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Disease transmission prediction across wildlife is crucial for risk assessment of emerging
infectious diseases. Susceptibility of host species to pathogens is influenced by the
geographic, environmental, and phylogenetic context of the specific system under study.
We used machine learning to analyze how such variables influence pathogen incidence
for multihost pathogen assemblages, including one of direct transmission (coronaviruses
and bats) and two vector-borne systems (West Nile Virus [WNV] and birds, and
malaria and birds). Here we show that this methodology is able to provide reliable
global spatial susceptibility predictions for the studied host–pathogen systems, even
when using a small amount of incidence information (i.e., <20% of information in a
database). We found that avian malaria was mostly affected by environmental factors
and by an interaction between phylogeny and geography, and WNV susceptibility
was mostly influenced by phylogeny and by the interaction between geographic and
environmental distances, whereas coronavirus susceptibility was mostly affected by
geography. This approach will help to direct surveillance and field efforts providing cost-
effective decisions on where to invest limited resources.
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A lasting challenge in disease ecology is to determine pathogen emergence risks (1, 2).
This task has become cumbersome because human impacts may uncouple biogeographical
patterns, altering the ecological and evolutionary dynamics of host–pathogen systems (3,
4). The rate of human impacts on natural environments has increased steadily during
the last 2 centuries, opening opportunities for novel host–parasite associations via host-
switching (5, 6). The number of emerging infectious diseases in both humans and
nonhuman organisms has increased during the last 3 decades (7–9), particularly across
the human–domestic–wildlife interface, for instance, via biological invasions (10, 11).
In the case of human diseases, emergence events are more likely to take place in tropical
regions with warmer and humid climates, in areas with higher host diversity—particularly
mammals such as rodents, bats, and nonhuman primates—and in regions where there is
a higher land use change rate toward agroecosystems and urbanization (6, 12–15).

Even when viruses and bacteria are the most common zoonoses (7, 8), it is difficult to
predict what kind of pathogen will produce the next medical and/or veterinary challenge
(8, 16). Thus, it would be ideal to provide a general framework applicable to a diverse
array of host–pathogen systems that considers complete host assemblages, together with
their geographic, environmental, and phylogenetic contexts in order to predict host risks
and to discover potential novel reservoirs (17). The most recent emergence of COVID-19
(i.e., severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) human pandemic
(18) is a clear example of a global need to understand how zoonotic pathogens distribute
among related taxa that are known to transmit them (e.g., bat and rodent host species), as
well as to determine how likely it is for other related host species to share zoonosis based
on geographic, environmental, and/or phylogenetic distances. Studies spanning a diverse
array of host–parasite interactions have demonstrated that a large amount of variation
in host breadth is explained by host phylogenetic relationships (19–24), environmental
variables (13, 23, 25), and the richness of both parasites and host clades (15, 26). Although
studies focusing on viruses and mammals have provided spatial information on emergent
diseases hot spots and their environmental correlates (12, 13, 27), their results are not
necessarily generalizable to other host–pathogen systems. Here we contrast predictions
of multihost–multipathogen assemblages estimated from geographic, environmental, and
phylogenetic distances via machine learning statistical protocols in order to forecast
infection susceptibility to potential hazards (1). We implemented our approach to two
different Diptera-borne parasite systems (i.e., avian malaria and West Nile Virus [WNV]
infecting birds) and to directly transmitted coronaviruses infecting bats, in order to
determine the generality and applicability of our procedure. The proposed predictive
framework (Fig. 1), in addition to known hosts, also helps to identify potential host species
where the pathogen has not been previously detected, or it has not been considered in
field screening projects, or it is not necessarily the host species with the highest incidence.
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Author contributions: Á.L.R.-F., D.S.-A., and A.L.-N. de-
signed research; Á.L.R.-F., D.S.-A., and A.L.-N. performed
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1. Take a random sample of "known" and "unknown" host species and
reshu e the order of the rows.
2. Conduct cross validation by splitting the training-testing dataset
several times, and take the average of the cross validations.
3. Estimate nal model accuracy.

1. Search for pathogens incidence data.
2. Select the hosts that concentrate the highest amount of incidence
information by applying a power-law distribution.
3. Mark hosts as "known" (i.e., informative pathogen incidence) and
"unknown" (i.e., low or no incidence).

1. Select host-pathogen system for a particular region of interest.
2. Acquire geographic distributions, phylogeny, and extract
enviornmental conditions for host species.
3. Estimate the phylogenetic, geographic, and environmental distances
between all host pairs.
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1. Generate a parameter grid for the algorithm (e.g., Random Forests)
and test it repeated times.
2. Choose the best tted models (i.e., which parameters minimize the
error according to the best evaluation metrics like AUC-ROC and
accuracy).
3. Apply best tted model to estimate the nal probability of
susceptibility across all "known" and "unknown", and estimate response
curves and variable importance.

1. Explore host-pathogen susceptibility results according to different
independent variables (e.g., geographic, environmental, phylogenetic
spaces).
2. Conduct post-hoc analyses and representations in geographic,
environmental, or phylogenetic dimensions.
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Fig. 1. Workflow of steps to estimate the susceptibility of wildlife to diseases. The steps within each of the six main steps (A–F) summarize the proposed
methodology to estimate wildlife susceptibility to infectious diseases based on machine learning.

This endeavor is possible due to the implementation of classifica-
tion algorithms via machine learning protocols that aid in iden-
tifying the influence of independent variables on known cases of
pathogen incidence. This allows us to estimate a probability of sus-
ceptibility on potential host species as a function of their similarity
in the combination of independent variables. This framework has
several advantages compared to more traditional approaches: it
is statistically robust even for biased pathogen incidence data,
the outcome is consistent with previous biological knowledge
of the host–pathogen system under study, and by considering
host similarity under multiple dimensions simultaneously (e.g.,
geographic, environmental, and phylogenetic) we are able to infer
probabilistically the susceptibility of a host species to a pathogen.

Avian malaria is a vector-borne disease generated by parasites
of the genus Plasmodium (Haemosporida: Plasmodidae) (28),
in particular by the species Plasmodium relictum that is a host
generalist global invasive pathogen—responsible, along with habi-
tat destruction and transformation, for the extinction of many
Hawaiian endemic birds (29)—composed of five genetic variants
(30). Avian hemosporidians have faced few geographical barriers
over their evolutionary history, readily dispersing across biogeo-
graphical regions (31). Furthermore, hemosporidians are able to
infect a large array of host species, but they usually infect phyloge-
netically closely related hosts and not necessarily hosts with similar
ecological niches (21). Temperature and rainfall seasonality pre-
dict a higher parasite host specialization and assemblage unique-
ness (32); for Plasmodium, there is a negative association between
maximum temperature and phylobeta diversity, suggesting that as

temperature increases, communities become more homogeneous
(33). Thus, for avian malaria we predict that phylogenetic and
environmental variables must be the most important factors pre-
dicting bird species susceptibility. WNV (Flaviviridae) is also a
vector-borne pathogen transmitted mostly by mosquitoes of the
genus Culex; it is composed of different genetic strains with vary-
ing degrees of virulence (34). WNV has well-established sylvatic
cycles involving birds as primary host species and reservoirs—
particularly Passeriformes, Charadriiformes, Falconiformes, Ac-
cipitriformes, and Piciformes (35, 36). Although humans and
other nonhuman mammals are regarded as incidental or dead-
end hosts (36), WNV has been detected infecting a large array of
mammal orders (e.g., Chiroptera, Carnivora, and Artiodactyla),
with a tendency to specialize in rodents (34, 37). Similar to avian
malaria, WNV is geographically widespread—aided via migratory
birds (38)—and it is rather limited by climatic conditions (e.g.,
temperature and precipitation) and land use type that affect vector
survival and reproduction (39, 40). Thus, for WNV we predict
that environmental variables first, followed by phylogenetic host
relationships, would be the most important factors predicting
susceptibility of bird species. Coronaviruses are a highly diverse
group of directly transmitted parasites, where zoonotic pathogens
creating severe human health effects (e.g., SARS-CoV-2 and Mid-
dle East respiratory syndrome) are but a small proportion of the
diversity recorded in bats (41–43). This is actually a general trend
for zoonoses that have affected human populations during the last
3 decades (i.e., outbreaks are generated by a small fraction of all the
zoonotic richness recorded in humans; about 80% of cases from
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Fig. 2. Complementary cumulative density function (CDF) of host–pathogen incidence for the three studied systems: (A) Birds-Plasmodium relictum, (B) Birds-
West Nile Virus, and (C) Bats-coronaviruses. The red line in the plots shows the theoretical incidence that corresponds to the power law distribution, and the
colored dots correspond to the species with highest amount of incidence information useful in model calibration. P value within the plots indicates that none
of the complementary CDFs of host–pathogen systems statistically departed from a power law distribution.

1980 to 2010 are generated by 20% of recorded zoonoses) (8).
There is a positive correlation between coronavirus diversity and
bat diversity, and there is also coronaviruses assemblage turnover
determined by beta phylodiversity of bats across biogeographical
regions (41). Furthermore, coronaviruses readily switch hosts
creating a challenge to discover the intermediate hosts acting as
reservoirs and aiding in transmission (44); this is particularly
relevant when the system includes migratory bat species that are
able to connect wild communities across large distances (27).
The bat coronaviruses system does not seem to be affected by
climatic conditions; instead, its distribution and host breadth
are determined by ecological (e.g., gregariousness, diet, and dis-
persal/migration) and phylogenetic factors, where its expansion
may be aided by sympatric rodent species (27, 45). Therefore,
we expect that geographical and phylogenetic variables are the
most important in determining coronavirus host susceptibility. In
this study, we showed that our methodology is able to provide
reliable spatial infection risk predictions by using a small amount
of information from a host–parasite assemblage (i.e., <20% of
host–pathogen incidence information). We attempt to provide a
generalizable methodology across host–parasite systems identify-
ing host community hot spots of infection risk at a global scale.

Results

Host–Pathogen Incidence. We found that the cumulative distri-
bution function of pathogen incidence in all three assemblages
follows a power law distribution despite being different epizooti-
ological systems (Fig. 2). This allowed us to select the largest

amount of incidences for model calibration by using the lowest
amount of data (see Host–Pathogen Data subsection in Materials
and Methods), while still preserving the generality and explanatory
power of the independent variables despite biases in sampling.

Accuracy of the Models. In Fig. 3 we show the accuracy and the
area under receiver operating characteristic curve (AUC–ROC)
for each of 1,000 runs of random forest models. Both metrics show
an acceptable performance comparing the median of the 1,000
runs in the three host–pathogen systems.

Species Susceptibility and Variable Importance. We found that
for the three systems, host species with the highest pathogen
incidence were not necessarily those predicted to be the species
with the highest probability of being susceptible (Tables 1–3 show
top 10 species by incidence and susceptibility; see https://doi.org/
10.5281/zenodo.6510454 for all species results). We discovered
susceptible host species that were not part of model construction
or calibration; furthermore, some host species with low incidence
values were predicted to have a high degree of susceptibility. Thus,
currently known incidence values are not necessarily determinant
of host susceptibility to pathogens in a given system. Yet, each
host–pathogen system differs in the variables that are impor-
tant to determine susceptibility (i.e., geography, environment,
and phylogeny). Avian malaria was mostly affected by environ-
mental distance between hosts, followed by a combination of
host geographic distribution and host phylogenetic relationships;
WNV was influenced by a combination of the three sets of
predictors, while bat coronaviruses were mostly affected by the
geographic distribution of susceptible host species (Fig. 4). From a
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Fig. 3. Accuracy and area under receiver operating characteristic curve
(AUC–ROC). Each model was run on a balanced resample of infected known
hosts and potential unknown hosts. We select the best model after the
cross-validation in the training dataset and perform the metrics on the
testing dataset for each sample. Accuracy (purple) is the proportion of well-
classified points in the test dataset after the cross-validation. AUC of the ROC
curve (yellow) is the proportion of the true positive rate against the false
positive rate, where values between [0.75, 0.9) are considered as optimal
performance.

biogeographic perspective, avian malaria hosts showed more sus-
ceptibility across the Paleartic region, followed by the Afrotropical
and Indo-Malay regions; the WNV hosts had higher susceptibility
in the Paleartic and North American regions and lower toward the
Indo-Malay region; finally, the bat coronavirus hosts’ susceptibil-
ity was strongest in the Indo-Malay and the Afrotropical regions
and the southwestern portion of the Paleartic region.

We found that the point patterns of the empirical data followed
the richness of susceptible species (Fig. 4). The point pattern
analyses were conducted using the georeferenced information
from the databases and are considered independent to the model
given that these points never formed part of the implementation
of the model. The spatial point density fits better in the case of
avian malaria and WNV, whereas for the coronaviruses system the
uncertainty is due both to the use of a higher taxonomic level
(i.e., family) and to the fact that the geographical data for the
empirical incidence information were obtained using geopolitical
units (e.g., capital cities or regions of the study) given the lack of
exact geospatial information.

Environmental Envelopes. Regarding superposition in environ-
mental space, we present the environmental envelopes as ellipses
of the six species with the highest incidence and susceptibility
for the three host–pathogen systems (Fig. 5). Overall, the three
systems showed a large amount of overlap in the host species with
highest incidence; however, this trend was larger for the bird–
malaria system in comparison to the host species of the other two
systems.

In the case of environmental envelopes for susceptibility, in the
bird–malaria system, species occupied a broad spectrum of the
first principal component similar to the highest incidence host
species, while for bird–WNV and for bat coronaviruses the most
susceptible species occupied a broader spectrum of environmental
space. However, this is not necessarily reflected in the global
variable importance pattern (Fig. 4).

Susceptibility as a Phylogenetic Trait. In the case of avian
malaria, we observed that all susceptible bird species belonged
to the order Passeriformes, with particular high susceptibility in
the families Fringillidae, Motacillidae, Emberizidae, and Acro-
cephalidae (Table 1 and Fig. 6). For the WNV, we observed that
both passerine and nonpasserine birds were susceptible (Table 2
and Fig. 6). Among the passerines, the bird families with high
WNV susceptibility included Turdidae, Sittidae, and Corvidae. In
the case of nonpasserines, the most susceptible families included
Rheidae, Anatidae, Phasianidae, Pteroclidae, Columbidae,
Rallidae, and Charadriidae, among others. Finally, for the bat
coronaviruses it is clear that this virus family is widespread
across the Chiroptera. Bat genera with high susceptibility
included Rhinolophus, Eidolon, Rousettus, Pipistrellus, Vespertilio,
Tylonycteris, and Scotophilus, among others (Table 3 and Fig. 6).

Discussion

Pathogen species responses to ecosystem factors are not general
(12, 46–51). Idiosyncratic outcomes (49, 52–55) have called for
the urgent need of tools in disease ecology to forecast when and
where pathogen outbreaks are likely. Here we have provided a
methodological framework that considers geographical, environ-
mental, and phylogenetic variables of host species applicable to
any host–pathogen system (e.g., with direct or indirect trans-
mission). Although we have used the procedure at global scales,
the approach is applicable at different spatial scales from the
landscape to the global (i.e., >10 km; sensu ref. 56), which is
important because factors may not behave in the same manner
as the temporal or spatial scales of analysis change (e.g., refs. 51,
55, 57). In this way, it is possible to identify those factors most
relevant to each system in order to determine hosts with a higher
risk of infection, including those host species that have not been
sampled in field surveys or that have not been recorded as infected
by the parasite under study, providing a way to manage, prevent,
and mitigate pathogen risk.

As expected from knowledge on parasite life cycles, our method
identified relevant factors for each system. Avian malaria—
P. relictum—is a widely distributed and host generalist invasive
species, infecting 300 bird species worldwide (30). This parasite
species is composed by five genetic lineages (30). Although
they are widespread across continents, there is a geographical
division in their nuclear genetic variation: SGS1 and GRW11
genetic variants are mostly restricted to Europe and Asia,
whereas GRW04 is the only lineage in the Americas with
nuclear genetic variants that are not present in Africa, Europe,
and Asia (58). Accordingly, our models correctly identified the
geographical and environmental factors as the most relevant;
there was also an interaction between geography and phylogeny,
where P. relictum mostly infects passerines. Although avian
malaria is a widespread generalist pathogen, previous studies
have demonstrated that avian hemosporidians, even those with
large host breadths, infect mostly closely related (i.e., family-
level and lower taxonomic ranks) host species (e.g., refs. 21,
59). Moreover, P. relictum has a worldwide genetic structure that
corresponds largely with continental masses, which have different
avian compositions corresponding to different evolutionary
histories of biogeographical regions (58, 60). Avian malaria
has basically colonized all types of environments across the
world, so environmental conditions can affect its prevalence
only in a seasonal fashion in temperate and cold climates, where
Culicidae vectors are not active during the cold months or at high-
elevation environments (e.g., refs. 61, 62), which agrees with the
importance of temperature seasonality and mean temperature

4 of 12 https://doi.org/10.1073/pnas.2122851119 pnas.org

https://doi.org/10.1073/pnas.2122851119


Fig. 4. Susceptibility richness maps, point intensity pattern as a function of susceptibility richness (ρ), and variable importance in each host–pathogen system.
The black dots are empirical observations for the focal pathogen (Matherials and Methods). (A) Bird species richness with susceptibility value to P. relictum.
(B) Point intensity pattern as a function of species susceptibility to P. relictum in bird species. (C) Summary of variable importance for bird species susceptibility
to P. relictum. (D) Bird species richness with susceptibility to WNV. (E) Point intensity pattern as a function of species susceptibility to WNV in bird species. (F) Sum-
mary of variable importance for bird species susceptibility to WNV. (G) Bat species richness with susceptibility to coronaviruses. (H) Point intensity pattern as a
function of species susceptibility to coronaviruses in bat species. (I) Summary of variable importance for bat species susceptibility to coronaviruses. In all three
cases, susceptible host species correspond to susceptibility value ≥0.5, and the importance of the variables was determined after 1,000 random forest runs
(boxplots of variable importance summarize the second, the median, and the third quartile, and the gray bar corresponds to the mean of variable importance).

on hemosporidian prevalence (32, 62). Our model corroborates
the house sparrow (Passer domesticus) as an important species
in terms of infections by P. relictum, which is also a widespread
invasive urban bird known to outcompete resident species in
invaded ranges (63) and serves as reservoir of avian malaria that
can be transmitted to native birds (64, 65). Interestingly, the
model did not include any of the highly infected (i.e., high-
incidence) Sylvia spp. within the top 10 most susceptible bird
species to avian malaria; instead, other species were included in
the top 10 (Table 1; https://doi.org/10.5281/zenodo.6510454).
Our model provides a list of highly susceptible hosts that
may either have no recorded avian malaria infections (e.g.,
genus Motacilla, Anthus godlewskii, and Fringilla montifringilla)
or present either high (P. domesticus) or low incidence (e.g.,
Hirundo rustica and Acrocephalus schoenobaenus; Table 1;
https://doi.org/10.5281/zenodo.6510454), hence providing a
guide in terms of potentially important hosts and reservoirs of
avian malaria for future sampling. Regarding the geographic
context, Eurasia is the region that our model predicts with
the highest species richness of susceptible avian hosts, more
specifically, the region encompassing southern Russia, eastern
Kazakhstan, and northwest Mongolia that contains a high species
richness of susceptible hosts but is clearly undersampled.

WNV is a pathogen composed of different genetic variants
characterized by different degrees of virulence and considered
to be of concern to birds’ health, with occasional human and
nonhuman mammal cases (36). In recent years, it has become
clear that WNV readily infects mammals from different orders,
specializing to some degree in rodents, but mammal competence
to WNV is not well determined (22). This information suggests
that WNV may not be limited by host phylogenetic associations,
with potential to spillover across birds and mammals (e.g., ref. 66).

Moreover, it should not be limited by geography given the long list
of bird and mammal hosts recorded so far, many of which have
broad geographical ranges—including long-distance migrants
(22, 38). Although our WNV model only included bird species,
it correctly identified environmental variables as a relevant factor
determining host susceptibility, interacting with geography, and
having a similar influence by host phylogenetic associations.
WNV is an endemic pathogen of Africa that has dispersed across
the world mainly in temperate Europe, North America, and Asia.
Our model identified that the highest richness of susceptible
bird hosts is located in North America and Eurasia. The lack of
sampling is one of the reasons why WNV may have not been
commonly recorded in birds of tropical regions, where urban and
nonurban cycles have been established via wild and domestic birds
(e.g., ref. 67). A second reason may be a high diversity of both birds
and mammals in invaded tropical regions that may act as a dilution
factor, particularly by infectious mosquito bites intercepted by
rodents and bats that seem to be refractive to WNV infections
(e.g., ref. 34). Third, WNV hosts have a different evolutionary
history in invaded regions; lower phylogenetic similarity may also
imply more divergent immune systems (e.g., ref. 68), reducing
WNV infection success. Moreover, WNV may be competing both
with closely related flaviviruses (e.g., Saint Louis encephalitis
virus) and with other WNV genetic variants recently evolved
in invaded areas [e.g., Florida (69)] that are better adapted to
native hosts and thus are less virulent. Fourth, high temperatures
interrupt the WNV transmission cycle in mosquitoes—similar
to what happens with avian malaria (70), where the optimal
temperature for transmission is between 24 and 25 ◦C (71).
As global warming increases, then WNV is expected to expand
toward currently cooler areas (71), something that researchers can
start exploring by using real-time tools like the one applied to
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Fig. 5. Environmental space for the three host–pathogen systems. The black shapes represent the centroid of the environmental envelope for each host
species. The PC axes summarize the broad temperature (PC1) and precipitation (PC2) conditions at a global scale, where the zero value indicates the average for
each axis. (A) Environmental envelopes for the top six bird species with highest incidence of P. relictum. (B) Environmental envelopes for the top six bird species
with highest predicted susceptibility to P. relictum according to the model. (C) Environmental envelopes for the top six bird species with highest incidence of
WNV. (D) Environmental envelopes for the top six bird species with highest predicted susceptibility to WNV according to the model. (E) Environmental envelopes
for the top six bat species with highest incidence of coronaviruses. (F) Environmental envelopes for the top six bat species with highest predicted susceptibility
to coronaviruses according to the model.

the avian malaria system in Hawaii (72), particularly considering
the contribution of highly important variables according to this
methodological framework.

Finally, it is interesting to note that the well-sampled invasive
house sparrow is not among the top 10 most susceptible bird
hosts (Table 2; https://doi.org/10.5281/zenodo.6510454). How-
ever, there is good agreement between the top 10 bird species
with higher incidence and those with higher susceptibility as
predicted by our model, where corvids, jays, pigeons, and thrushes
are considered highly susceptible to WNV corroborating previous
studies (35, 36). In terms of geography, WNV is predicted with
a high species richness of susceptible hosts species across North

America and western Europe, and lower across central Asia and
the territories of Russia, Kazakhstan, Mongolia, and India; yet,
some of these regions have no or very low incidence records for
this pathogen (e.g., Sundaland and Central Asia), while there is a
clear bias toward Western Europe and North America.

Geography was the most important factor determining bat
coronavirus susceptibility, which is modulated by the interaction
of geography with host phylogeny, and is supported by a study
of viral communities in bats and rodents (e.g., ref. 27). Coron-
aviruses are likely to successfully invade any geographical region
of the world that they can reach either via natural dispersal (e.g.,
bat long-distance migration and host species geographical range
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Fig. 6. Susceptibility as a trait mapped onto the phylogeny of the three host–pathogen systems. (A) Bird species susceptibility to P. relictum. (B) Bird species
susceptibility to WNV. (C) Bat species susceptibility to coronaviruses. The color shapes indicate host families or genera with higher susceptibility to a pathogen.

overlap) or assisted dispersal (e.g., world trade of legal and il-
legal wild animals). Also, rodents—the most diverse mammal
order—can act as an alternative abundant reservoir across the
world, aiding in the dispersal and maintenance of bat viruses
and other pathogens (27, 45, 73). Phylogenetically conserved
host traits play a role in bat virus incidence and dispersal; for
instance, roosting behavior in high-density colonies and simi-
lar diets increase pathogen transmission (27, 73). In addition
to viruses, bats are able to carry other type of Diptera-borne
(mainly via flies of the Streblidae and Nycteribiidae families)
pathogens such as bacteria (e.g., Bartonella spp.) and protozoans
(e.g., Trypanosoma spp. and Polychromophilus spp.) that can be-
come zoonotic in both humans and other animals (73). Given the
diverse ecologies and phylogenetic relationships of these parasite
systems, and considering that most of the bat fly–parasite inter-
actions are poorly known across different geographical regions
(73), we recommend our methodological procedure to be applied
in order to discover potential hosts across their geographical
distributions. Unlike the cases of avian malaria and WNV, there
was correspondence between the top 10 bat species with highest
incidence values and those with the highest susceptibility (Table 3;
https://doi.org/10.5281/zenodo.6510454). This could be due to a
coarser viral taxonomic resolution for this system, which suggests
the necessity to conduct a subsequent sensitivity analysis of the
current protocol regarding the adequate number of species used
for model training and testing.

Our methodological framework can help to direct researchers’
attention to including other highly susceptible bat species that

may act as reservoirs and represent potential sources (hazards) of
emergent diseases (e.g., Pteropus rodricensis, Myotis muricola, Rhi-
nolophus beddomei, and Laephotis angolensis; Table 3), particularly
in Southeast Asia, tropical Africa, and Europe where our model
identified the highest richness of susceptible bat species. Following
predictions of host susceptibility for coronaviruses, high-interest
regions for sampling correspond to India and parts of the Middle
East and Central Asia, where there are currently no incidence
records.

The three cases described here demonstrated that variable im-
portance changes across disease systems but that the structure of
the community in the context of their phylogenetic, geographic,
and environmental signatures is relevant to predict disease suscep-
tibility across (actual or potential) taxa. A subsequent necessary
step with this framework would be to apply it to a pathogen
capable of crossing the boundaries among several vertebrate clades
in order to continue testing the broad applicability of the method.

Although some simple modeling approaches using entropy
measures or parasite geographic cooccurrence patterns generate
solid predictions of pathogen outbreaks and reemergence poten-
tial into the future (e.g., refs. 2, 74), it is of utmost importance
to keeping in mind key aspects about the biology of the disease
systems (e.g., microhabitat and microclimatic conditions, and
diverse functional traits) in order to make appropriate inferences
(e.g., ref. 49). One of them is the distinction between the type of
transmission (direct or vector-borne; e.g., ref. 2) and type of host
(ectothermic vs. endothermic). Thus, the applicability of some
methodological frameworks (e.g., refs. 20, 75, 76) as a general
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Table 1. Avian malaria incidence and predicted susceptibility

Order Family Species Susceptibility Incidence
Top 10 species by incidence

Passeriformes Passeridae P. domesticus 0.832 188
Passeriformes Paridae Parus major 0.754 50
Passeriformes Acrocephalidae Acrocephalus arundinaceus 0.824 23
Passeriformes Sylviidae Sylvia borin 0.726 19
Passeriformes Passeridae Passer montanus 0.882 17
Passeriformes Fringillidae Fringilla coelebs 0.760 16
Passeriformes Sylviidae Sylvia melanocephala 0.654 16
Passeriformes Cettiidae Cettia cetti 0.010 12
Passeriformes Muscicapidae Ficedula albicollis 0.128 12
Passeriformes Sylviidae Sylvia atricapilla 0.506 12

Top 10 species by susceptibility
Passeriformes Passeridae P. montanus 0.882 17
Passeriformes Motacillidae Motacilla citreola 0.87 NA
Passeriformes Motacillidae Motacilla alba 0.866 NA
Passeriformes Motacillidae Motacilla cinerea 0.852 NA
Passeriformes Fringillidae Carpodacus erythrinus 0.846 4
Passeriformes Hirundinidae H. rustica 0.836 1
Passeriformes Passeridae P. domesticus 0.832 188
Passeriformes Motacillidae A. schoenobaenus 0.832 3
Passeriformes Fringillidae A. godlewskii 0.832 NA
Passeriformes Passeridae F. montifringilla 0.832 NA

tool can be difficult and somewhat idiosyncratic, thus the need to
have robust and easy-to-use tools that incorporate variables that
are relevant in multiple biogeographic contexts, as well as different
spatial and temporal scales. Ease in implementation comes at
a cost because of oversimplification of the relationship of the
variables in each of the disease systems (i.e., as we did here by
using a measure of the central tendency of the distances between
host–pathogen interactions). Nonetheless, our results confirmed
that it is possible to classify host susceptibility with machine
learning protocols. Moreover, the variables used for modeling may
explain diverse biological phenomena other than susceptibility
to a disease, allowing this framework to be used as a means

to postulate different hypotheses regarding the biogeography of
biotic interactions. These are methodological aspects that could
be modified by the user depending on the question and the spatial
and temporal scale of the analysis, as well as on the availability of
data [e.g., taxonomic distances instead of phylogenetic distances
(77) and past or future scenarios (49, 78)].

Here we showed that the three antagonistic systems have a close
match to a power law distribution, similar to what Jordano et al.
(79) showed for the topology of mutualistic interaction networks.
The avian malaria and the coronavirus systems seem to follow
a pattern more similar to a truncated power law distribution,
however, which was also identified for mutualistic interactions

Table 2. WNV incidence and predicted susceptibility

Order Family Species Susceptibility Incidence
Top 10 species by incidence

Passeriformes Corvidae Corvus brachyrhynchos 0.764 10, 014
Galliformes Phasianidae Gallus gallus 0.640 4, 777
Passeriformes Corvidae Aphelocoma californica 0.746 3, 433
Passeriformes Passeridae P. domesticus 0.668 1, 949
Passeriformes Cardinalidae Cardinalis cardinalis 0.618 1, 294
Columbiformes Columbidae Columba livia 0.684 919
Passeriformes Corvidae Cyanocitta cristata 0.755 801
Galliformes Odontophoridae Callipepla californica 0.700 612
Columbiformes Columbidae Zenaida macroura 0.672 610
Gruiformes Rallidae Fulica atra 0.664 365

Top 10 species by susceptibility
Passeriformes Corvidae C. brachyrhynchos 0.764 10, 014
Passeriformes Corvidae C. cristata 0.755 801
Passeriformes Corvidae A. californica 0.746 3, 433
Passeriformes Turdidae Turdus migratorius 0.738 319
Passeriformes Corvidae Podoces panderi 0.73 NA
Passeriformes Corvidae Cyanocitta stelleri 0.726 207
Passeriformes Sittidae Sitta villosa 0.718 NA
Passeriformes Sittidae Sitta canadensis 0.717 1
Galliformes Odontophoridae C. californica 0.7 612
Passeriformes Corvidae Podoces pleskei 0.698 NA
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Table 3. Coronaviruses incidence and predicted susceptibility

Order Family Species Susceptibility Incidence
Top 10 species by incidence

Chiroptera Pteropodidae Eidolon helvum 0.630 435
Chiroptera Rhinolophidae Rhinolophus sinicus 0.634 184
Chiroptera Rhinolophidae Rhinolophus ferrumequinum 0.640 166
Chiroptera Vespertilionidae Scotophilus kuhlii 0.680 161
Chiroptera Vespertilionidae Myotis daubentonii 0.632 115
Chiroptera Vespertilionidae Neoromicia capensis 0.632 110
Chiroptera Pteropodidae Rousettus leschenaultii 0.665 101
Chiroptera Pteropodidae Pteropus lylei 0.684 86
Chiroptera Pteropodidae Rousettus aegyptiacus 0.628 71
Chiroptera Vespertilionidae Tylonycteris pachypus 0.658 67

Top 10 species by susceptibility
Chiroptera Pteropodidae P. lylei 0.684 86
Chiroptera Vespertilionidae S. kuhlii 0.68 161
Chiroptera Pteropodidae R. leschenaultii 0.665 101
Chiroptera Vespertilionidae T. pachypus 0.658 67
Chiroptera Rhinolophidae R. ferrumequinum 0.64 166
Chiroptera Rhinolophidae R. sinicus 0.634 184
Chiroptera Vespertilionidae M. daubentonii 0.632 115
Chiroptera Vespertilionidae N. capensis 0.632 110
Chiroptera Pteropodidae E. helvum 0.63 435
Chiroptera Pteropodidae R. aegyptiacus 0.628 71

(79). This slight nonsignificant departure from a power law may
be due to fewer data in the case of avian malaria and due to
the taxonomic resolution level for the case of bat coronavirus
that was fitted using family-level data. Thus, our study suggests
that the use of the power law cumulative density function is a
good starting point to estimate the number of incidences that
will be necessary for model training; additionally, they seem to
be applicable to a broad array of interactions—from mutualistic
to antagonistic ones. Importantly, not all recorded incidence cases
are necessary to get consistent results after many runs; actually, our
models were well trained when using <20% of the incidence data
available. Also, species with higher incidence are not necessarily
the species with higher susceptibility. Yet, we suggest that the
use of the cumulative density function needs further exploration
and implementation, given that, for example, the taxonomic level
(e.g., Coronaviridae corresponding to family versus P. relictum
or WNV which are species) might affect predicted interactions.
Model susceptibility results suggest groups of host species that
need to be explicitly considered in monitoring efforts, particu-
larly because the mismatch between highly susceptible and high-
incidence hosts used in model calibration may indicate a sampling
bias toward species more easily captured in the field, as well as the
influence of other local-scale factors such as species that are closer
to human settlements and interacting more heavily with domestic
animals, and the dispersal capacity of host species, among others.

Taking all together, there are several advantages by adopting
methodological frameworks such as the one developed in here:
1) the capacity to predict host susceptibility even when there are
low or no incidence records, 2) this approximation is statistically
robust to sampling biases and easily generalizable to systems other
than the ones studied here, and 3) the application to different
geographic scales by using a set of relevant variables—here ge-
ographic, environmental, and phylogenetic distances at global
scales to better understand ecoepidemiological processes. Based
on this, future research must include a larger array of interaction
systems and a sensitivity analysis of explanatory variables at dif-
ferent spatial and temporal scales (i.e., high-resolution biotic [life
history traits and genomics] and abiotic [remote sensing variables]
factors).

Materials and Methods

We summarize all the processes from data wrangling to empirical validation of
the outputs in Fig. 1.

Host–Pathogen Data. We studied three systems. For the P. relictum–birds sys-
tem, we obtained the data from Malavi database (http://mbio-serv2.mbioekol.lu.se/
Malavi/) (80) and filtered the lineages associated with P. relictum (SGS1, GRW04,
GRW11, LZFUS01, and PHCOL01) (30). For the WNV–birds system we used data
from Tolsá et al. (36) considering both serological and molecular prevalence. For
the bat coronavirus data we consulted DBatVir (http://www.mgc.ac.cn/DBatVir/)
(81). Subsequently, we built datasets for pathogen incidence by species of bird
and bat hosts for each of the above mentioned host–pathogen systems; incidence
is the number of individuals of a host species recorded infected with a focal
parasite species or parasite group.

Incidence Distribution. By incidence we consider all those host species that
were infected or exposed (i.e., they had a positive immune reaction to the
pathogen) to the pathogen under study. Thus, our incidence data represent
presence only or records of positive infected hosts.

We analyzed the statistical hypothesis that the probability distributions of the
incidence events in the databases follow a power law distribution (82).

p(x) =
α− 1

xmin

(
x

xmin

)−α

. [1]

To test this hypothesis we followed Gillespie (83) through poweRlaw R package.
In all three cases we accepted the null hypothesis (i.e., data were generated from
a power law distribution) and found both xmin and α parameters. When we only
considered presence data (i.e., incidence), it is likely that we have an excess of
host species that have been sampled the most, although they are not necessarily
the more abundant ones in the sampling locations.

Yet, in our study cases,∼20 to 40% of hosts would contain 80% of incidence
information. Thus, when we build a statistical model with the fitted distribution,
the predictions of the model apply to all the host species that follow the power law
distribution. This allows us to have a workable classification problem, where the
machine learning procedure learns from the data and correctly classifies the infor-
mation with the set of species of highest incidence. Furthermore, the randomiza-
tion step guarantees that all host species are considered during model building
and calibration (see the step-by-step algorithm in SI Appendix, Supplement 1).
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Data Sampling. Previous to model calibration with machine learning it is im-
portant to identify host species that are considered as “known” versus “unknown”
incidence cases. Within known host cases, it is important to select those hosts
containing the highest amount of information. To do this, we used the Newton’s
method (84) to find the optimum set of host species that contain the largest
amount of information; the complementary cumulative distribution function
(CDF) (82) determines the inflection point for each system, which indicates the
highest incidence cases to predict host susceptibility. This process filters the
noise that low and unknown incidence species would bring into the modeling
procedure as a function of the independent variables.

In this way, we intended that when modeling, the independent variables
have a closer relationship with the dataset and the least amount of statistical noise
due to interactions because of other unaccounted variables.

Environmental Information. We estimated the environmental distance
among host species from their ecological niche centroids based on infor-
mation from the WorldClim database (https://www.worldclim.org/). To avoid
multidimensionality we carried out a principal component analysis (PCA) of
the 19 bioclimatic variables and generated new layers from this analysis.
We kept the first three PC layers (∼85% of the total variance explained),
and for each species we cropped these layers using the International Union
for Conservation of Nature (IUCN) shapefiles of their distribution ranges
(https://www.iucnredlist.org/resources/spatial-data-download) with the sf R
package (85).

In order to understand each climatic variable as a probability density func-
tion (PDF) associated with the host geographic distribution (86), we used the
kernel density estimation corresponding to the environmental factor across the
geographic distribution from the IUCN shapefiles, taking a sample of raster cells
within IUCN polygons from PCA environmental layers:

pg(x) =
1
k

k∑
i=1

1
hx

1√
2π

e
− (x−xi)

2

2h2
x , [2]

where pg(x) is the PDF of a species geographical distribution with respect to
each environmental factor in a vector x, xi is the value of x at each i cell in
environmental raster layer, k is the total number of raster cells sampled, and
hx is the bandwidth parameter. Here we adopted a Gaussian kernel (87) and
obtained the maximum of the distribution for each variable r(x) = max(pg(x)),
understanding that this value summarizes the most probable environmental
information associated with each species (88).

In this way, each species is associated with a point (i.e., the realized niche
centroid) in the environmental space, and it is possible to calculate a distance
matrix efficiently for each pair of points in environmental space. An Euclidean
matrix E of environmental distances of all host species was generated. This
procedure was performed independently for each host–pathogen system:

E = (eij)

eij = |ri − rj|,
[3]

where eij is the distance between rij, the maxima of two p(x) distributions.
Finally, because the distances between hosts present a central tendency in most
of the cases, we took the average distance in order to summarize the interaction
information of each host species in relation to the other host species, collapsing
the rows in the matrix by

s(e)n =

∑n
i �=j eij

n
, [4]

and generated a table of environmental distances for n species for each dataset.
This approach allowed more efficient computation without losing information
associated with each species, and it also allowed the information to be compared
between/among species. Because our objective was to describe the environment
for each species with the available geographic data, we took the precaution of con-
sidering this multivariate probability density function as a continuous function,
which permits the method to be applied to understanding the Hutchinsonian
niche of the species in order to compare host species to each other (89). To
represent the environmental information in a reliable way, an ellipsoid was
considered as a hypothetical fundamental niche model for each species (90). To

calculate this ellipsoid we used the dataEllipse function of the R package car (91)
implemented in the stat elipse function of the ggplot2 package (92).

Geographical Information. We obtained geographic distribution information
for birds and mammals from the IUCN polygons. We first calculated the centroid
of the polygon with the largest area for each species to get the geographic in-
formation. Subsequently, we calculated the geographical distance between each
centroid to generate a geographic distance matrix. Similar to the environmental
distance, we obtained a list of distances of one species with respect to the others
and calculated the mean distance between the centroids of each pair, getting
a table of geographic distances by species expressed as s(g)n (see above in
Environmental Information subsection of Materials and Methods). We performed
all geospatial data manipulation using the sf R package (85).

Phylogenetic Information. We calculated the phylogenetic distance among
bird species following Jetz (https://birdtree.org/) (93). In the case of mammals
we used Upham tree (94) and calculated a phylogenetic distance matrix with the
ape R package (95) given in million years among tips of the tree. Subsequently,
we transformed the distance matrix into a list of pairs of species with the distance
between them and generated a table per species with the mean phylogenetic
distance of one species with respect to the other species. Thus, it is possible to
generate a feature that captures the position of a species in the phylogenetic
information space. We did this method for each of the phylogenetic trees used
(i.e., birds and bats) and expressed them as s(d)n.

Data Modeling. For each host–pathogen assemblage, we created a dataset
taking each n host species and the phylogenetic, environmental, and geographic
distances calculated above (see subsections Environmental Information, Geo-
graphical Information, and Phylogenetic Information). Based on this dataset, we
selected the species considered in the pathogen incidence cutoff (see above in
Data Sampling subsection of Materials and Methods) and labeled these species
as susceptible. Subsequently, we took a random sample of species outside of the
cutoff set, balancing the sample size with respect to the cutoff set and labeling
these species as unknown, thus having a dataset with two susceptibility classes
(susceptible and unknown) and three features (environmental, geographic, and
phylogenetic distances). We also added the interactions between the indepen-
dent variables and separated the data into a train set (70%) and a validation set
(30%).

For the machine learning procedure, we first performed a comparison of
five algorithms for the American mammals–dengue dataset that we previously
analyzed (17). We showed that random forest algorithms outperformed other
methods (e.g., glmnet and logistic regression; see details of comparisons in Zen-
odo; https://doi.org/10.5281/zenodo.6510454). Therefore, following Kuhn et al.
(96), we generated a set of random forest models optimizing their parameters
with a modeling grid (97) and with 10 times 10-fold cross-validation for each
sample. We briefly describe the random forest algorithm:

1. For b = 0 to B random variables:
• Select a bootstrap sample of size N from training data
• Grow a random forest tree Tb to the bootstrapped data by recursively

repeating the following steps for each terminal node of the tree, until the
minimum node size nmin is reached.
(a) Select m variables at random from the p variables.
(b) Pick the best variable/split-point among the m.
(c) Split the node into two daughter nodes.

2. Output the sample of trees Tb
B
1.

To make a new prediction of susceptible or unknown class, let Ĉb(x) be the
class prediction of the bth random forest tree. Then,

ˆCB
rf (x) = majority vote Ĉb(x)

B

1. [5]

With the most optimal model we regressed the entire dataset and obtained
the probability of susceptibility given the distances and their interactions, also
calculating the importance of each variable using the mean decrease impurity
(98) implemented internally in the ranger R (99) package. We generated
the variable important plots with vip (100) R package. We classified the
species as susceptible with a standard probability threshold (i.e., p(x)> 0.5),
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which is considered acceptable for model accuracy and is useful to select the pool
of species denominated as susceptible for the three host–pathogen systems.

Finally, we repeated this procedure 1,000 times with a different sample
looking for convergence in the probability calculation, as well as its uncertainty.
We then estimated the mean probability of susceptibility for each host species in
each host–pathogen assemblage, along with its SE (101).

Susceptibility of Geographical Richness. We assigned the average suscepti-
bility probability of each host species to each shape. Subsequently, we filtered the
susceptible species (i.e., with average probability of being susceptible p̂(x)>
0.5) and generated a susceptible species richness map that we projected onto
the geography for each host–pathogen system using the raster (102) and fasterize
(103) R packages.

Statistical Validation of Spatial Patterns. To test our model on geographic
space, we placed empirical validation points of where pathogens have been
found in the field (i.e., georeferences from field incidence observations; Host–
Pathogen Data) and applied point intensity tests to statistically analyze the hy-
pothesis that the pattern of observed (i.e., empirical) incidence does not follow a
random association with respect to our susceptibility richness map.

We tested as null hypothesis (H0) that the density of empirical pathogen
points is not a function of the richness of susceptible host species and as alter-
native hypothesis (Ha) that the density of empirical pathogen points depends on
the richness of susceptible host species according to the random forest model.
We performed this test using the likelihood ratio test for each hypothesis, get-
ting in all cases p < 0.05 and rejecting H0 in all cases. We implemented this
analysis with the spatstats R package (104, 105). Additionally, we generated a
nonparametric estimate of the intensity of this point process as a function of
the richness of those species predicted as susceptible (106). This allowed us to

inspect potential unobserved areas (i.e., areas with no records) in geographic
space.

Phylogenetic Reconstruction of Susceptibility. The predicted susceptibility
of each host–pathogen assemblage was used as a trait to map it onto a phylogeny
that was constructed using contmap and fastAnc functions from phytools R
package (107).

Data, Materials, and Software Availability. All R scripts and example data
are avaliable throught GitHub (https://github.com/alrobles/PNAS-Wildlife-suscep
tibility-to-infectious-diseases-at-global-scales) (108). RDS files available through
Zenodo (https://doi.org/10.5281/zenodo.6510454) (109) contain sufficient
information to replicate the analysis for each of the three host–pathogen
systems and include initial inputs to calculate the models (the phylogenetic,
environmental, and geographic distance tables and the incidence tables), model
outputs, accuracy for 1,000 runs, and susceptibility for each system.
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