the long-term toxicities of chemotherapy (e.g., neuropathy and
cardiac dysfunction) might impair physical HRQOL more than mental HRQOL. Therefore,
our observation that worse mental HRQOL is associated with chemotherapy toxicity raises
the possibility that psychosocial interventions that help reduce the trauma experienced by
patients receiving chemotherapy might be needed.

While there was no SNP that was clearly associated with HRQOL at the genome-wide
significance p-value threshold (5 × 10−8), we found some SNPs in genes that encoded pro-
teins with functional importance that were worthy of follow-up (associated with HRQOL
at a more lenient threshold of p < 10−6). SNPs in SCN10A, LMX1B, SCGD, SEMA5A,
and PARP12 appear to be possibly associated with worse global physical or mental health
using this more lenient threshold. These findings are consistent with prior evidence sug-
gesting that genetic predisposition to diseases relating to immune, neuroendocrine, and car-
diovascular systems contribute to depression, well-being, pain, and fatigue [15,21,38–42].

SNP rs112718371 in SCN10A was associated with worse global physical HRQOL.
SCN10A is a sodium voltage-gated channel alpha subunit 10 gene that encodes a
tetrodotoxin-resistant channel protein. This protein mediates the voltage-dependent
sodium ion permeability of excitable membranes that assumes opened or closed con-
formations in response to the voltage difference across the membrane (https://www.
ncbi.nlm.nih.gov/ (accessed on 31 December 2020)), forming a sodium-selective channel
through which sodium ions may pass in accordance with their electrochemical gradient [43].
The SCN10A protein plays a role in neuropathic pain mechanisms [44,45]. An SNP in
the sodium-voltage alpha subunit 9 (SCN9A) has been previously associated with pain
as well [46]. In addition, genetic variations in SCN10A have been associated with cardiac
conduction abnormalities in hypertrophic cardiomyopathy patients [47,48] and with GI
toxicity in taxane-treated patients [49].

We also found four genes with SNPs that showed a strong association with worse
global mental health. First, eleven SNPs in SGCD were associated with mental HRQOL.
This gene encodes a protein that is one of the four known components of the sarcoglycan
complex, a subcomplex of the dystrophin-glycoprotein complex (DGC). DGC forms a
link between the F-actin cytoskeleton and the extracellular matrix. The SGCD protein is
expressed most abundantly in skeletal and cardiac muscle. While this study observed
eight SGCD SNPs in a tight linkage that were associated with worse global mental health,
others have reported that mutations in this gene are associated with autosomal recessive
limb-girdle muscular dystrophy [50–52] and dilated cardiomyopathy [53]. The limb-girdle
muscular dystrophy is an autosomal recessive degenerative myopathy initially affecting
the proximal limb-girdle musculature, and muscle from patients show a complete loss of
delta-sarcoglycan as well as other components of the sarcoglycan complex [51]. Dilated
cardiomyopathy, on the other hand, is a disorder characterized by ventricular dilation and
impaired systolic function, resulting in congestive heart failure and arrhythmia, and pa-
tients are at risk of premature death [53].

An SNP in LMX1B was also strongly associated with worse global mental health.
This gene encodes a member of LIM-homeodomain family of proteins and functions as
a transcription factor essential for the normal development of dorsal limb structures, the
glomerular basement membrane, the anterior segment of the eye, and dopaminergic and
serotonergic neurons (https://www.ncbi.nlm.nih.gov/ (accessed on 31 December 2020)).

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Certain mutations in this gene are associated with the nail-patella syndrome, [54,55] others
are involved in the risk of developing nephropathy [56], and some have been implicated in
BMI and obesity risk [57,58].

Polymorphisms in SEMA5A were associated with worse mental HRQOL in this study.
The gene lies on chromosome 5, located approximately 146 mega-bases downstream of
SGCD. SEMA5A belongs to the semaphorin gene family that encodes membrane proteins
containing a semaphorin domain and several thrombospondin type-1 repeats. These are
involved in axonal guidance during neural development [59]. Specific polymorphisms
in SEMA5A have been implicated in autism spectrum disorders and Parkinson’s dis-
ease [60–62]. SEMA5A is also implicated in the Cri-du-chat syndrome in which deletion
of the short arm of chromosome 5 (5p-) is associated with phenotypic features, including
dysmorphic facial features, microcephaly, and intellectual disability [63]. It is possible
that patients who carry some of these variants may be less satisfied with their physical
appearance due to their facial features, which could play a role in HRQOL. Furthermore,
the protein product semaphorin 5A is reported to be up-regulated in glioma, melanoma,
pancreatic, breast, and gastric cancer [64], and also is significantly elevated in rheumatoid
arthritis [65]. These conditions could account for the role of SEMA5A polymorphisms in
HRQOL. Additionally, SEMA5A could play a role in chemotherapy-induced peripheral
neuropathy (CIPN) given that it is important in the guidance of axons in the central and
peripheral nervous system and also that semaphorins are involved in diabetic neuropa-
thy [59,66,67].

PARP12 is the final gene that appeared to be potentially associated with global mental
health. This is a Poly (ADP-Ribose) Polymerase Family Member 12 gene that encodes the
protein PARP [Poly (ADP-ribose) polymerase], which catalyzes the post-translational mod-
ification of proteins by the addition of multiple ADP-ribose moieties [68]. While PARP12
has been reported as a tumor suppressor that plays an important role in the suppression
of hepatocellular carcinoma metastasis [69], it has also been implicated in coronary heart
disease and associated with vitiligo [70,71]. In the current study, we observed that the
rs1544460 polymorphism was associated with worse global mental health in a cohort of
breast cancer survivors.

The magnitudes of the associations found in this study should be considered with the
following in mind: Each of the PROMIS-10 scales used in this study is a rescaled average
of patient responses to four items, with each response on a scale of 1 to 5. A change by
one step (e.g., from 2 = “Fair” to 3 = ”Good”) on any one item corresponds to a 6.25-point
change on the 0–100 scale used in this study. Thus, 6.25 points may be considered the
minimum clinically relevant change in mean global physical or mental health, 12.5 points
(net improvement or worsening by one step on two items, or by two steps on one item)
are more clearly of clinical relevance. For several SNPs in this study, the alternate allele
was associated with a change in mean physical or mental health of at least 12.5 points.
However, the association magnitudes for those SNPs selected based on their small p-values
will be exaggerated due to winner’s curse bias and should be interpreted cautiously.

There are limitations to this study based on our suboptimal power (small sample size)
for a GWAS and because we did not have a validation set with which to verify our findings.
Furthermore, we did not have available data on comorbidity for multivariable analyses
of contributors to HRQOL. Finally, most of the participants were white, therefore, these
findings may not be generalizable to patients of other racial groups.

4. Materials and Methods
4.1. Patient Cohort

Genotype and follow-up questionnaire data from the Mayo Clinic Breast Disease
Registry (MCBDR) provide the analytic basis for this study. The MCBDR is an ongoing
clinic-based longitudinal cohort that enrolls patients with breast cancer diagnosed within
the year prior and seen at least once at the Mayo Clinic in Rochester, MN. More than
8000 patients had consented to participate in MCBDR between 2003 and 8 July 2020, the
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date of database freeze for this study, with accrual rates currently approximating 600/year
(70–80% of those approached). Consenting participants complete questionnaires at baseline
and during follow-up (by mail) and allow intermittent reviews of their medical records
and access to tumor tissue when available. For the current study, patients with other
prior cancers, DCIS/stage 0 diagnosis, or stage 4/metastatic breast cancer were excluded.
All PROMIS-10 data following a cancer recurrence were also excluded. Otherwise eligible
patients, who returned at least one pre-recurrence follow-up questionnaire that included
the PROMIS-10, and for whom genotyping had been performed, were included in the
analyses (Figure 1). All MCBDR participants signed an IRB-approved, informed consent in
accordance with federal and institutional guidelines.

4.2. Quality of Life (QOL) Assessments

In this study, the Global Physical Health and Global Mental Health summary scores
for the validated PROMIS-10 scale were used to assess the HRQOL of patients in the
breast registry cohort [72]. The Patient-Reported Outcomes Measurement Information
System Global-10 (PROMIS-10) is a 10-question tool that has been calibrated based on
census-population norms and measures that evaluate and monitor physical, mental, and
social health applicable across chronic illness populations [72–77]. We employed an often-
used approach that rescaled PROMIS-10 scores, hence, 0 represented minimum (worst)
HRQOL and 100 represented maximum (best) HRQOL along the theoretical range of each
domain under study [78]. A separate MCBDR survey question developed as a linear analog
self-assessment (LASA)-style item [79] asked the respondent to rate his or her financial
concerns on a scale of 0 (no concerns) to 10 (constant concerns). For participants with
more than one eligible survey, the latest survey results were used in order to prioritize
understanding predictors of long-term HRQOL in survivors (rather than the short-term
acute effects of surgery, chemotherapy, and/or radiation treatments).

4.3. Genotyping, Quality Control, and Imputation

Genomic DNA was extracted from blood samples from the participants of the breast
registry study cohort and the DNA samples were genotyped on either of two platforms,
the Illumina Infinium OncoArray (https://www.illumina.com (accessed on 31 December
2020)) and the iCOGS chip, a platform specifically designed to evaluate genetic variants
associated with the risk of breast, ovarian, and prostate cancer (http://www.cogseu.org/
(accessed on 31 December 2020)) [80,81].

For quality control, SNPs with call rates <95%, Hardy–Weinberg equilibrium p-value
< 10−6, or minor allele frequency (MAF) < 0.01 were excluded. Samples with discrepancies
between subject-reported sex and estimated sex from genetic data, or closely related kinship
(within first degree relatives) according to KING [82], were excluded. The STRUCTURE
software [83] was used to determine population admixture for the patients on the study, to-
gether with reference samples (n = 585) of known ancestry from the 1000 Genome database
that served as population anchors. A single primary ancestry category (African, Asian,
or Caucasian) was predicted for each study sample. Principal component analysis was
utilized to assess and correct population stratification and unanticipated relatedness. To in-
crease the genome coverage, genotypes (allele dosages) were imputed by the University of
Michigan imputation server [84]. SNPs with imputation accuracy r2 < 0.3 were excluded.
The 7,254,516 imputed SNPs common to the OncoArray and iCOGS-derived datasets (after
other data processing steps) were evaluated in analyses.

4.4. Statistical Analyses

Linear regression was used to determine potential covariates to be adjusted for in
the GWAS, as well as to test the association between each SNP and the trait of interest,
adjusted for selected covariates. The covariates considered for selection were age at the
time of the PROMIS-10 response, years since cancer diagnosis, self-rated financial concerns,
having undergone mastectomy, axillary lymph node dissection (ALND), chemotherapy,

https://www.illumina.com
http://www.cogseu.org/
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radiation therapy, or endocrine therapy, the first five principal components of the genotype
data, and genotyping platform (iCOGS versus OncoArray). We selected covariates with p
< 0.1 in a linear regression of PROMIS-10 (either global physical or global mental health)
on covariates only. Quadratic terms for age and financial concerns were included in
the regression after observing non-linear relationships in preliminary analysis. Age and
financial concerns were transformed to z-scores (by subtracting the sample mean and
dividing by the sample standard deviation) to avoid a high correlation between the linear
and quadratic terms. We adjusted for genotyping platform in the GWAS despite p-values >
0.1 in the covariate regression as a precaution against confounding. SNP genotypes were
modeled using the dose of the alternate (minor) allele and assuming an additive effect.
Genome-wide significance was defined as p < 5 × 10−8 [85,86]. Quantile-quantile (Q-Q)
plots were used to visually evaluate whether population stratification was controlled by
plotting the distribution of observed p-values versus the distribution expected under a
null hypothesis of no SNP associations. Manhattan plots were used to plot p-values for all
SNP associations across chromosomes, and regional association plots (Locus Zoom) [87]
were used to provide detail on genetic regions of interest, providing gene annotations and
pairwise correlations between the surrounding SNPs and the SNP of interest. Additionally,
Ldlink [88,89], a suite of web-based applications, was used to efficiently interrogate linkage
disequilibrium (LD) for SNPs.

5. Conclusions

Although we did not identify that physical or mental HRQOL was associated with
any SNP at the genome-wide significant threshold, we did find weaker associations with
some biologically plausible SNPs that should be assessed further in future research.
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