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A B S T R A C T   

The interest in the process of aging, and specifically in how aging affects the working of our immune system, has 
recently enormously grown among both specialists (immunologists and gerontologists) and representatives of 
other disciplines of health sciences. An obvious reason for this interest is the current pandemics of COVID-19, 
known to affect the elderly more than younger people. In this paper current knowledge about mechanisms 
and complex facets of human immune system aging is presented, stemming from the knowledge about the 
working of various parts of the immune system, and leading to understanding of immunological mechanisms of 
chronic, inflammatory, aging-related diseases and of COVID-19.   

1. Immune system aging – basics 

Understanding of aging of human immune system (IS) has recently 
become a topic of interest even for non-specialist. The obvious reason for 
this is the current pandemics of multiorgan inflammatory disease 
COVID-19, being the consequence of infection with the SARS-CoV-2 
coronavirus. However, considering the importance of the IS for well-
being of an individual on one side, and observed immune phenomena 
associated with advanced metrical age on the other, it has become 
obvious already decades ago that understanding of the mechanisms of 
the IS aging may lead to detection (and, in future, manipulation) of 
potential targets for intervention. Their identification, at least theoret-
ically, may bring significant prolongation of healthy lifespan (health-
span) and reduce the aging-related diseases (ARDs). However, in order 
to produce the appropriate background and then discuss these phe-
nomena and (patho)mechanisms of the IS aging, we need first to briefly 
summarize the basics of construction and functions of healthy immune 
system. 

1.1. The healthy IS in a nutshell 

The immune systems evolved early in the history of life on Earth 
(likely already around one billion years ago), likely as one of the first 
semi-specialized cell types of early multicellular organisms, trying to 
protect themselves from infection by already omnipresent unicellular 
organisms (bacteria, later unicellular Eukaryotes) and viruses [1, 2]. 
Human pathogens are definitely much “younger”, but still at least some 
of them co-evolved with early hominids already during Paleolithic, 

around two million years ago [3, 4]. 
First line of defense of early multicellular organisms was phagocy-

tosis. In fact it is speculated that this ability of early Eukaryotes to engulf 
and later intracellularly kill a protobacteria had evolved at the time 
when some of these protobacteria had become mitochondria [5]. Here, 
one cannot miss the seed discoveries by I.I. Metchnikoff, who had first 
demonstrated the ability of some cells of starfish larva to “eat” bacteria 
and foreign bodies introduced in the larva, and coined the term 
phagocytosis more than a hundred years ago [6]. 

To make the long story short, our so-called innate immune system 
comprises of three main types of cells capable of phagocytosis and in-
ternal killing of cellular pathogens: monocyte/macrophages, poly-
morphonuclear leucocytes (PMN) or neutrophils and dendritic cells 
(DCs). In addition, a population of lymphoid cells called the natural 
killer cells (NK cells) is included in the group. They evolved multiple sets 
of so-called pattern recognition receptors (PRRs), which recognize 
pathogen-associated molecular patterns (PAMPs) on the surface or 
coming from inside of the pathogens. These PAMPs include e.g. mem-
brane or cell wall proteins, lipopolysaccharides, flagellar proteins, viral 
capsid proteins, as well as bacterial and viral DNA and RNA. The PRRs 
include the surface and cytoplasmic Toll-like receptors (TLRs), NOD-like 
receptors (NLRs) and other. Their ligation by respective PAMPs leads to 
activation of multiple forms of inflammasomes which starts the in-
flammatory reaction (secretion of proinflammatory cytokines, increased 
phagocytosis and pathogen killing etc.). Other than that, the mentioned 
cells of the innate IS kill the pathogens inside themselves, using reactive 
oxygen species (ROS) and bactericidal proteins and other molecules, and 
outside (be releasing the bactericidal chemicals to their immediate 
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environment or even by ejecting their DNA and associated proteins in 
the process of NETosis (performed by the neutrophils), where bacteria 
are trapped, immobilized and then killed. Monocyte/macrophages and 
especially the DCs are also capable of elaborating the pathogen-derived 
peptides in a way that makes them possible to be presented to the 
lymphocytes of adaptive immune system, i.e., to act as antigen- 
presenting cells (APCs). On the other hand the neutralization or elimi-
nation of infecting viruses is the domain of cytotoxic NK cells, which can 
recognize “alien” viral peptides presented in the context of MHC (HLA) 
class I on the surface of infected cells end kill such cells releasing 
membrane-spanning perforins and via them injecting the cells with 
granzymes (causing the cell death mainly by apoptosis). Another 
obvious “alienness” comes from our own neoplastically transformed 
cells. The NK cells and cytotoxic CD8+ T cells can recognize neoplastic 
(cancerous) cells based on the formation of neoantigens and kill them 
the same way they kill virus-infected cells [7, 8]. All these defensive 
activities of the innate IS require effective recognition and killing ma-
chineries in respective cell types. 

The innate APCs (said DCs and other) present the fragments of pro-
teins elaborated from the engulfed pathogens to the members of adap-
tive immune system, i.e., T and B lymphocytes, in order to elicit their 
respective, antigen-specific, reactivities [9, 10]. 

The T and B lymphocytes have specific receptors for antigenic epi-
topes presented in the context of MHC/HLA molecules and respond by 
either producing multiple lymphocyte growth- and differentiation- 
inducing cytokines (helper CD4+ T cells), activating the cell-killing 
processes (cytotoxic CD8+ T cells), or making antibodies (immuno-
globulins, by B cells and plasma cells). This effector phases are preceded 
by outburst of massive clonal proliferation of lymphocytes recognizing 
specific antigens. Another common denominator of adaptive immune 
response is the manufacturing of memory T and B lymphocytes with 
characteristic surface phenotypes. These memory cells are clonally 
expanded and so more numerous than the original naïve T or B cells 
specific for a given antigen; also they are capable of mounting much 
more vigorous response to an antigen upon the second and consecutive 
encounters; they are also necessary for effective vaccination. 

Finally, one needs to say here that any immune reaction, especially 
its adaptive branch, is a huge energy- and resources/substrates- 
consuming process. Therefore it is paramount that it last only until the 
threat (of spreading infection or cancer) is neutralized. One could say 
that elimination of the pathogen from the body should be enough; 
however, such elimination is not always complete and in fact a form of 
balance appears between the “antigen-oriented” adaptive immunity and 
the pathogen itself. An example of such balance, very relevant for the 
topic of this paper, is the infection with cytomegalovirus (CMV) 
pervading most of human populations and in some exceeding 50% of 
individuals. This cytopathogenic virus, if rampant as in immunocom-
promised or immunosuppressed individuals, may damage multiple 
infected organs leading to their failure and death. However, in a healthy 
person it is kept at bay by the effort of clones of always active CMV- 
specific T cells [11–14]. 

Extensive activity of adaptive immune cells beyond the need asso-
ciated with pathogen control and/or removal may not only dissipate the 
body resources but also, by the token of necessary bouts of proliferation 
of these cells accompanied by reactivation of the telomerase, may lead to 
neoplastic transformation. Also, it may be conductive to autoimmune 
reactivity. Thus, the system has built-in safety valves, including: 1, 
activation induced cell death (AICD),where the lymphocytes respond to 
stimulation by apoptosis rather than by proliferation, and 2, various 
populations of regulatory immune cells. These consist first of the regu-
latory (immunosuppressive) T cells (Tregs), Bregs derived from among 
the B cells, monocyte-derived Mregs and finally bone-marrow-derived 
(myeloid-derived) suppressor cells (MDSCs). The Tregs act via humor-
al factors including cytokines like IL-10 and TGFβ, as well as via direct 
cytotoxicity and induction of apoptosis (using perforins and granzymes, 
galectin, or the CD95/CD95L (Fas/FasL) and PD1/PD1-L systems); they 

can also reduce costimulation of the effector T cells, and decrease 
maturation and antigen presentation by the DCs [15].The Bregs act inter 
alia by secretion of IL-10 (suppressing the macrophages, DCs and T cells, 
as well as by at least some of the receptor/ligand pairs mentioned for the 
Tregs) [16]. Finally the Mregs and MDSCs act along multiple pathways, 
depending of their origin and target effectors [17–20]. 

All the above is apparently textbook immunology in a nutshell. 
However, we need to recapitulate it here in order, on one hand, to 
highlight the complexity of the intricate IS network which must work in 
concert and balance to ascertain protection and survival, and on the 
other hand to facilitate the readers’ understanding of what happens 
during the IS aging to its different components and what are the con-
sequences of these changes. 

1.2. What then are the clinical symptoms of aging of the IS? 

With aging, we assist to increased frequency and severity of infec-
tious diseases, both bacterial and viral, aggravated by generally lower 
response to most vaccines (lower titers of neutralizing antibodies), 
increased incidence of malignancies (and generally neoplasms), and 
autoimmune diseases [21–25]. 

These changes do not accumulate altogether linearly with advancing 
age; rather, some of the oldest old (centenarians, semi- 
supercentenarians and supercentenarians) seem to retain relatively 
robust immune responses, especially the innate one [26–28]. Also, they 
are not occurring at the same rate in all aging and old individuals. The 
reasons behind this variability are many, starting from genetics and 
epigenetics which affect the functionalities of the immune systems. The 
next important factor is immunobiography of an individual – a term 
coined by Claudio Franceschi and relating actual functionality (or dys-
functionality) of the immune system of an individual with the life-long 
history of challenges to this person’s immune system (infections, 
emerging neoplasms, injuries etc.), overlaid upon the mentioned genetic 
and epigenetic features, aggravated by environmental exposures (toxins, 
dietary factors etc.) and leading to progressive exhaustion and remod-
eling of the IS functionalities, culminating in immunosenescence and 
inflammaging [21, 22, 29]. 

1.3. Mechanisms behind the observed clinical symptoms of the IS aging 

1.3.1. Increased ratio of memory to naïve T cells 
One of the earliest observations concerning the aging of mammalian 

immune systems is stepwise increase in the numbers and proportions of 
memory T cells at the expense of dwindling population of naïve T 
lymphocytes. The reasons for this phenomenon are dual. First, naïve T 
cells originate from the thymus, a primary lymphatic organ localized in 
the mediastinum. There, the bone-marrow-derived T cell precursors go 
through constitutive steps of maturation and differentiation, eventually 
yielding the naïve T cells with a plethora of TCR specificities (which 
ascertains the ability of – especially early life – adaptive IS to build an 
effective response to almost any foreign antigen). At the same time the 
thymus is the site of severe selection of emerging naïve T cells, aiming at 
preventing the appearance of self- (or auto-) reactive T cells which could 
lead to autoimmunization. However, in most mammals studied, 
including humans, thymus undergoes a process of physiological invo-
lution – starting at puberty reduction of size of the organ, replacement of 
the immunopoietic tissue and stroma with fat tissue, and which mani-
fests as reduced output of new naïve thymic emigrant cells, possible to 
measure and demonstrate by detection of reduced numbers of peripheral 
T cells containing the so-called TRECs (T cell receptor excision circles) 
[30–32]. Fewer naïve T cells mean lower chance to recognize and 
effectively react to new, previously unencountered, antigens; this is the 
case for example with yearly infections with new variants of influenza 
virus or with current SARS-CoV-2 pandemics. 

Interestingly, the extremely long-lived subterranean rodent – the 
naked mole rat – has recently been shown to have not just one 
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mediastinal thymus (as is typical for other mammals including humans), 
but also a few cervical thymi which apparently ascertain constant pro-
vision of new naïve T cells, prevent thymic involution until midlife of the 
mole rats, and in consequence, produce an extreme resistance of these 
animals to infections and cancers and increase their longevity [33]. Not 
surprisingly, this discovery yielded support to the search for ways of 
rejuvenation of our own thymuses as a way of prolonging healthy life. 

Decreasing thymic output of naïve T cells after the onset of puberty 
and involution of the organ is not associated with a decrease in the T cell 
numbers, even in old individuals. One reason for this is so-called ho-
meostatic naïve T cell proliferation in the periphery [34]. However, it is 
known for more than a decade, that also the peripherally generated 
naïve T cells lose proliferative capacities which, apart from other 
changes, precludes their effective reaction to antigenic challenges [34, 
35]. Still, the notion of T cells senescence remains controversial, even if 
they show features typical for other senescent cells, including reduced or 
no proliferation, increased expression of SA-β-Gal enzyme, the SASP 
phenotype, short telomeres and accumulation of H2A.X and H2A.J 
proteins characterizing the other senescent cells; thus, some authors 
choose to call these lymphocytes the senescence-associated T (SA-T) 
cells, rather than senescent T cells [34, 36-38]. Both processes – 
decreased output of (presumably) functional naïve T cells from the 
involuting thymus and senescence of peripheral naïve T cells – lead to 
decreased ability of the IS of the aged individuals to react to new anti-
genic challenges, be it new variants of cognate pathogens (like the flu 
virus or SARS-CoV-2) or neoantigens associated with neoplastic trans-
formation of own cells. 

Yet, thymic involution is not the only reason behind the shift in the 
proportions of naïve and memory T cells occurring with advancing age. 
The second one is the accumulation of rising numbers of memory T cells, 
being the result of consecutive antigenic challenges, which start at birth 
and last for the lifetime. These challenges are resulting in the – already 
mentioned - individual immunobiography of each individual, which in 
turn results in greatly heterogenous immune responses in the elderly, 
including varying severity of the diseases, effectiveness of vaccinations 
etc. [21, 22, 29, 39, 40]. These memory lymphocytes are paramount for 
effective adaptive immune response to cognate antigens for most of 
lifespan. However, with aging, also they undergo the effects of time and 
use, and may become exhausted or (immune)senescent, with both pro-
cesses leading to decreased response to cognate antigens [41]. Inter-
estingly, recently a new form of memory T cells, called the stem cell 
memory T cells (TSCM) have been described in humans. As their name 
calls for, they are fast responders to antigen stimulation, tend to pref-
erentially survive after the neutralization of antigens, can reconstitute 
the memory cell compartment from their small numbers and may pro-
vide protection from specific pathogens for decades [42, 43]. According 
to the study by Li et al., the CD4+ TSCM numbers in periphery do not 
change significantly between 18 and 90 years of age, while the numbers 
of CD8+ TSCM cells are significantly reduced, which likely results in 
decreased homeostasis (and functionality) of CD8+ T cells, and rela-
tively maintained homeostasis of the CD4+ T cells in old age [42]. 

1.3.2. Changes in the regulatory immune cells – Tregs and beyond 
Thymus is also the source of thymic regulatory T cells (tTregs) which 

have a role in intrathymic elimination of self-reactive clones of naïve T 
cells. With aging, also the production of these tTregs decreases, which 
may be the reason behind increased chance for autoimmune processes 
(including more autoreactive T cells and elevated production of auto-
antibodies by the B cells) in the elderly [44, 45]. 

While tTregs numbers are (for intuitively obvious reasons) reduced 
with advancing age, these of peripheral Tregs induced during the 
adaptive response to an antigenic challenge (iTregs) not only do not 
dwindle, but in fact increase in the elderly. We were among the first to 
show this phenomenon at the beginning of the 21st century, and were 
followed by many similar observations [46–52]. This finding may in part 
explain the decreased effectiveness of the immune responses in the aged 

(relatively more “braking”). On the other hand, it was demonstrated on a 
relatively small population of 85+ year-olds that those of them who had 
increased median frequencies of CCR4+ Tregs had a better 8-year sur-
vival rates than their counterparts with lower proportions of these Tregs. 
This was the first demonstration of a positive correlation between sur-
vival and frequency of Tregs in the aged [50]. On the other hand, some 
observations suggest that, although more numerous, the iTregs of the 
elderly are less functional, which may be associated with exposure to 
excessive amounts of ROS [53]. 

Other regulatory immune cells, including notably the MDSC, but also 
regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), nat-
ural killer (NKreg), and type II natural killer T (NKT) cells are affected by 
aging and may, therefore, affect the immune responses in the aged [54, 
55]. 

1.3.3. TCR repertoire contraction 
One of the main characteristic features of the adaptive immune 

system is the apparently infinite variability of the antigen receptors 
(TCR and BCR) generated respectively by somatic recombination and 
somatic hypermutability of genes coding the component peptides of the 
receptors, and allowing for detection of (and in consequence response 
to) myriads of different antigens, coming from pathogenic microor-
ganisms and own transformed cells. This ability seems of paramount 
importance with the advent of novel, mainly viral, diseases including 
inter alia the zika, nipah, earlier coronavirus-caused SARS and MERS, 
and the current COVID-19. Common characteristics of these “new” 
diseases includes the zoonotic origin and likely we are for many more 
such diseases challenging our IS. Unfortunately, studies of the T cell 
receptor repertoire in aging individuals which started in last decade of 
the 20th century convincingly show that this repertoire is profoundly 
affected by aging, with apparent clonal expansion of certain variants and 
reduction (or elimination) of the other [31, 56-59]. The consequence of 
such changes may only be decreased ability of aging immune systems to 
respond to certain (classes of) antigens. The mechanisms of this 
contraction of TCR repertoire in elderly certainly include the decreased 
output of naïve T cells (equipped with new TCR configuration) by 
involuting thymus, not balanced by peripheral homeostatic proliferation 
of these naïve T cell; on the other hand, T cells bearing some TCR var-
iants may become exhausted and then senescent with time and recurrent 
infection by the same pathogens. 

1.3.4. Lack of effector plasticity 
Classically, the subtypes of differentiated helper T cells include the 

Th1, Th2, Th9, Th17, Th22, TFH and Tregs. Recently it was postulated 
that the antigenic challenges and the needs of the IS for specific subtype 
to counter the challenge are deciding about the increased proportion of 
specific subtype and that all of these subtypes form a continuum rather 
than real, independent T cell classes [60, 61]. With aging, this contin-
uum seems to be broken, as more and more T cells acquire the terminally 
differentiated phenotype, which compromises the ability of the aging IS 
to effectively respond to new antigenic challenges [61]. Thus, the aging 
IS accumulates exhausted T cells, as well as the CD4+CD28low/nul cells 
with cytotoxic properties, and, as mentioned above, also the activated 
Tregs. There is a bias towards the Th1 and Th17 types, which at least in 
part explains increased proinflammatory properties of the system, which 
secretes more IFNβ, IL-6 and IL-27 contributing to inflammaging [62]. 
Interestingly, the expansion of cytotoxic CD4+ T cells has been docu-
mented in supercentenarians which may suggest that these cells are a 
form of pro-survival adaptation of the aging IS [63]. As mentioned 
above, these cytotoxic CD4+ lymphocytes are characterized by 
decreased (or even lack of) expression of the costimulatory molecule 
CD28, which may be partly a result of their prolonged exposure to 
proinflammatory environment, mainly higher amounts of TNFα, or be 
associated with persistent CMV infection [64–66]. One could speculate 
that partial or even complete loss of costimulatory signal would impede 
the response of aging T cells to stimulation, especially their ability for 
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clonal expansion. We have shown such relation for aging human CD4+
cells, especially prolongation of the period from the initial contact with 
stimulant to the onset of first mitotic cycle strongly correlating with 
reduced numbers of CD28 molecules on their surfaces [67, 68]. 

Aging not only causes (semi)permanent shifts in the proportions of 
different T cell types, but it also affects the function of these various T 
cells, modifying their influence on other cells of the aging IS. Thus for 
example the follicular helper T cells TFH (among other helper T cells) 
increase their numbers with aging, but lose functionality towards 
helping the B cells, likely due to defects in intracellular signal trans-
duction [61, 69, 70]. 

1.3.5. Aging-related modifications of intracellular signal transduction in the 
immune cells 

Reduced numbers of CD28 molecules on aging CD4+ lymphocytes 
and their relation with modified dynamics of proliferation of these cells 
directly suggest that the signal transduction processes occurring be-
tween the ligated surface antigen receptors (TCR and BCR), co- 
receptors, costimulators and inhibitory molecules (including the 
CTLA-4 and PD-1) and the activation of relevant genes by the tran-
scription factors migrating to the nuclei of activated T cells might be 
severely affected by aging. Studies of changes of signal transduction over 
last decades had indeed shown many issues with phosphorylation, 
dephosphorylation and otherwise processing of consecutive molecules 
forming links of the chains of signal transduction, as well as with for-
mation and function of the immune synapses [71–83]. The results would 
be decreased proliferation, cytokine output and general functional 
imbalance observed for aging T cells [84–86]. 

We have recently shown one more possibility for signal transduction 
in aging lymphocytes to be defective. Thus, we have demonstrated that 
limited, modulating proteolysis effected by ubiquitous, cytoplasmic, 
calcium-dependent cysteine proteases called calpains is significantly 
reduced in all aging T and B lymphocytes [87]. Our further, as yet un-
published data indicate that this reduction in calpain amounts and ac-
tivities is common also for other peripheral immune cells, including 
monocytes and NK cells. On the other hand we have shown that inhi-
bition of calpains in the resting T cells leads to their decreased prolif-
eration, cytokine secretion, and activation in relation to changed levels 
of activation of some molecules important for T cell signal transduction, 
including phospholipase C gamma, p56Lck, NFκB, and ZAP-70, all of 
which were earlier demonstrated to be affected by aging [88, 89]. 

Changed activity of calpains in the immune cells of the elderly is an 
illustration of a broader issue of improper protein manufacturing, 
maturation, posttranslational modifications, misfolding, aggregation, 
inefficient removal (by autophagy) etc., which goes under the common 
heading of modified proteodynamics in aged cells, immune and other-
wise [90, 91]. 

1.3.6. Mitochondrial defects associated with is aging 
Maintenance of functional proteomes and their more or less imme-

diate functions for a long time (for some memory T cells approaching the 
length of the lifespan) requires vast amounts of metabolic energy (ATP), 
in the resting lymphocytes provided mainly by oxidative phosphoryla-
tion (OXPHOS), while the activated cells tend to rely on glycolysis 
(Warburg effect) [91, 92]. It is recognized for more than 4 decades 
already that aging has a profound effect on mammalian mitochondria, 
including reduced output of ATP, increased production of ROS (and, 
consequently, increased oxidative stress) and numerous mutations in 
mitochondrial (mt)DNA, likely contributing to mentioned dysfunction. 
Almost the same time had passed from the first reports on reduced ATP 
output in aging human lymphocytes, attributed to mitochondrial defects 
[93, 94]. Mitochondria may serve also as a source of proapoptotic sig-
nals and this was demonstrated to increase with aging [67, 95]. 

2. Immunosenescence and inflammaging 

Two most characteristic, unique features associated with aging of the 
IS are immunosenescence and inflammaging. 

2.1. Immunosenescence – description, mechanisms and consequences 

Immunosenescence is the main factor reducing the effectiveness of 
both the adaptive and innate immune responses to pathogens, and thus 
limiting the survival [96]. One has to stress here that immunosenescence 
should not be confused with cellular senescence seen in many (if not all) 
other cell types living long enough, even if the factors inducing both 
states may be similar or even identical [97]. In fact, lymphocytes (or, in 
that matter, also monocyte/macrophages, dendritic and NK cells) are 
undergoing the cellular senescence with all due characteristics of such 
[51, 98]. Thus, senescent lymphocytes would cease proliferation to 
antigenic (or in vitro mitogenic) stimulation; they would acquire the 
senescence-associated secretory phenotype (SASP, characterized by 
increased output of some proinflammatory cytokines), would exhibit 
increased activity of lysosomal senescence-associated beta-galactosidase 
(SA-b-Gal) and greatly shortened telomeres [92, 99-101]. Such senes-
cent immune cells stop performing their roles in the immune response to 
pathogenic challenges, but they remain alive and metabolically active, 
with time using more space in the “niches” including bone marrow and 
peripheral lymphatic organs [102, 103]. It was shown that also the 
hematopoietic stem cells undergo senescence, which likely does reduce 
the output of immune cell precursors [102, 103]. 

However one needs to understand that immunosenescence is not 
only related to the individual fates of lymphocytes (pertinent more to 
their senescence per se), but also to the population shifts (quantitative 
and qualitative aging-related changes in the proportion of immune cells 
with different phenotypes, the most characteristic being the mentioned 
accumulation of memory at the expense of naïve T cells. Deleterious 
changes would occur in the cells belonging to these shifting populations, 
in effect leading to decreased effectiveness of such population as a 
whole. The latter would lead to improper interaction and reactivities of 
various populations of the immune cells, culminating in the develop-
ment of aging-related diseases [100]. The most prominent changes 
would stem from immunosenescence of the CD4+ (helper T cell) 
compartment, as this is the pivotal lymphocyte population affecting all 
facets of the immune response. 

The abovementioned states of immune (mainly T) cell exhaustion 
and immunosenescence seem, to the extent, to be a continuum, where 
the former state is (at least partially) reversible, while the latter is not 
[104, 105]. At the molecular level, T cell exhaustion reduces the 
response to antigens, including clonal expansion and secretion of stim-
ulatory cytokines (e.g. IL-2 and IFN-gamma), and is hallmarked by the 
upregulated expression of co-inhibitory receptors, including PD-1, 
CTLA-4, LAG-3, ICOS, TIM-3 and KLRG-1. Ligation of these leads to 
downregulation of signal transduction from the TCR/CD3 complex [41]. 
Immunosenescence however, at cellular level manifesting itself by 
cessation of T cell proliferation and secretion of stimulatory cytokines in 
response to antigenic challenge, short telomeres increased SA-b-Gal and 
acquisition of the SASP, is phenotypically characterized by increased 
expression of CTLA-4 and LAG-3, but not PD-1 and TIM-3, and by 
upregulation of the (also co-inhibitory) T cell immunoglobulin and 
immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) 
[41]. The acquisition of SASP by senescent lymphocytes and other cells 
is one of the prerequisites for the parallel process of inflammaging. 

2.2. Inflammaging - description, mechanisms and consequences 

The term inflammaging, coined in the year 2000 by Claudio Fran-
ceschi, means sterile, chronic, low-grade inflammation manifesting 
mainly by elevated levels of proinflammatory cytokines not associated 
with any apparent/detectable challenge to the cytokine-manufacturing 
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cells [21, 51, 106-109]. In extended explanation the inflammaging is the 
consequence of multiple forms of life-long, permanent or periodic, 
stresses. The stressors include antigenic challenges, metabolic modifi-
cations, oxidative stress, physical and chemical insults, accumulation of 
internal (cell- and matrix-derived) garbage, called the garb-aging, and 
modification of gut and other microbiota towards the state of dysbiosis 
[110]. Each and all of these, above certain thresholds – especially being 
crossed in a short time - would (and do) elicit a full-fledged, acute in-
flammatory reaction. However here we talk not about acute, high level 
challenges but about much smaller ones, extended back in time even to 
the early years of age. On top of these we have the whole, already 
mentioned, immunobiography of each and every one of us, individual-
izing the features presented by the immune systems of different in-
dividuals. Thus, inflammaging, as immunosenescence, does not appear 
only in the aging or old organism. Rather, both processes slowly – with 
age – rise from being altogether undetectable to detectable by the 
assessment of qualitative and quantitative properties of various cellular 
and humoral components of the immune system and finally to manifest 
their consequences in the form of aging-related diseases (ARDs) [108]. 
In fact, all of the major ARDs, including the atherosclerosis and its 
clinical complications: ischemic (coronary) heart disease and ischemic 
stroke, malignancies, neurodegenerative diseases leading to dementia 
(especially the Alzheimer disease and vascular dementia), metabolic 
syndrome (type 2 diabetes, obesity, arterial hypertension), chronic 
respiratory disease (COPD) and finally COVID-19 have a common de-
nominator: pathomechanisms of all of them include chronic inflamma-
tory processes [111]. Thus, they are a form of imbalance between 
proinflammatory and anti-inflammatory reactions of the immune sys-
tems which likely are fueled by both immunosenescence and 
inflammaging. 

3. COVID-19 – why it is more severe and deadly in elderly? 

A special paragraph in this paper should be devoted to the current 
pandemics of COVID-19, which is due to so far poorly controllable 
infection by a viral pathogen (SARS-CoV-2) leading to acute inflam-
matory reactions in the (mainly) lungs and other organs of the patients. 
One of the symptoms of COVID-19 is the “cytokine storm” – sudden 
output of massive quantities of different proinflammatory cytokines: 
interleukin (IL)− 6, tumor necrosis factor α (TNF-α), IL-1, monocyte 
chemoattractant protein-1 (MCP-1) and IL-10. Cytokine storm is a 
hyperinflammatory immune response due to the release of large amount 
of reactive oxygen species (ROS) from infected epithelial cells. ROS 
stimulate the synthesis of NLRP3 inflammasome and activation of the 
transcription factor NF-kB), which contribute to secretion of proin-
flammatory cytokines [112]. 

It was noticed early into the pandemics, that the death toll and the 
score of most severe cases were the highest among the elderly. This 
epidemiological observation still holds, despite the fact that the newer 
variants of SARS-CoV-2 eagerly infect, cause symptomatic and severe 
COVID-19 also in the rising numbers of middle-aged and even young 
people. 

Severe COVID-19 is a consequence of raging inflammation, 
destructive to the tissue of lungs and other affected organs. Eventually it 
may result in (multi)organ failure and death. Obviously, if the infection 
befalls to aging individuals, its course will depend on the current state of 
their organisms, which greatly vary from apparently good health similar 
to that of much younger people to worse health due to one or more 
chronic diseases described above as the ARDs. Thus, aging of the im-
mune system itself would both directly and indirectly affect the course of 
COVID-19. The first reason would be the decreased ability of the aging IS 
to recognize the new virus, SARS-CoV-2, due to greatly reduced output 
of new naïve T cells from involuted thymus [113, 114]. Next, the 
immunosenescence - remodeled IS of the elderly individuals would 
reduce its ability to build effective response to the virus, which exists in 
significantly higher load in the elderly, especially burdened with 

advanced immunosenescence [41, 115]. Aging of all the IS components, 
both the innate and adaptive, is responsible for poor neutralizing 
response to SARS-CoV-2, observed as low titers of neutralizing anti-
bodies, lower numbers of NK and cytotoxic CD8+ T cells recognizing 
and killing infected cells [116, 117]. This advanced IS aging in severe 
COVID-19 patients manifests itself inter alia by short lymphocyte telo-
meres [118, 119]. This may indicate the role of immunobiography for 
COVID-19 severity; those with higher proportions of exhausted and se-
nescent immune cells due to more immunological challenges during 
whole life preceding the infection would be more susceptible. 

Decreased neutralizing capacity of the aging IS towards the SARS- 
CoV-2 is only one side of the coin being symptomatic, severe COVID- 
19. The other side is the uncontrolled secretion of high levels of proin-
flammatory cytokines known a cytokine storm. It consists of massive 
release of interferons, interleukins (mainly IL-1 and IL-6), tumor-ne-
crosis factors, chemokines and other mediators in relatively short time. 
Appearance of all these mediators leads to hyperinflammation, aggra-
vates the multi-organ damage, first of all leading to the acute respiratory 
distress syndrome (ARDS) and respiratory failure, also by induction of 
the coagulation cascade [120]. The likely culprit behind cytokine storm 
is the release of oxygen free radicals (ROS) and prostaglandin E2 (PGE2) 
by the infected cells [121–123]. The ROS stimulate the synthesis of 
NLRP3 inflammasome and nuclear factor (NF-kB) in macrophages and 
neutrophils; both factors participate in development of the cytokine 
storm [124, 125]. These events, overlaid on the background of inflam-
maging (as mentioned above, participating in the development of 
ARDs), may in fact lead to the buildup of strong innate immune re-
sponses in elderly, possibly facilitating and amplifying the 
hyperinflammation. 

Considering the above, one needs to ask the question about suc-
cessful vaccination of elderly against the SARS-CoV-2 (and, in fact, any 
other infectious disease). On one hand we already have very successful 
vaccines generated using different platforms (including the newest 
mRNA platform). On the other hand however, aging immune system 
loses ability to efficiently respond to antigenic challenges, also those by 
the antigens included in the vaccines. This leads to lower, and more 
rapidly disappearing, titers of neutralizing antibodies. A remedy could 
be in different formulation of vaccines offered to the older groups of 
people, including increased doses of pathogen antigens and/or different 
adjuvants; this technique has proven itself effective in the vaccines 
against shingles or influenza directed at older population [22, 25]. 

4. Can we boost the balanced immune response in the elderly? 

The answer is “yes” and in many ways, including – where possible - 
change in the lifestyle to more physically and mentally active, modifi-
cation of diet to more nutritional, normalizing the composition of gut 
microbiome to prevent proinflammatory dysbiosis as well as careful 
pharmacological interventions (utilizing the beneficial part of the 
hormesis curve) [126–129]. An important way to prevent early immu-
nosenescence and inflammaging would be to influence immunobiog-
raphy by early detection and successful elimination of viral, bacterial 
and other pathogens, widespread prevention of infectious diseases by 
polyvaccination, early anti-inflammatory treatment of emerging in-
flammatory events [130]. However this preventive approach can only be 
explored in full for young(er) generations, as it would be less effective in 
those with already manifest inflammaging and immunosenescence. Still, 
all its aspects may ameliorate and slow down the effects of the IS aging 
even in older individuals, where they could be amplified by successful 
removal of senescent cells using senolytics, and regulation of the 
microbiome by pre-, pro- and synbiotics. 

5. Immunosenescence and inflammaging as an adaptation 

Yet, despite all the detrimental effects of immunosenescence and 
inflammaging (culminating in ARDs including COVID-19), these 
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processes, intrinsic to the aging of the immune system, have yet another 
side. Accumulating data suggest, that both immunosenescence and 
inflammaging are forms of adaptation of an aging organism to other 
effects of aging on its ability to cope with pathogens and neoplasms, 
including those depending on aging of the endocrine and neurological 
functions which, together with immunity, form the neuro-endocrine- 
immunological axis. In this concept, immunosenescence (similarly to 
cellular senescence in general) would decrease probabilities of 
neoplastic transformation of the immune cells and their precursors, 
despite life-long accumulation of cancerogenic exposures. On the other 
hand, the same immunosenescence decreases the immune systems’ 
control over infections, which by itself is anti-survival. Here comes 
inflammaging, which – with dwindling adaptive response to pathogens – 
augments (to the extent) the innate responses, thus extending the life-
span [39, 92, 131]. The same inflammaging (increased proinflammatory 
cytokine levels) can homeostatically trigger an anti-inflammatory 
response which would then counteract the age-related accumulation 
of pro-inflammatory events [21, 39, 92, 99, 132, 133]. However, as 
mentioned above, too much inflammation/inflammaging features 
accumulating over time means (chronic) inflammatory disease(s) 
(ARDs) characteristic for unsuccessful aging. 

Thus, considering the modifying, preventive and therapeutic ap-
proaches towards issues related with aging of the immune system we 
need to remember that neither immunosenescence nor inflammaging is 
purely detrimental. 

6. Hallmarks of T cell aging 

Recently (May 2021) Mittelbrunn and Kroemer had integrated all the 
above described features of the aging immune system (especially T cells) 
and proposed the 10 hallmarks of T cell aging, consisting of 4 primary 
hallmarks (involution of the thymus, genetic and epigenetic changes, 
mitochondrial dysfunction and loss of proteostasis), four secondary 
hallmarks (naive-memory imbalance, reduction of the TCR repertoire, T 
cell senescence, and lack of effector plasticity) and finally two integra-
tive hallmarks – immunodeficiency (immunosenescence) and inflam-
maging [61]. All of these were reviewed in this paper. 

The ten hallmarks of T cell aging described above directly stem from 
the concept of already classical 9 hallmarks of aging which seem to be 
pertinent to all mammals and actually include five of these. Thus, the 
nine hallmarks of aging in turn include genomic instability and epige-
netic alterations, loss of proteostasis, telomere attrition, mitochondrial 
dysfunction, deregulated nutrient sensing, cellular senescence, stem cell 
exhaustion and altered intercellular communication [134]. Of course, 
the immune cells follow not only the five abovementioned aging hall-
marks, but also the remaining four. Thus, intense bouts of clonal pro-
liferation of lymphocytes responding to antigens are leading to 
measurable, significant shortening (attrition) of their telomeres, despite 
the temporarily upregulated activity of telomerase (which is also lower 
with aging) [135, 136]. Interestingly, T cell telomeres of rheumatoid 
arthritis (RA) patients are shorter than these of healthy individuals of the 
same age, lending credibility to the theory envisaging RA as a disease 
accompanied by accelerated immune system cells’ aging, likely associ-
ated with specific genetic makeup [32, 137]. 

7. Conclusions 

Aging is a complex, multi-faceted process of accumulating changes 
and continuous adaptation of the body systems to these changes. This 
statement is especially true for aging of the immune system, where 
deleterious changes leading to decreased reactivity to, and in conse-
quence neutralization/elimination of pathogens of external and internal 
origins are accompanied by adaptation to this changes. Main features of 
the aging immune systems, i.e., immunosenescence and inflammaging, 
are also adaptive and serve to prolong the individual life, provided they 
are balance in the aging organism. However, their imbalance leads to 

predominance of inflammatory reactions, culminating in chronic, in-
flammatory, eventually debilitating, aging-related diseases. One of such 
diseases is COVID-19. Deeper understanding of the processes underlying 
the aging of immune system and its effects on survival may yield targets 
for mitigation of the process of IS aging and in consequence prolonga-
tion of healthspan, e.g. by pharmacological, dietary, immunological and 
other interventions. 
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