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Abstract

During a flight, pilots must rigorously monitor their flight instruments since it is one of the crit-

ical activities that contribute to update their situation awareness. The monitoring is cogni-

tively demanding, but is necessary for timely intervention in the event of a parameter

deviation. Many studies have shown that a large part of commercial aviation accidents

involved poor cockpit monitoring from the crew. Research in eye-tracking has developed

numerous metrics to examine visual strategies in fields such as art viewing, sports, chess,

reading, aviation, and space. In this article, we propose to use both basic and advanced eye

metrics to study visual information acquisition, gaze dispersion, and gaze patterning among

novices and pilots. The experiment involved a group of sixteen certified professional pilots

and a group of sixteen novice during a manual landing task scenario performed in a flight

simulator. The two groups landed three times with different levels of difficulty (manipulated

via a double task paradigm). Compared to novices, professional pilots had a higher percep-

tual efficiency (more numerous and shorter dwells), a better distribution of attention, an

ambient mode of visual attention, and more complex and elaborate visual scanning pat-

terns. We classified pilot’s profiles (novices—experts) by machine learning based on Cosine

KNN (K-Nearest Neighbors) using transition matrices. Several eye metrics were also sensi-

tive to the landing difficulty. Our results can benefit the aviation domain by helping to assess

the monitoring performance of the crews, improve initial and recurrent training and ultimately

reduce incidents, and accidents due to human error.

Introduction

Monitoring activity in the cockpit

Throughout the flight, pilots must build and update their situation awareness (SA) to maintain

flight safety margins [1]. The flight crew cannot update the SA without monitoring specific

flight instruments (e.g., attitude indicator, speed, altimeter, engine parameters) and the exter-

nal environment (by clear weather). The monitoring activity, particularly critical during

dynamic flight phases such as take-off and landing, includes the observation and interpretation
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of the flight path data, aircraft-configuration status, automation modes, and on-board systems.

It supposes a real-time comparison of instrument data or system modes against the expected

values according to the current flight phase. A rigorous cockpit monitoring allows timely cor-

rective actions in case of a parameter deviation, ensuring an optimal level of safety [2]. This

monitoring activity is structured in sequences of attentional shifts from an instrument to

another.

Irregularities in these sequences can undermine the safety margins. In numerous cases of

aircraft accidents, pilots’ visual scanning has been described as “inadequate”, “ineffective”, or

“insufficient” [3]. Since the 1994 report by the National Transportation Safety Board that the

inappropriate monitoring was involved in 84% of major accidents in the United States [4],

numerous studies investigated the visual behavior of the pilots. However, in a “practical guide

for improving flight path monitoring” by the Flight Safety Foundation [5], which investigated

188 accidents with monitoring issues, it is underlined that many monitoring errors still occur,

most of them during dynamic phases of flight (e.g., climb, descent, approach, and landing).

In 2013, the Federal Aviation Administration required airlines to include an explicit training

program to improve monitoring skills [6, 7]. Following the PARG study [7], the Bureau

d’Enquêtes et d’Analyses (French Investigation Agency) encouraged the use of eye tracking

systems to finely analyze and improve crews’ visual scanning. Interestingly, an extensive survey

conducted on 931 pilots during the PARG study [8] showed that most of the pilots need a bet-

ter description of what a “standard” visual circuit in the cockpit is. Similarly, in another recent

survey [9], 75% of pilots deemed helpful to know the required visual patterns for the different

flight phases to enhance their cockpit monitoring skills.

Visual scanning strategies as a marker of expertise

The relationship between visual scanning skills and performance has been highlighted in expe-

riences where participants were trained to gaze at relevant areas. For instance, Shapiro et al.

[10] demonstrated that videogamers that were trained using efficient visual scanning examples

showed better performance compared with random pattern training or no training at all. In

another air traffic control study, Kang and Landry [11] enhanced novices’ performance in a

conflict detection task by presenting experts’ visual scans overlaid on the radar screen during

the task. The study also showed that the visual presentation outperformed the “instruction-

only” condition. These studies support the relationship between visual patterns and task per-

formance, and demonstrate the possibility to improve these patterns with adequate training.

The task performance increases with the experience and associated expertise. The links

between the visual scanning strategies and the expertise were observed in fields such as radiol-

ogy, driving, sport, military aviation or chess (e.g., [12–14]). Gegenfurtner, Lehtinen, and Säljö

[15] conducted a meta-analysis and highlighted that experts (compared to non-experts) gener-

ally demonstrate more fixations on task-relevant areas as well as shorter fixations. In their

review of eye movements in medicine and chess, Reingold and Sheridan [16] have labeled this

greater perceptual effectiveness of experts as “superior perceptual encoding of domain-related
patterns”.

Several studies in the aeronautical domain showed that pilots’ visual scanning strategies

(e.g. duration and frequency of fixations) evolve with the level of expertise [17–25]. According

to Bellenkes et al. [26] the fixations of experts are shorter and fixations on instruments are

more frequent. Similarly, Kasarskis, Stehwien, and Hickox [27] noticed that expert pilots

(1500—2150 flight hours) perform more fixations and have shorter dwell times than novices

(40—70 flight hours), and argued that experts have more structured visual patterns. Lorenz

et al. [28] have shown that experts (3000–10300 flight hours) spend more time looking outside
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the cockpit compared to novices (13–500 flight hours) during a taxiing task. Furthermore, a

study involving fighter pilots flying high speed low altitude flights [29] highlighted the impor-

tance of efficient visual scanning strategies. In this study, the pilots who achieved the best flight

performance made shorter fixations on the heads-down tactical display and alternated more

frequently between the tactical display and the outside world. Similar results were found in

experts (>1000 hours) and novices (200—400 hours) playing flight simulation games [30].

Because visual scanning appears to differentiate between expert and novice pilots’ perfor-

mance, it is interesting to examine which eye tracking metrics are available in the literature

[31] to compare the visual scanning strategies using various approaches such as the estimation

of the distribution and patterning of the visual scanning.

The objective of the present work is to provide a framework for eye movement data analysis

techniques to study visual scanning strategies in novices and experts. These eye movement

measures and algorithms are presented in light of the results of an experiment involving novice

and expert pilots during a landing scenario performed in a flight simulator. We examined the

impact of expertise and the difficulty of the flight scenario on the visual attention allocation.

The participants performed three times the same landing scenario with varying difficulty con-

ditions. Two difficulty conditions incorporated a supplementary visual monitoring task, with

different time pressure, to make cockpit monitoring more complex by increasing visuomotor

activity. We analyzed the effect of the pilots’ profile (pilot vs. novice) as well as the effects of

the landing difficulty on numerous standard (number of dwells, average dwell times) and

advanced eye movements metrics (Lempel-Ziv Complexity, Gaze Transition Entropy, atten-

tional modes, N-gram methods) presented in the following section.

State-of-the-art visual scanning metrics

Classical eye movements measures such as fixation duration, dwell time, or the number of fixa-

tions, provide relevant results when comparing novices vs. experts. However, statistical analy-

ses of these metrics often involve time-averaging operations, thus, neglecting the information

regarding the sequence of instrument scanning. Consequently, a rich part of the data that

reflects the dynamic of the deployment of the attention processes is lost or not fully exploited.

Numerous other metrics are available to explore and characterize in more depth visual scan-

ning strategies. We use the broad term “visual scanning” to describe visual scanning made up

of an at least one dwell to one area of interest (AOI), followed by a transition, and a dwell to

another AOI; “visual scanning pattern” is used when the visual scanning is made up of

repeated sequences of a given “visual scanning”. One approach to examine visual scanning

strategies is to analyze transition matrix (e.g., [32–35], a second one is the characterization of

fluctuation between ambient/focal visual behavior [36], another one is to derive global patterns

metrics such as entropy (e.g., [37, 38], see [39] for a review). More generally, in this paper, we

classified visual scanning strategies metrics in three AOI based approaches: one is based on

Markov chains (transition matrix), another is based on the attentional modes, and the last one

is based on sequences analyses. Fig 1 presents a comparison of the visual scanning metrics

described below (e.g. formula, definition, strength shortcomings, strength, etc. . .).

Markov chains

Several metrics allow examining whether visual scanning is narrow or wide.

The transition matrix probabilities. They contain the information about how often a

transition from one Area Of Interest (AOI) to another occurred based on subsequent dwells of

the visual scan. This method provides a data representation that can also lead to the develop-

ment of stochastic and queuing models [40] of the pilot’s scanning in the cockpit. This method
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can be extended to three dimensions by considering the location of the previous two dwells,

which Norris et al. [41] have described as a second-order Markov chain. Jones et al. [42]

showed that transitions matrices are sensitive to flight maneuvers. Based on the transition

matrices, Hayashi proposed in 2004 [43] a Hidden Markov Model approach corresponding to

different flight tasks. Its works were used afterward to model the dwell patterns of the space

shuttle crew [44].

Transition matrix density. Introduced by Goldberg and Kotval [31], the transition

matrix density describes the dispersion of attention over time [45]. Transition matrix density

provides a single quantitative value by dividing the number of active transition cells (i.e., those

containing at least one transition) by the total number of cells. An unusually dense transition

matrix (large index value), with most cells filled with at least one transition, can indicate a dis-

persed, lengthy, and wandering visual scan (this can reflect an extensive search on a display for

example) [46]. A sparse matrix can reflect a more efficient and directed search, for example

when using a computer software [40], or, in other contexts, can indicate a failure to properly

monitor the environment, for example when a novice driver directs his gaze continuously to

the road while ignoring/forgetting the rearview mirrors or when a pilot is excessively engaging

his visual attention on a single instrument (e.g., [47]).

Attentional modes

K coefficient. Another evaluation of the dispersion of the attention is a novel parametric

scale called K coefficient introduced by Krejtz et al. [48]. This metric was created and devel-

oped during exploring artwork (e.g., painting) and map viewing [49] in order to investigate

the dynamics of visual scan (focal vs ambient) when operating such tasks. In a recent study,

Lounis et al. [50] used this method by modifying input data, using dwells and transitions

Fig 1. Overview of the different visual scanning metrics classified by approaches.

https://doi.org/10.1371/journal.pone.0247061.g001
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instead of fixations and saccades. During various flight phases with automation in a full-flight

simulator, they calculated for each pilot the mean difference between standardized values (z-

scores) of each transition (a(i + 1)) and its preceding ith dwell (di), where di is the duration of

the i–th dwell and ai+1 the amplitude of the transition that occurs after the i–th dwell. μd, μa are

the mean dwell durations and transition amplitudes, respectively, and ρd, ρa are standard devi-

ations, respectively.

ki ¼
di � md

rd
�
aiþ1 � ma

ra
; k ¼

1

n

Xn

i¼1

ki ð1Þ

Values of Ki close to zero indicate relative similarity between dwell durations and transition

amplitudes. Positive values of Ki show relatively long dwells followed by short transition ampli-

tudes, which indicate focal attention. Negatives values of Ki refer to the situation where rela-

tively short dwells are followed by a relatively long transition, suggesting ambient attention

(diffuse attention). According to Heitz, R. P., & Engle, R. W. (2007) [51], in the diffuse mode,

visual attention is more allocated to all regions of the visual field in quite equal proportion; in

the focused mode, attention is concentrated at a few areas of interest, specified by a central or

peripheral cue. An extremely focused mode could be compared to the concept of attentional

tunnelling [47]. It is worth noting that the values of the K coefficient should be interpreted

together with dwell duration results because different groups can have different average values

of dwell duration and transition amplitudes.

Sequence analyses

The sequence analyses approach allows measuring the extent to which the time sequence of

eye movements is ordered or random during a flight.

Gaze Transition Entropy (GTE). Defined by Shannon and Weaver [52], entropy is a

measure of lack of predictability in a sequence. This metric enables evaluating the structuration

of the gaze [53]. When applied to eye tracking data, transition entropy describes the amount of

information needed to describe the visual strategies, following the formula:

GTE ¼
Xn

i¼1

pðiÞ
Xn

j¼1

p
j
i

� �

log
2
p

j
i

� �" #

; i 6¼ j ð2Þ

where i represents the “from” AOI and j represents the “to” AOI. Higher transition entropy

denotes more randomness and more frequent switching between AOIs [54]. Ephrath, Tole,

Stephens, and Young [55] have noticed an increase of entropy with increasing pilots’ mental

workload (by adding a secondary task). Van de Merwe et al. [56] found that entropy increased

as a result of cockpit instrument failure, conditions that most likely produce an increased men-

tal workload. More recently, using GTE, Allsop et Gray, 2014 [57] revealed that visual scanning

became more random during the an anxiety landing scenario. Diaz-Piedra et al. [58] observed

a significant decrease in pilot’s gaze entropy when pilots faced a scenario presenting more

complexity.

Lempel-Ziv complexity. The complexity (i.e., the quantity and diversity) of visual scan-

ning patterns can be assessed using Lempel-Ziv Complexity (LZC). LZC was defined by Lem-

pel and Ziv in 1976 (for a review, see [59] as a data compression algorithm computing the

minimum number of bits from which a particular message or file can effectively be recon-

structed. This algorithm counts the number of different patterns in a sequence when scanned

from left to right. For instance, Lempel-Ziv complexity of s = 101001010010111 is 7, because

when scanned from left to right, 7 different patterns are observed: 1j0j10j01j010j0101j11.
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Recently, LZC was applied to the dwell transition to evaluate the number of different visual

scanning patterns [60].

N-gram sequences. N-gram is an essential component of many methods in bioinformat-

ics, including for genome and transcriptome assembly, for metagenomic sequencing, and for

error correction of sequence reads [61]. Basically, an N-gram model predicts the occurrence of

an AOI, based on the occurrence of its N–1 previous AOI. So here we are answering the ques-

tion: How far back in the history of a sequence of AOI should we go to predict the next AOI?

For instance, a bigram model (N = 2) predicts the occurrence of an AOI given only its previous

AOI (as N–1 = 1 in this case). Similarly, a trigram model (N = 3) predicts the occurrence of an

AOI based on its previous two AOI. The common N-gram sequence analysis used the n-grams

frequency-based method [62] to identify the number of common 3, 4, 5, and 6-gram sequences

in each group. By using this method, it is possible to count the occurrence of N-gram AOI and

their occurrence for each pilots, and thus it allows to compare for each N-gram the intra-

group patterns consistency.

Current study

In the present study, we evaluated the efficiency of the previously describe metrics on the eye

tracking data from novice and expert pilots. Our main hypothesizes were that expert pilots

should exhibit different visual behaviors than novices, including more numerous dwells and

shorter dwell times, following the idea that superior perceptual encoding processing comes

with expertise. We expected also a sensitivity of all advanced metrics to expertise, with more

visual scanning complexity (as evaluated by the Lempel Ziv complexity and the visual pattern

lengths), and a more regular visual scanning (as evaluated by the transition entropy) in experts.

We also assumed that the pilots’ expertise could be classified (using machine learning) in their

way that they switched from an instrument to another, using transition matrices. Finally, we

hypothesized that the addition of a parallel monitoring task should also have an impact on

ocular behavior, notably by increasing complexity, reducing the regularity level, and generat-

ing an ambient mode of attention (i.e. more diffuse attention).

Materials and methods

For reproducibility purpose, the protocol is available on protocols.io; DOI number: dx.doi.

org/10.17504/protocols.io.zb5f2q6.

Participants

Thirty-two participants, all males, participated in this experiment. They all had normal or cor-

rected to normal vision. They were not informed about the exact purpose of the study. They

were divided into two groups according to their flying experience. A first group called “nov-

ices” consisted of participants with no real flight experience (n = 16, mean age 25.7±5.5 years).

They were recruited from a French aerospace engineering school (ISAE-SUPAERO, Toulouse,

France). All these novices participants had advanced theoretical knowledge about aeronautical

engineering, were familiar with the various information given by the instruments in the cock-

pit (altimeter, altitude etc.), and had flight notions on how to manually interact with the air-

craft. Our experimental flight scenarios were relatively simple: the participant had to control

the trajectory and the speed of the aircraft. The scenarios did not require complex navigation

activities or interacting with automation. Thus the scenarios were feasible for these novices

after a relatively short training session. A second group called “pilots” consisted of active pro-

fessional airline pilots (n = 16, mean age 34.39 ± 8.86 years) with a minimum of 1600 flight

hours (mean = 4321.73 ± 2911.41 hours). They were recruited from various airline companies.
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They all flew on A320 and were currently flying on A320 (68.75%) or B737 (31.25%) at the

time of the experiment.

Ethics statement

This research project was approved by the local institutional Research Ethics Committee of the

University of Toulouse (Comité d’Ethique de la Recherche de l’Université de Toulouse, code

N˚2019-131) and was conducted in accordance with the Helsinki Declaration. Volunteers

signed an informed consent prior to the experiment and were informed of their right to stop

their participation at any time.

Materials

Flight simulator. We used an A320-like flight simulator (“PEGASE”) located at ISAE-SU-

PAERO (Toulouse, France), see Fig 2. Like in the A320 aircraft, flight instruments included a

Primary Flight Display (PFD), a Navigation Display (ND), an Electronic Central Aircraft Mon-

itoring display (ECAM), and an FCU (Flight Control Unit). The field of view covered by the

simulator is about 180˚. The participants controlled the aircraft with a side-stick, two thrust

Fig 2. ISAE-SUPAERO flight simulator with its external screens.

https://doi.org/10.1371/journal.pone.0247061.g002
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levers, and a rudder. We recorded flight data to calculate flight performance during the

landing.

Flight scenarios. Participants manually (i.e., without the autopilot) performed three times

the same landing scenario according to three different conditions. The “control scenario” (CS)

was a nominal landing without a supplementary task. The “easy dual task scenario” (EDTS)

and the “difficult dual task scenario” (HDTS) were similar to the “control scenario” except that

participants were asked to perform a supplementary monitoring task. The purpose of this sup-

plementary task was to increase the level of visuo-attentional effort: participants had to regu-

larly check the ND Zone in the ND screen to say aloud the value at the right time. In the “easy

dual task scenario”, participants were asked to say aloud the distance between the aircraft and

the airfield threshold every 0.5 Nm (information provided by a radio beacon localized near the

airfield and displayed in the ND Zone, see Fig 3). In the “difficult dual task scenario”, they

were asked to say aloud this distance every 0.2 Nm. The experimenter stayed in the cockpit

during the entire experimentation. Each of the three-landing scenarios consisted of perform-

ing an approach/landing to Toulouse-Blagnac Airport, Runway LFBO 14R. The flight began at

coordinates 1.2159˚ of longitude and 43.7626˚ of latitude. During each scenario, the partici-

pants had to comply with the same specific instructions related to the flight. In particular: to

maintain a vertical speed between +500 ft/min and -800 ft/min, a speed of 130 knots, and a

heading of 143˚ (corresponding to the Runway 14R). We choose these values because they

roughly correspond to a standard landing speed with a commercial aircraft. The negative verti-

cal speed of -800 ft/min approximately corresponds to the vertical speed at 130 kt with an

angle of approach of three degrees. We defined a tolerance range in case the participant was

not well stabilized on the approach slope and had to regain altitude (+500 ft/min maximum).

Each landing scenario started at an altitude of 2000 ft and lasted approximately four minutes.

The three scenarios were randomized across participants to avoid learning effects. Perfor-

mance dependent variables were heading, vertical speed, and speed deviations. The number of

omissions (i.e., the participant omitted to call out the distance) during the supplementary task

was also calculated.

Eye movements recordings. Eye movements were recorded at 60Hz using a Smart Eye

remote eye tracker (Smart Eye AB, Sweden). The system detects human face/head movements,

eye movements, and gaze direction. Gaze direction and eyelid positions are determined by

Fig 3. Overview of the ten different AOIs: (1) Attitude indicator, (2) Speed tape, (3) Vertical speed tape, (4) Flight

mode annunciator, (5) Heading tape, (6) Navigation display, (7) ND zone (displays the distance to recall during the

two landing scenarios with the supplementary task), (8) Flight control unit, (9) Electronic centralized aircraft

monitoring, (10) Out of the window.

https://doi.org/10.1371/journal.pone.0247061.g003
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combining image edge information with 3-D models of the eye and eyelids. As presented in

Fig 3, the system uses five cameras integrated into the cockpit. A major advantage of using sev-

eral cameras is that eye and head tracking can be maintained despite significant head motions

(translation and rotation) or occlusion of one of the cameras by the participant (e.g., by its

hand). Smart eye system allows to design a 3D environment and to establish calibration points

(at the vicinity of AOI). When the world model is designed, we just need to operate an auto-

matic calibration for each participant.

World model and area of interest. The cockpit was split into 10 AOIs, corresponding to

the different flight instruments and displays that pilots can examine during a flight, see Fig 3.

We choose to restrict our analysis to instruments that display information directly related to

the flight parameter (altitude, speed etc.) and external view (i.e., Out of the Window).

Procedure

At first, participants filled out the consent form and provided demographic information such

as their flight qualification (aircraft type) and their flight experience (total hours of flight expe-

rience). Participants were briefed on the study and instructed about the different flight scenar-

ios. Then, they were invited to seat in the flight deck at the captain position (left seat). The eye-

tracking system was calibrated using an 11-point calibration. Following the Smart Eye manual

recommendation, the 11 points were located in the vicinity of the AOIs. Participants per-

formed a training session, consisting of performing two times a landing scenario. All partici-

pants (including novice ones) were able to control the aircraft correctly after these two

landing. Then, the participants performed three times the same landings scenario than during

the training, but with varying levels of complexity.

Data processing

Flight simulator and eye-tracking data were analyzed using MATLAB R2019b with custom

homebuilt scripts. The data were recorded from the beginning of the landing scenario to

touch-down. Because the landing duration depends on the pilot’s actions, landing durations

could differ by a few seconds. As a consequence, the beginning of the scenarios has been cut

out to obtain the same duration for each participant, corresponding to 14,000 frames sampled

at 60 Hz for the eye-tracking data and 233 frames at 1 Hz for the flight simulator.

Eye tracking data. Fig 4 shows the entire eye tracking pipeline analysis. Each AOI was

coded using numbers from 1 to 10 corresponding to the flight instruments (see Fig 3). Only

AOI-based data were extracted in this experiment and concatenated to obtain two chronologi-

cal vectors containing the indices of the visited AOIs (from 1 to 10) and the time spent on

them. Dwells inferior to 200 ms [40] were discarded. Furthermore, consecutive fixations in the

same area were merged (e.g., for 1, 1, 4, 4, 5, 5, 5, 6 we only consider 1, 4, 5, 6). The transition

vector (the vector containing the transitions between each AOI numbers) was used to compute

LZC, GTE. Concerning the transition matrices, given their high dimensionality, it is difficult

to use classical inferential statistics. Therefore, we applied machine learning algorithms on the

concatenated transition matrices to compare the two groups of participants (novice vs pilot).

Various types of machine learning model were used (SVM, LDA, K-Nearest Neighbor, for a

review see [63]). The algorithm performing the best accuracy (Cosine KNN) was selected in

this paper. The transition probabilities from one AOI to another were taken as a feature, thus

raising the number of features to a total of 100 features (i.e., 10 AOIs × 10 AOIs). A principal

component analysis (PCA) was used to reduce the features’ numbers. This restricts the model

to 35 features corresponding to the main transition probabilities of the matrices. Five-fold

cross-validation was used, which is a good trade-off between bias and variance estimation [64].

PLOS ONE Visual scanning strategies in the cockpit are modulated by pilots’ expertise

PLOS ONE | https://doi.org/10.1371/journal.pone.0247061 February 18, 2021 9 / 25

https://doi.org/10.1371/journal.pone.0247061


According to Combrisson and Jerbi [65] theoretical chance level for classification for p< 0.05

with two classes is around 58%. Concerning the K coefficient, the transition entropy, and the

Lempel Ziv complexity methods, they were respectively computed following the methods of

[48, 54, 60]. Finally, based on the transition vector, the n-grams frequency-based method [62]

was used to identify the number of common 3, 4, 5, and 6-gram sequences in each group.

After counting the occurrence of given n-grams for each participant, the number of common

sequences of each n-gram was calculated for each group (Novice/Pilots).

Flight simulator data. The flying performances were examined to quantify the ability of

the pilot to comply with the specific flying instructions given by the experimenter. As pre-

sented in Fig 5, Root Mean Square Errors (RMSEs) were calculated for 3 different flight

parameters: speed, vertical speed, and heading. In this experiment, the predicted values corre-

sponded to the different specific threshold given by the experimenter (i.e., speed 130 kt; verti-

cal speed below -500 ft/min and above +800 ft/min; heading different from 143˚) and the

observed values corresponded to actual pilots’ performances. The deviations were calculated

following the formula:

RMSEk;kþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðOi � PiÞ
2

s

ð3Þ

as where for n data points between points k and k + 1, Pi was the predicted value and Oi the

observed value.

Statistical analysis

We performed 2 × 3 repeated measures analysis of variance (ANOVA) for each dependent var-

iable (i.e., dual task omission, average dwell time, the total number of dwells, LZC, transition

entropy, K coefficient, RMSE heading, RMSE vertical speed, RMSE speed) to assess the effects

of the group (novices, pilots) with scenario difficulty as the within-subjects factors (three levels:

Control scenario, Easy dual task scenario, Difficult dual task scenario). The normal distribu-

tion for each dependent variable was also checked. We used the Greenhouse-Geisser and

Fig 4. Analysis pipeline for the eye tracking data.

https://doi.org/10.1371/journal.pone.0247061.g004
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Huynh-Feldt adjustment to correct the violation of the sphericity assumption when needed.

Bonferroni post-hoc tests were performed for multiple comparisons and reported Bonferroni

post-hoc are only those with significant differences. The level of significance was set to α =

0.05 and partial η2 was used to estimate the effect sizes.

Results

Flight performances

The flight performances are shown in Fig 6.

Heading. There was no significant main effect of the group, F(1, 30) = 0.03, p = 0.874, nor

main effect of the scenario, F(2, 60) = 0.9, p = 0.39, on heading deviations. The scenario ×
group interaction was not significant, F(2, 60) = 0.4, p = 0.67.

Fig 5. Analysis pipeline for the flight parameters data.

https://doi.org/10.1371/journal.pone.0247061.g005

Fig 6. Flight performances for heading, vertical speed, and speed deviations among novices and pilots groups.

Error bars represent SD and � indicates main effects p< 0.05. (CS = control scenario; EDTS = Easy dual task scenario;

HDTS = Hard dual task scenario).

https://doi.org/10.1371/journal.pone.0247061.g006
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Speed. A significant main effect of the group on speed deviation was found, F(1, 30) = 4.3,

p< 0.05, η2 = 0.13, with the novice’s group (M = 5.46; SD = 1.94) showing higher speed devia-

tion than pilot’s group (M = 2.66; SD = 1.97). Analyses also revealed a significant main effect

of the scenario, F(2, 60) = 3.6, p< 0.05, η2 = 0.11. Bonferroni post-hoc test showed that speed

deviation was lower during the control scenario (M = 2.95; SD = 0.93) compared to the easy

dual task scenario (M = 3.70; SD = 1.02) and the difficult dual task scenario (M = 5.53;

SD = 2.79). There was a significant effect of scenario × group interaction, F(2, 60) = 3.3,

p< 0.05, η2 = 0.09. Bonferroni post-hoc test showed that the speed deviation was lower for the

pilot’s group in the difficult dual task scenario (M = 2.93; SD = 3.97) compared to the novice’s

group in the difficult dual task scenario (M = 8.13; SD = 4.02).

Vertical speed. Analyses revealed a significant main effect of the group, F(1, 30) = 11.4,

p< 0.05, η2 = 0.28, on vertical speed deviation, with the novice’s group (M = 565; SD = 130)

showing higher vertical speed deviation than pilot’s group (M = 258; SD = 134). Analyses also

revealed a significant main effect of the scenario, F(2, 60) = 5.1, p< 0.01, η2 = 0.15. Bonferroni

post-hoc test showed that the vertical speed deviation was lower during the control scenario

(M = 265; SD = 103) compared to the easy dual task scenario (M = 403; SD = 141) and the dif-

ficult dual task scenario (M = 566; SD = 184). The scenario × group interaction was not signifi-

cant, F(2, 60) = 0.7, p = 0.52, η2 = 0.02.

Dual task omissions

Analyses showed (Fig 7) a significant main effect of the group on omissions, F(1, 30) = 35.3,

p< 0.05, η2 = 0.54. The novice’s group had a higher number of omissions (M = 2.75; SD = 1)

than the pilot’s group (M = 0.68; SD = 0.5). Analyses also revealed a significant main effect of

the scenario, F(1, 30) = 24.8, p< 0.05, η2 = 0.45. Bonferroni post-hoc test showed that the diffi-

cult dual task scenario (M = 2.37; SD = 0.52) yielded more omissions than the easy dual task

scenario (M = 1.06; SD = 0.3). The scenario × group interaction was significant, F(1, 30) =

16.2, p< 0.05, η2 = 0.35. Bonferroni post-hoc test showed that there were more omissions dur-

ing the difficult dual task scenario (M = 1.5; SD = 1) vs. easy dual task scenario (M = 3.95;

SD = 2) in novices whereas the number of errors did not differ among the two scenarios for

pilots.

Basic eye metrics

Average dwell times. Analyses showed (Fig 8) a significant main effect of group, F(1,

30) = 8.1, p< 0.05, η2 = 0.22, with short average dwell times for the pilot’s group (M = 1.1;

Fig 7. Omission number for the easy dual task scenario and hard dual task scenario among novices and pilots

groups. Error bars represent SD and � indicates main effects p< 0.05.

https://doi.org/10.1371/journal.pone.0247061.g007
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SD = 0.2) compared to the novice’s group (M = 1.51; SD = 0.21). We also found a significant

main effect of the scenario, F(2, 60) = 19.0, p< 0.05, η2 = 0.39. Bonferroni post-hoc showed

that the average dwell time was shorter during easy dual task (M = 1.16; SD = 0.12) and diffi-

cult dual task scenario (M = 1.16; SD = 0.17) than during the control scenario (M = 1.58;

SD = 0.22). There was no significant scenario × group interaction, F(2, 60) = 2.3, p = 0.11, η2 =

0.07. The time spent gazing outside the defined AOIs was relatively low (M = 4.21% for

experts; M = 4.62% for novices), see supplementary material for detailed information (S1 Fig).

Number of dwells. Analyses showed (Fig 8) a significant main effect of group, F(1, 30) =

13.3, p< 0.05, η2 = 0.31, with a higher number of dwells for the pilot’s group (M = 188;

SD = 21) compared to the novice’s group (M = 137.5; SD = 19.9). Analyses also revealed a sig-

nificant main effect of the scenario, F(2, 60) = 13.2, p< 0.05, η2 = 0.31. Bonferroni post-hoc

showed that the number of dwells was higher during easy dual task scenario (M = 172;

SD = 16) and during the difficult dual task scenario (M = 177; SD = 18) compared to the con-

trol scenario (M = 137; SD = 17). There was no significant scenario × group interaction, F(2,

60) = 0.7, p = 0.50, η2 = 0.02.

Markov chain and machine learning

The confusion matrix presented in Fig 9 show that approach based on Cosine KNN reached

classification accuracy up to 91.7% to classify expertise based on transition matrices during the

baseline scenario. As shown in Fig 10, the differences in transition matrices between novices/

pilots are mainly observed in a more sparsed distribution of transition probabilities from one

instrument to another for the pilot’s group. Most of the AOI explored by Novice group

involved AOI concentrated in the PFD (from 1 to 5, see Fig 4) while pilot’s group explore

other combinations of AOI.

Attentional modes and K coefficient

Analyses showed (Fig 11) no significant effect of the group, F(1, 30) = 3.3, p = 0.07, η2 = 0.10,

on the K coefficient. However, the main effect of scenario was significant, F(2, 60) = 38.1,

p< 0.01, η2 = 0.56. Bonferroni post-hoc test showed that K coefficient was lower during the

easy dual task scenario (M = -0.12; SD = 0.06) and during the difficult dual task scenario (M =

-0.01; SD = 0.12) compared to the control scenario (M = 0.28; SD = 0.10). There was also a sig-

nificant difference between the easy dual task scenario (M = -0.12; SD = 0.06) and the difficult

dual task scenario (M = 0; SD = 0.12). The scenario × group interaction was significant, F(2,

Fig 8. From left to right, respectively the average dwell and the number of dwells averaged over all scenarios

among novice and pilot groups. Error bars represent SD and � indicates main effects p< 0.05.

https://doi.org/10.1371/journal.pone.0247061.g008
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60) = 4.8, p = 0.01, η2 = 0.15. Bonferroni post-hoc test showed that K coefficient was lower for

the pilot’s group in the control scenario (M = 0.14; SD = 0.16) compared to the novice’s group

in the control scenario (M = 0.41; SD = 0.16). Bonferroni post-hoc test also showed that K

coefficient was lower for the pilot’s group in the difficult dual task scenario (M = -0.10;

Fig 9. Confusion matrix of fivefold cross-validation using the Cosine K-Nearest neighbors among novices and Pilots

groups during the baseline scenario.

https://doi.org/10.1371/journal.pone.0247061.g009

Fig 10. Markov chains (Left) and transition matrices (Right) AOI-based representations among novices (top) and pilots groups (bottom) during

the baseline scenario.

https://doi.org/10.1371/journal.pone.0247061.g010
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SD = 0.17) compared to the novice’s group in the difficult dual task scenario (M = 0.09;

SD = 0.16).

Sequence analyses

Transition entropy. Analyses showed (Fig 12) a significant main effect of group, F(1,

30) = 6.0, p< 0.05, η2 = 0.17, with the novice’s group (M = 1.22; SD = 0.2) showing lower tran-

sition entropy than pilot’s group (M = 1.56; SD = 0.2). Analyses also revealed a significant

main effect of the scenario, F(2, 60) = 8.4, p< 0.05, η2 = 0.22. Bonferroni post-hoc test showed

that the transition entropy was higher during easy dual task scenario (M = 1.50; SD = 0.16)

and during difficult dual task scenario (M = 1.44; SD = 0.17) than during the control scenario

Fig 11. Ambient focal K coefficient during the control scenario, the easy dual task scenario, and hard dual task scenario among

novices and pilots groups. k> 0 indicates a focal visual attention, whereas k< 0 indicates an ambient visual attention. (error bars represent

SD and � indicates main effects p< 0.05.

https://doi.org/10.1371/journal.pone.0247061.g011

Fig 12. Transition entropy during the control scenario, the easy dual task scenario, and the hard dual task

scenario among novices and pilots groups. Error bars represent SD and � indicates main effects p< 0.05.

https://doi.org/10.1371/journal.pone.0247061.g012
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(M = 1.23; SD = 0.15). The scenario x group interaction term was not significant, F(2, 60) =

0.2, p = 0.82, η2 = 0.01.

Common N-grams sequence. As presented in Fig 13, the count of common n-gram

sequences revealed that pilots have more common sequences than novices during all scenarios

(Control, easy dual task, and hard dual task). The easy dual task and hard dual task scenario

yielded to more common sequences for both groups compared to the control scenario.

Regardless of the n-gram length (3, 4, 5, or 6), during the control scenario, the pilots had more

common sequences than novices. For example, the most frequent tri-gram pattern for the nov-

ices was OTW)VS)OTW—transition between out-of-the-window, vertical speed, and back.

On average, it was repeated 6.4 times. For the pilots, the most frequent tri-gram occurred 17.4

times on average and it was OTW)ECAM)OTW. We also note that the ten most frequent

n-grams included the same AOI at least twice (for instance, repeated transitions between same

instruments). For novices, trigrams involving three unique AOIs were OTW)SPD)ATT

repeated 2.6 times on average, OTW)VS)ATT—2.1 times, and OTW)ATT)SPD—2

times. For pilots, the trigrams involving unique AOIs were OTW)ECAM)ATT repeated

9.4 times on average, OTW)VS)ATT—8.6 times, OTW)ATT)VS—4.6 times, and

OTW)HDG)ATT—3.8 times. For the both easy and hard dual task scenarios, the most fre-

quent trigram involved the ND zone display for both groups OTW)NDz)OTW. It occurred

17.6 times on average for novices and 19.1 for pilots during the easy dual-task scenario, and

21.1 times on average for novices and 22.2 for pilots during the hard dual-task scenario. Our

results showed that for novices only one frequent trigram with unique AOIs found in the con-

trol scenario was also found during the easy dual task scenario (OTW)VS)ATT). However,

this trigram was not found during the hard-dual task scenario. As for the pilots, between four

trigrams with unique AOIs that were found in the control scenario, only 2 of them were found

in the easy dual-task scenario, and only one in the hard dual task scenario (see Table 1). Inter-

estingly, the most frequent 5-grams among novices was OTW)SPD)OTW)SPD)OTW

repeated on average 1.5 times whereas OTW)VS)ATT)OTW)ATT was the most fre-

quent 5-gram among pilots repeated on average 3 times.

Lempel-Ziv Complexity (LZC). Analyses showed (Fig 14) a significant main effect of

group, F(1, 30) = 10.0, p< 0.05, η2 = 0.25, with a higher LZC for the pilot’s group (M = 40.3;

SD = 5.6) compared to the novice’s group (M = 33; SD = 5.2). There was also a significant

main effect of the scenario, F(2, 60) = 13.2, p< 0.05, η2 = 0.30. Bonferroni post-hoc test

showed that LZC was higher during easy dual task (M = 40.46; SD = 4.4) and difficult dual task

Fig 13. Number of common patterns sequence by N-grams length during the control scenario, the easy dual task

scenario, and the hard dual task scenario among novices and pilots groups.

https://doi.org/10.1371/journal.pone.0247061.g013

PLOS ONE Visual scanning strategies in the cockpit are modulated by pilots’ expertise

PLOS ONE | https://doi.org/10.1371/journal.pone.0247061 February 18, 2021 16 / 25

https://doi.org/10.1371/journal.pone.0247061.g013
https://doi.org/10.1371/journal.pone.0247061


scenario (M = 37.9; SD = 4.97) than during the control scenario (M = 31.7; SD = 3.76). The

scenario × group interaction was not significant, F(2, 60) = 0.5, p = 0.62, η2 = 0.02.

Discussion

Several previous studies have reported differences among pilots and novices in how they scan

cockpit instruments using standard metrics such as fixation duration, dwell times, numbers of

saccades, etc. In this work, standard and advanced eye metrics were analyzed in sixteen novices

and sixteen professional pilots during landing scenarios involving different visuo-attentional

effort. All the metrics used in this study allowed characterizing visual scanning. We examined

the impact of expertise and flying difficulty on the visual scanning strategies. As our results

showed, a large number of standard and advanced metrics were sensitive to these two factors.

Each metric has its strengths and weaknesses to bring an understanding of visual strategies.

For instance, while a transition matrix measure and an entropy value are closely related, the

information presented for one and the other is different. A transition matrix makes it possible

to measure the preferred paths when consulting AOIs. It highlights the strength of the links

between AOIs while the entropy will reflect the disorder of these transition sequences. The

application of these metrics can be different. For example, if the aim is to redesign a cockpit

panel, transition matrices can be very useful because they give the strength of the relationship

between AOIs. This metric can allow to bring close together instruments that are often gazed

consecutively, which would help to spare the pilot’s visual attention effort. Concerning LZC

and N-gram method, N-gram compares the patterns used within the group, while LZC

assesses the compressibility of the patterns (how varied the patterns are).

Table 1. The most frequent trigrams involving unique AOIs in the pilot group during the Control Scenario (CS), the Easy Dual-Task Scenario (EDTS), and the

Hard Dual-Task Scenario (HDTS).

Frequent trigram with unique AOIs Av. occur. in the CS Av. occur. in the EDTS Av. occur. in the HDTS

OTW)ECAM)ATT 9.4 0 0

OTW)VS)ATT 8.6 7.7 0

OTW)ATT)VS 4.6 5.5 0

OTW)HDG)ATT 3.8 0 0

Av. occur. = average occurences.

https://doi.org/10.1371/journal.pone.0247061.t001

Fig 14. Lempel-Ziv complexity during the control scenario, the easy dual task scenario, and hard dual task

scenario among novices and pilots groups.

https://doi.org/10.1371/journal.pone.0247061.g014
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Flight performances

Our results showed that expert pilots had better flying performance than novices. In particular,

they had lower speed and vertical speed deviations. The heading variable was not sensitive

most likely because the aircraft was nearly in front of the airfield at the beginning of the scenar-

ios. We assume that these superior flying performances are at least partially due to better visual

scanning strategies gained with expertise.

Basic eye metrics

Expert pilots had shorter average dwell times and a higher number of dwells compared to nov-

ices. This result has been interpreted in the literature [15, 66, 67] as an important sign of exper-

tise, built on an optimization of the visual information processing, allowing faster extraction of

information when consulting a flight instrument. This strategy allows consulting more often

the various instruments, resulting in a better updating of situation awareness [68]. This result

also validates the existence of a superior perceptual encoding of domain-related patterns [40]

in expert pilots.

Markov chains and attentional mode

Based on transition matrices, a machine learning approach using Cosine KNN algorithm

reached an accuracy of 93% to classify expertise. Expert pilots had more heterogeneous transi-

tion probabilities when switching from an instrument to another. This suggests that experts

include more flight instruments in their visual scans and succeed to balance their time between

them. The focal-ambient K coefficient showed that attention was dominantly focal (positive

value) in both groups during the control scenario. However, the attention was more focal in

the novice’s group vs the pilot group. It can be assumed that expert pilots have a greater spatial

distribution of their visual attention than novices. The K coefficient also showed sensitivity to

the task difficulty. By adding a monitoring task (Easy dual-task scenario) inducing a supple-

mentary display to monitor, visual attention switched from focal to ambient for the 2 groups.

Interestingly, by further increasing the time pressure of the monitoring task (hard dual-task

scenario), we found that while the induced dual-task changed the ambient-focal strategy of the

novices, the pilot group kept their strategy consistent across experimental scenarios.

Sequence analyses

As showed by the transition entropy analysis, more information (bits) was required to describe

expert pilots’ visual strategies than the novice group. Thus, the pilot group exhibited more

complex visual scanning patterns. The n-grams analysis of common sequences highlighted the

existence of more similar visual strategies (within the professional pilot group) built with

expertise as well as more elaborate visual strategies considering common visual scanning pat-

terns of size 6 (6-grams). Furthermore, this analysis revealed that some complex patterns (that

include only distinct flight instruments) found in the control scenario were still present in

both easy and hard-dual task scenarios. We expected that adding a double task would impact

the visual scanning. Our results revealed that pilots kept their visual scanning strategies related

to the manual landing task by maintaining visual patterns (found in the control scenario) in

the dual-task scenarios (easy and hard). We back these results up with the dual task perfor-

mances and flight performances where maintaining patterns related to the landing task (con-

trol scenario) during dual task scenarios (easy dual task and hard dual task) would maintain

relevant visual activity for maintaining flight performance and performing callbacks. Finally,

AOI redundancies were also found in both groups, i.e. n-grams having twice several same AOI
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in an n-gram sequence. The complexity of the Lempel-Ziv demonstrated that redundancies

were lower in the pilots group. Pilots displayed a higher complexity and richness of visual pat-

terns, containing a larger variety of possible combinations.

Expertise theories

Three theories can explain the expert superiority in visual domains. First, the theory of long-

term working memory [69] assumes that expertise extends the capacities for information pro-

cessing. This theory assumes that the limited-capacity assumption should be reconsidered

when related to an expert’s specific domain. Related to this hypothesis, experts encode and

retrieve information more rapidly than novices. This expert’s rapid information processing is

reflected in shorter dwell durations. The second theory is related to the information-reduction

hypothesis [70]. This assumes that expertise optimizes the amount of processed information

by neglecting task-irrelevant information. Our results demonstrated that expert’ group keeps

maintaining the visual scanning strategies related to the piloting activity during the hard dual

task scenario while novice under-performed during this scenario. This result highlights the

expert’s ability to focus toward relevant information to perform the task neglecting redundant

information. Eventually, the third theory is the holistic model of image perception [71]. It

focuses on the extension of the visual span. Charness et al. [72] shown that experts extract

information from widely distanced and parafoveal regions, producing patterns of saccadic

selectivity by piece saliency [73]. Our results suggested that expert over-performed the novice

group in maintaining their speed. N-gram analysis revealed the visual scanning strategies

related to speed were not found for the pilots whereas novices presents this AOI in their

sequences. These results suggested the ability for experts to process information through paraf-

oveal processing.

Limitations

There are some limitations to this study. We compared professional pilots with non-pilots

only. The comparison of these two very different profiles can artificially increase the observed

differences in terms of ocular behavior. A further research should consider participants with

different levels of expertise from novice to expert (e.g., every 1000 hours) to finely examine the

implementation of the visual strategies with expertise. Another limitation concerns the flight

simulator used in the study. While it is somehow representative and allows to simulate real

flight with all primary displays, one should consider a full flight simulator to better fit with the

operational context. This experiment could be also replicated with different meteorological

conditions. Finally, the eye tracker devices are more and more mature and accurate (about 1˚

at a distance of one meter). However, care should be taken when analyzing contiguous AOIs,

the accuracy limitations of eye tracking systems could lead to errors in this situation. Most

eye-tracking studies rely on the eye-mind hypothesis which states that users fixate on an area

that relates to the currently processed information. However, special care should be taken

when analyzing areas of interest close to each other. Pilots can perceive some information in

peripheral visions, for example, speed changing via the movement of the speed tape [74]. The

experts may succeed in maintaining a constant speed by looking only at the attitude zone. This

would explain why the “AOI SPD” corresponding to speed tape is not often found in the most

frequent patterns (n-grams). Finally, we should also specify that eye tracking allow capturing

only overt attention, for example when a person moves his eyes in the direction of an object,

and not covert attention, when an individual focus his attention on an object, but without

moving the eyes toward that object.
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Conclusion

This work highlighted the difference between novices and expert pilots concerning visual

scanning strategies and flight performances. Our result confirmed that expertise exerts a top-

down modulation on gaze behaviour [10]. We used a wide variety of standard and advanced

metrics to uncover the modification of the gaze behavior bring by expertise. Expert pilots

have a more efficient perception of the information, better dispersion of their attention, and

more elaborate visual patterns. Expertise makes it possible, despite a dual-task costly in

visuo-attentional resources, to maintain visual patterns linked with the flying task (i.e. the

irrelevant dual-task did not alter the nominal visual behavior). Overall, the eye metrics used

in this research are relevant to finely assess pilot’s gaze behavior in the cockpit and can con-

tribute to better characterize visual scanning in the cockpit, an important topic for safety

[75]. These eye metrics can be used to evaluate pilots during their training program. For

example, it might be possible to follow the evolution of their scanning strategies and deter-

mine whether they tend to resemble that of expert pilots. In the future, it might be possible to

assess cockpit monitoring during real flight [76, 77]. In this sense, recent studies investigated

the possibility to use an eye tracking assistant to warn pilots using a database of the visual

behaviour of expert pilots [78–80]. Our results suggest that such on-board eye tracking could

be customized based on pilot experience. Finally, we believe that the eye metrics employed in

this study can be also useful for practitioners and researchers in other fields such as air traffic

control and automotive.
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